#include "lyra2-gate.h" #include #include "lyra2.h" #include "algo/blake/blake256-hash.h" #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) #define LYRA2Z_16WAY 1 #elif defined(__AVX2__) #define LYRA2Z_8WAY 1 #elif defined(__SSE2__) #define LYRA2Z_4WAY 1 //#else // NEON 1 way SIMD #endif #define LYRA2Z_MATRIX_SIZE BLOCK_LEN_INT64 * 8 * 8 * 8 #if defined(LYRA2Z_16WAY) __thread uint64_t* lyra2z_16way_matrix; bool lyra2z_16way_thread_init() { return ( lyra2z_16way_matrix = mm_malloc( 2*LYRA2Z_MATRIX_SIZE, 64 ) ); } static void lyra2z_16way_hash( void *state, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t vhash[8*16] __attribute__ ((aligned (128))); uint32_t hash0[8] __attribute__ ((aligned (32))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); uint32_t hash8[8] __attribute__ ((aligned (32))); uint32_t hash9[8] __attribute__ ((aligned (32))); uint32_t hash10[8] __attribute__ ((aligned (32))); uint32_t hash11[8] __attribute__ ((aligned (32))); uint32_t hash12[8] __attribute__ ((aligned (32))); uint32_t hash13[8] __attribute__ ((aligned (32))); uint32_t hash14[8] __attribute__ ((aligned (32))); uint32_t hash15[8] __attribute__ ((aligned (32))); blake256_16way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 ); dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, hash8, hash9, hash10, hash11 ,hash12, hash13, hash14, hash15, vhash, 256 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_2x256( vhash, hash8, hash9, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash8, hash9, vhash, 256 ); intrlv_2x256( vhash, hash10, hash11, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash10, hash11, vhash, 256 ); intrlv_2x256( vhash, hash12, hash13, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash12, hash13, vhash, 256 ); intrlv_2x256( vhash, hash14, hash15, 256 ); LYRA2Z_2WAY( lyra2z_16way_matrix, vhash, 32, vhash, 32, 8, 8, 8 ); dintrlv_2x256( hash14, hash15, vhash, 256 ); memcpy( state, hash0, 32 ); memcpy( state+ 32, hash1, 32 ); memcpy( state+ 64, hash2, 32 ); memcpy( state+ 96, hash3, 32 ); memcpy( state+128, hash4, 32 ); memcpy( state+160, hash5, 32 ); memcpy( state+192, hash6, 32 ); memcpy( state+224, hash7, 32 ); memcpy( state+256, hash8, 32 ); memcpy( state+288, hash9, 32 ); memcpy( state+320, hash10, 32 ); memcpy( state+352, hash11, 32 ); memcpy( state+384, hash12, 32 ); memcpy( state+416, hash13, 32 ); memcpy( state+448, hash14, 32 ); memcpy( state+480, hash15, 32 ); } int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*16] __attribute__ ((aligned (128))); uint32_t midstate_vars[16*16] __attribute__ ((aligned (64))); __m512i block0_hash[8] __attribute__ ((aligned (64))); __m512i block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (64))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t last_nonce = max_nonce - 16; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m512i sixteen = _mm512_set1_epi32( 16 ); if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff; // Prehash first block blake256_transform_le( phash, pdata, 512, 0, 14 ); block0_hash[0] = _mm512_set1_epi32( phash[0] ); block0_hash[1] = _mm512_set1_epi32( phash[1] ); block0_hash[2] = _mm512_set1_epi32( phash[2] ); block0_hash[3] = _mm512_set1_epi32( phash[3] ); block0_hash[4] = _mm512_set1_epi32( phash[4] ); block0_hash[5] = _mm512_set1_epi32( phash[5] ); block0_hash[6] = _mm512_set1_epi32( phash[6] ); block0_hash[7] = _mm512_set1_epi32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = _mm512_set1_epi32( pdata[16] ); block_buf[ 1] = _mm512_set1_epi32( pdata[17] ); block_buf[ 2] = _mm512_set1_epi32( pdata[18] ); block_buf[ 3] = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8, n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n ); // Partialy prehash second block without touching nonces in block_buf[3]. blake256_16way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { lyra2z_16way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 16; lane++ ) if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, hash+(lane<<3), mythr ); } block_buf[ 3] = _mm512_add_epi32( block_buf[ 3], sixteen ); n += 16; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined(LYRA2Z_8WAY) __thread uint64_t* lyra2z_8way_matrix; bool lyra2z_8way_thread_init() { return ( lyra2z_8way_matrix = mm_malloc( LYRA2Z_MATRIX_SIZE, 64 ) ); } static void lyra2z_8way_hash( void *state, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); uint32_t vhash[8*8] __attribute__ ((aligned (64))); blake256_8way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 ); dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhash, 256 ); LYRA2Z( lyra2z_8way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash2, 32, hash2, 32, hash2, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash3, 32, hash3, 32, hash3, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash4, 32, hash4, 32, hash4, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash5, 32, hash5, 32, hash5, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash6, 32, hash6, 32, hash6, 32, 8, 8, 8 ); LYRA2Z( lyra2z_8way_matrix, hash7, 32, hash7, 32, hash7, 32, 8, 8, 8 ); memcpy( state, hash0, 32 ); memcpy( state+ 32, hash1, 32 ); memcpy( state+ 64, hash2, 32 ); memcpy( state+ 96, hash3, 32 ); memcpy( state+128, hash4, 32 ); memcpy( state+160, hash5, 32 ); memcpy( state+192, hash6, 32 ); memcpy( state+224, hash7, 32 ); } int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*8] __attribute__ ((aligned (64))); uint32_t midstate_vars[16*8] __attribute__ ((aligned (64))); __m256i block0_hash[8] __attribute__ ((aligned (64))); __m256i block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint64_t *ptarget = (uint64_t*)work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 8; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m256i eight = _mm256_set1_epi32( 8 ); // Prehash first block blake256_transform_le( phash, pdata, 512, 0, 14 ); block0_hash[0] = _mm256_set1_epi32( phash[0] ); block0_hash[1] = _mm256_set1_epi32( phash[1] ); block0_hash[2] = _mm256_set1_epi32( phash[2] ); block0_hash[3] = _mm256_set1_epi32( phash[3] ); block0_hash[4] = _mm256_set1_epi32( phash[4] ); block0_hash[5] = _mm256_set1_epi32( phash[5] ); block0_hash[6] = _mm256_set1_epi32( phash[6] ); block0_hash[7] = _mm256_set1_epi32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = _mm256_set1_epi32( pdata[16] ); block_buf[ 1] = _mm256_set1_epi32( pdata[17] ); block_buf[ 2] = _mm256_set1_epi32( pdata[18] ); block_buf[ 3] = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n ); // Partialy prehash second block without touching nonces blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { lyra2z_8way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 8; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } n += 8; block_buf[ 3] = _mm256_add_epi32( block_buf[ 3], eight ); } while ( likely( (n <= last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined(LYRA2Z_4WAY) // SSE2 or NEON __thread uint64_t* lyra2z_4way_matrix; bool lyra2z_4way_thread_init() { return ( lyra2z_4way_matrix = mm_malloc( LYRA2Z_MATRIX_SIZE, 64 ) ); } static __thread blake256_4way_context l2z_4way_blake_mid; void lyra2z_4way_midstate( const void* input ) { blake256_4way_init( &l2z_4way_blake_mid ); blake256_4way_update( &l2z_4way_blake_mid, input, 64 ); } void lyra2z_4way_hash( void *hash, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t hash0[8] __attribute__ ((aligned (64))); uint32_t hash1[8] __attribute__ ((aligned (64))); uint32_t hash2[8] __attribute__ ((aligned (64))); uint32_t hash3[8] __attribute__ ((aligned (64))); uint32_t vhash[8*4] __attribute__ ((aligned (64))); // blake256_4way_context ctx_blake __attribute__ ((aligned (64))); blake256_4way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 ); /* memcpy( &ctx_blake, &l2z_4way_blake_mid, sizeof l2z_4way_blake_mid ); blake256_4way_update( &ctx_blake, input + (64*4), 16 ); blake256_4way_close( &ctx_blake, vhash ); */ dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 256 ); LYRA2Z( lyra2z_4way_matrix, hash , 32, hash0, 