/** * Header file for Blake2b's internal permutation in the form of a sponge. * This code is based on the original Blake2b's implementation provided by * Samuel Neves (https://blake2.net/) * * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014. * * This software is hereby placed in the public domain. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef SPONGE_H_ #define SPONGE_H_ #include #include "simd-utils.h" #if defined(__GNUC__) #define ALIGN __attribute__ ((aligned(32))) #elif defined(_MSC_VER) #define ALIGN __declspec(align(32)) #else #define ALIGN #endif /*Blake2b IV Array*/ static const uint64_t blake2b_IV[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /*Blake2b's rotation*/ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){ return ( w >> c ) | ( w << ( 64 - c ) ); } // serial data is only 32 bytes so AVX2 is the limit for that dimension. // However, 2 way parallel looks trivial to code for AVX512 except for // a data dependency with rowa. #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) #define G2W_4X64(a,b,c,d) \ a = _mm512_add_epi64( a, b ); \ d = mm512_ror_64( _mm512_xor_si512( d, a ), 32 ); \ c = _mm512_add_epi64( c, d ); \ b = mm512_ror_64( _mm512_xor_si512( b, c ), 24 ); \ a = _mm512_add_epi64( a, b ); \ d = mm512_ror_64( _mm512_xor_si512( d, a ), 16 ); \ c = _mm512_add_epi64( c, d ); \ b = mm512_ror_64( _mm512_xor_si512( b, c ), 63 ); #define LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ G2W_4X64( s0, s1, s2, s3 ); \ s1 = mm512_ror256_64( s1); \ s2 = mm512_swap256_128( s2 ); \ s3 = mm512_rol256_64( s3 ); \ G2W_4X64( s0, s1, s2, s3 ); \ s1 = mm512_rol256_64( s1 ); \ s2 = mm512_swap256_128( s2 ); \ s3 = mm512_ror256_64( s3 ); #define LYRA_12_ROUNDS_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \ LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) #endif // AVX512 #if defined __AVX2__ // process 4 columns in parallel // returns void, updates all args #define G_4X64(a,b,c,d) \ a = _mm256_add_epi64( a, b ); \ d = mm256_ror_64( _mm256_xor_si256( d, a ), 32 ); \ c = _mm256_add_epi64( c, d ); \ b = mm256_ror_64( _mm256_xor_si256( b, c ), 24 ); \ a = _mm256_add_epi64( a, b ); \ d = mm256_ror_64( _mm256_xor_si256( d, a ), 16 ); \ c = _mm256_add_epi64( c, d ); \ b = mm256_ror_64( _mm256_xor_si256( b, c ), 63 ); #define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ G_4X64( s0, s1, s2, s3 ); \ s1 = mm256_ror_1x64( s1); \ s2 = mm256_swap_128( s2 ); \ s3 = mm256_rol_1x64( s3 ); \ G_4X64( s0, s1, s2, s3 ); \ s1 = mm256_rol_1x64( s1 ); \ s2 = mm256_swap_128( s2 ); \ s3 = mm256_ror_1x64( s3 ); #define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \ LYRA_ROUND_AVX2( s0, s1, s2, s3 ) #endif #if defined(__SSE2__) // process 2 columns in parallel // returns void, all args updated #define G_2X64(a,b,c,d) \ a = _mm_add_epi64( a, b ); \ d = mm128_ror_64( _mm_xor_si128( d, a), 32 ); \ c = _mm_add_epi64( c, d ); \ b = mm128_ror_64( _mm_xor_si128( b, c ), 24 ); \ a = _mm_add_epi64( a, b ); \ d = mm128_ror_64( _mm_xor_si128( d, a ), 16 ); \ c = _mm_add_epi64( c, d ); \ b = mm128_ror_64( _mm_xor_si128( b, c ), 63 ); #define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ G_2X64( s0, s2, s4, s6 ); \ G_2X64( s1, s3, s5, s7 ); \ mm128_ror256_64( s2, s3 ); \ mm128_swap256_128( s4, s5 ); \ mm128_rol256_64( s6, s7 ); \ G_2X64( s0, s2, s4, s6 ); \ G_2X64( s1, s3, s5, s7 ); \ mm128_rol256_64( s2, s3 ); \ mm128_swap256_128( s4, s5 ); \ mm128_ror256_64( s6, s7 ); #define LYRA_12_ROUNDS_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \ LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) #endif // AVX2 else SSE2 // Scalar //Blake2b's G function #define G(r,i,a,b,c,d) \ do { \ a = a + b; \ d = rotr64(d ^ a, 32); \ c = c + d; \ b = rotr64(b ^ c, 24); \ a = a + b; \ d = rotr64(d ^ a, 16); \ c = c + d; \ b = rotr64(b ^ c, 63); \ } while(0) /*One Round of the Blake2b's compression function*/ #define ROUND_LYRA(r) \ G(r,0,v[ 0],v[ 4],v[ 8],v[12]); \ G(r,1,v[ 1],v[ 5],v[ 9],v[13]); \ G(r,2,v[ 2],v[ 6],v[10],v[14]); \ G(r,3,v[ 3],v[ 7],v[11],v[15]); \ G(r,4,v[ 0],v[ 5],v[10],v[15]); \ G(r,5,v[ 1],v[ 6],v[11],v[12]); \ G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \ G(r,7,v[ 3],v[ 4],v[ 9],v[14]); #if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__) union _ovly_512 { __m512i v512; struct { __m256i v256lo; __m256i v256hi; }; }; typedef union _ovly_512 ovly_512; union _inout_ovly { __m512i v512[3]; __m256i v256[6]; }; typedef union _inout_ovly inout_ovly; //---- Housekeeping void initState_2way( uint64_t State[/*16*/] ); //---- Squeezes void squeeze_2way( uint64_t *State, unsigned char *out, unsigned int len ); void reducedSqueezeRow0_2way( uint64_t* state, uint64_t* row, uint64_t nCols ); //---- Absorbs void absorbBlock_2way( uint64_t *State, const uint64_t *In0, const uint64_t *In1 ); void absorbBlockBlake2Safe_2way( uint64_t *State, const uint64_t *In, const uint64_t nBlocks, const uint64_t block_len ); //---- Duplexes void reducedDuplexRow1_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowOut, uint64_t nCols); void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols ); void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols); void reducedDuplexRow_2way_X( uint64_t *State, uint64_t *rowIn, uint64_t *rowInOut0, uint64_t *rowInOut1, uint64_t *rowOut, uint64_t nCols); #endif //---- Housekeeping void initState(uint64_t state[/*16*/]); //---- Squeezes void squeeze(uint64_t *state, unsigned char *out, unsigned int len); void reducedSqueezeRow0(uint64_t* state, uint64_t* row, uint64_t nCols); //---- Absorbs void absorbBlock(uint64_t *state, const uint64_t *in); void absorbBlockBlake2Safe( uint64_t *state, const uint64_t *in, const uint64_t nBlocks, const uint64_t block_len ); //---- Duplexes void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, uint64_t nCols); void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols); void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols); #endif /* SPONGE_H_ */