32, hash0, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, hash+32, 32, hash1, 32, hash1, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, hash+64, 32, hash2, 32, hash2, 32, 8, 8, 8 ); LYRA2Z( lyra2z_4way_matrix, hash+96, 32, hash3, 32, hash3, 32, 8, 8, 8 ); } int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*4] __attribute__ ((aligned (64))); uint32_t midstate_vars[16*4] __attribute__ ((aligned (64))); v128_t block0_hash[8] __attribute__ ((aligned (64))); v128_t block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint64_t *ptarget = (uint64_t*)work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; const v128u32_t four = v128_32(4); // Prehash first block blake256_transform_le( phash, pdata, 512, 0, 14 ); block0_hash[0] = v128_32( phash[0] ); block0_hash[1] = v128_32( phash[1] ); block0_hash[2] = v128_32( phash[2] ); block0_hash[3] = v128_32( phash[3] ); block0_hash[4] = v128_32( phash[4] ); block0_hash[5] = v128_32( phash[5] ); block0_hash[6] = v128_32( phash[6] ); block0_hash[7] = v128_32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = v128_32( pdata[16] ); block_buf[ 1] = v128_32( pdata[17] ); block_buf[ 2] = v128_32( pdata[18] ); block_buf[ 3] = v128_set32( n+3, n+2, n+1, n ); block_buf[ 4] = v128_32( 0x80000000 ); block_buf[13] = v128_32( 1 ); block_buf[15] = v128_32( 640 ); // Partialy prehash second block without touching nonces blake256_4way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { lyra2z_4way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 4; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } block_buf[ 3] = v128_add32( block_buf[ 3], four ); n += 4; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #else // not used __thread uint64_t* lyra2z_matrix; bool lyra2z_thread_init() { const int i = BLOCK_LEN_INT64 * 8 * 8 * 8; lyra2z_matrix = mm_malloc( i, 64 ); return lyra2z_matrix; } static __thread blake256_context lyra2z_blake_mid; void lyra2z_midstate( const void* input ) { blake256_init( &lyra2z_blake_mid ); blake256_update( &lyra2z_blake_mid, input, 64 ); } void lyra2z_hash( void *state, const void *input ) { uint32_t _ALIGN(32) hash[16]; blake256_context ctx_blake __attribute__ ((aligned (64))); memcpy( &ctx_blake, &lyra2z_blake_mid, sizeof (blake256_context) ); blake256_update( &ctx_blake, input + 64, 16 ); blake256_close( &ctx_blake, hash ); LYRA2Z( lyra2z_matrix, hash, 32, hash, 32, hash, 32, 8, 8, 8 ); memcpy( state, hash, 32 ); } int scanhash_lyra2z( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t _ALIGN(64) hash[8]; uint32_t _ALIGN(64) endiandata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t nonce = first_nonce; int thr_id = mythr->id; if (opt_benchmark) ptarget[7] = 0x0000ff; // for ( int i = 0; i < 20; i++ ) endiandata[i] = bswap_32( pdata[i] ); v128_bswap32_80( endiandata, pdata ); lyra2z_midstate( endiandata ); do { endiandata[19] = bswap_32( nonce ); lyra2z_hash( hash, endiandata ); if ( valid_hash( hash, ptarget ) && !opt_benchmark ) { pdata[19] = nonce; submit_solution( work, hash, mythr ); } nonce++; } while ( nonce < max_nonce && !work_restart[thr_id].restart ); pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce + 1; return 0; } #endif bool register_lyra2z_algo( algo_gate_t* gate ) { #if defined(LYRA2Z_16WAY) gate->miner_thread_init = (void*)&lyra2z_16way_thread_init; gate->scanhash = (void*)&scanhash_lyra2z_16way; // gate->hash = (void*)&lyra2z_16way_hash; #elif defined(LYRA2Z_8WAY) gate->miner_thread_init = (void*)&lyra2z_8way_thread_init; gate->scanhash = (void*)&scanhash_lyra2z_8way; // gate->hash = (void*)&lyra2z_8way_hash; #elif defined(LYRA2Z_4WAY) gate->miner_thread_init = (void*)&lyra2z_4way_thread_init; gate->scanhash = (void*)&scanhash_lyra2z_4way; gate->hash = (void*)&lyra2z_4way_hash; #else gate->miner_thread_init = (void*)&lyra2z_thread_init; gate->scanhash = (void*)&scanhash_lyra2z; gate->hash = (void*)&lyra2z_hash; #endif gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT; opt_target_factor = 256.0; return true; };