#include "lyra2-gate.h" #include #include "algo/blake/blake256-hash.h" #include "algo/keccak/keccak-hash-4way.h" #include "algo/skein/skein-hash-4way.h" #include "algo/cubehash/cubehash_sse2.h" #include "algo/cubehash/cube-hash-2way.h" #include "algo/groestl/aes_ni/hash-groestl256.h" #if defined(__VAES__) #include "algo/groestl/groestl256-hash-4way.h" #endif #include "algo/keccak/sph_keccak.h" #include "algo/skein/sph_skein.h" #if !defined(__AES__) // && !defined(__ARM_FEATURE_AES) ) #include "algo/groestl/sph_groestl.h" #endif #if defined(SIMD512) #define ALLIUM_16WAY 1 #elif defined(__AVX2__) #define ALLIUM_8WAY 1 #elif defined(__SSE2__) || defined(__ARM_NEON) #define ALLIUM_4WAY 1 #endif #if defined (ALLIUM_16WAY) typedef union { keccak256_8way_context keccak; cube_4way_2buf_context cube; skein256_8way_context skein; #if defined(__VAES__) groestl256_4way_context groestl; #else hashState_groestl256 groestl; #endif } allium_16way_ctx_holder; static void allium_16way_hash( void *state, const void *midstate_vars, const void *midhash, const void *block ) { uint32_t vhash[16*8] __attribute__ ((aligned (128))); uint32_t vhashA[16*8] __attribute__ ((aligned (64))); uint32_t vhashB[16*8] __attribute__ ((aligned (64))); uint32_t hash0[8] __attribute__ ((aligned (32))); uint32_t hash1[8] __attribute__ ((aligned (32))); uint32_t hash2[8] __attribute__ ((aligned (32))); uint32_t hash3[8] __attribute__ ((aligned (32))); uint32_t hash4[8] __attribute__ ((aligned (32))); uint32_t hash5[8] __attribute__ ((aligned (32))); uint32_t hash6[8] __attribute__ ((aligned (32))); uint32_t hash7[8] __attribute__ ((aligned (32))); uint32_t hash8[8] __attribute__ ((aligned (32))); uint32_t hash9[8] __attribute__ ((aligned (32))); uint32_t hash10[8] __attribute__ ((aligned (32))); uint32_t hash11[8] __attribute__ ((aligned (32))); uint32_t hash12[8] __attribute__ ((aligned (32))); uint32_t hash13[8] __attribute__ ((aligned (32))); uint32_t hash14[8] __attribute__ ((aligned (32))); uint32_t hash15[8] __attribute__ ((aligned (32))); allium_16way_ctx_holder ctx __attribute__ ((aligned (64))); blake256_16way_final_rounds_le( vhash, midstate_vars, midhash, block, 14 ); dintrlv_16x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15, vhash, 256 ); intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15, 256 ); keccak256_8way_init( &ctx.keccak ); keccak256_8way_update( &ctx.keccak, vhashA, 32 ); keccak256_8way_close( &ctx.keccak, vhashA); keccak256_8way_init( &ctx.keccak ); keccak256_8way_update( &ctx.keccak, vhashB, 32 ); keccak256_8way_close( &ctx.keccak, vhashB); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhashA, 256 ); dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15, vhashB, 256 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_2x256( vhash, hash8, hash9, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash8, hash9, vhash, 256 ); intrlv_2x256( vhash, hash10, hash11, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash10, hash11, vhash, 256 ); intrlv_2x256( vhash, hash12, hash13, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash12, hash13, vhash, 256 ); intrlv_2x256( vhash, hash14, hash15, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash14, hash15, vhash, 256 ); intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, 256 ); intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, 256 ); cube_4way_2buf_full( &ctx.cube, vhashA, vhashB, 256, vhashA, vhashB, 32 ); dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 ); dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 ); intrlv_4x128( vhashA, hash8, hash9, hash10, hash11, 256 ); intrlv_4x128( vhashB, hash12, hash13, hash14, hash15, 256 ); cube_4way_2buf_full( &ctx.cube, vhashA, vhashB, 256, vhashA, vhashB, 32 ); dintrlv_4x128( hash8, hash9, hash10, hash11, vhashA, 256 ); dintrlv_4x128( hash12, hash13, hash14, hash15, vhashB, 256 ); intrlv_2x256( vhash, hash0, hash1, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash0, hash1, vhash, 256 ); intrlv_2x256( vhash, hash2, hash3, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash2, hash3, vhash, 256 ); intrlv_2x256( vhash, hash4, hash5, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash4, hash5, vhash, 256 ); intrlv_2x256( vhash, hash6, hash7, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash6, hash7, vhash, 256 ); intrlv_2x256( vhash, hash8, hash9, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash8, hash9, vhash, 256 ); intrlv_2x256( vhash, hash10, hash11, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash10, hash11, vhash, 256 ); intrlv_2x256( vhash, hash12, hash13, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash12, hash13, vhash, 256 ); intrlv_2x256( vhash, hash14, hash15, 256 ); LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 ); dintrlv_2x256( hash14, hash15, vhash, 256 ); intrlv_8x64( vhashA, hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, 256 ); intrlv_8x64( vhashB, hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15, 256 ); skein256_8way_init( &ctx.skein ); skein256_8way_update( &ctx.skein, vhashA, 32 ); skein256_8way_close( &ctx.skein, vhashA ); skein256_8way_init( &ctx.skein ); skein256_8way_update( &ctx.skein, vhashB, 32 ); skein256_8way_close( &ctx.skein, vhashB ); dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhashA, 256 ); dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15, vhashB, 256 ); #if defined(__VAES__) intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 ); groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 ); dintrlv_4x128( state, state+32, state+64, state+96, vhash, 256 ); intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 ); groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 ); dintrlv_4x128( state+128, state+160, state+192, state+224, vhash, 256 ); intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 ); groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 ); dintrlv_4x128( state+256, state+288, state+320, state+352, vhash, 256 ); intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 ); groestl256_4way_full( &ctx.groestl, vhash, vhash, 32 ); dintrlv_4x128( state+384, state+416, state+448, state+480, vhash, 256 ); #else groestl256_full( &ctx.groestl, state, hash0, 256 ); groestl256_full( &ctx.groestl, state+32, hash1, 256 ); groestl256_full( &ctx.groestl, state+64, hash2, 256 ); groestl256_full( &ctx.groestl, state+96, hash3, 256 ); groestl256_full( &ctx.groestl, state+128, hash4, 256 ); groestl256_full( &ctx.groestl, state+160, hash5, 256 ); groestl256_full( &ctx.groestl, state+192, hash6, 256 ); groestl256_full( &ctx.groestl, state+224, hash7, 256 ); groestl256_full( &ctx.groestl, state+256, hash8, 256 ); groestl256_full( &ctx.groestl, state+288, hash9, 256 ); groestl256_full( &ctx.groestl, state+320, hash10, 256 ); groestl256_full( &ctx.groestl, state+352, hash11, 256 ); groestl256_full( &ctx.groestl, state+384, hash12, 256 ); groestl256_full( &ctx.groestl, state+416, hash13, 256 ); groestl256_full( &ctx.groestl, state+448, hash14, 256 ); groestl256_full( &ctx.groestl, state+480, hash15, 256 ); #endif } int scanhash_allium_16way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t hash[8*16] __attribute__ ((aligned (128))); uint32_t midstate_vars[16*16] __attribute__ ((aligned (64))); __m512i block0_hash[8] __attribute__ ((aligned (64))); __m512i block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t n = first_nonce; const uint32_t last_nonce = max_nonce - 16; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m512i sixteen = _mm512_set1_epi32( 16 ); if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff; // Prehash first block. blake256_transform_le( phash, pdata, 512, 0, 14 ); // Interleave hash for second block prehash. block0_hash[0] = _mm512_set1_epi32( phash[0] ); block0_hash[1] = _mm512_set1_epi32( phash[1] ); block0_hash[2] = _mm512_set1_epi32( phash[2] ); block0_hash[3] = _mm512_set1_epi32( phash[3] ); block0_hash[4] = _mm512_set1_epi32( phash[4] ); block0_hash[5] = _mm512_set1_epi32( phash[5] ); block0_hash[6] = _mm512_set1_epi32( phash[6] ); block0_hash[7] = _mm512_set1_epi32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = _mm512_set1_epi32( pdata[16] ); block_buf[ 1] = _mm512_set1_epi32( pdata[17] ); block_buf[ 2] = _mm512_set1_epi32( pdata[18] ); block_buf[ 3] = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8, n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n ); // Partialy prehash second block without touching nonces in block_buf[3]. blake256_16way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { allium_16way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 16; lane++ ) if ( unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, hash+(lane<<3), mythr ); } block_buf[ 3] = _mm512_add_epi32( block_buf[ 3], sixteen ); n += 16; } while ( likely( (n < last_nonce) && !work_restart[thr_id].restart) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined (ALLIUM_8WAY) typedef union { keccak256_4way_context keccak; cube_2way_context cube; skein256_4way_context skein; #if defined(__VAES__) groestl256_2way_context groestl; #else hashState_groestl256 groestl; #endif } allium_8way_ctx_holder; static void allium_8way_hash( void *hash, const void *midstate_vars, const void *midhash, const void *block ) { uint64_t vhashA[4*8] __attribute__ ((aligned (64))); uint64_t vhashB[4*8] __attribute__ ((aligned (32))); uint64_t *hash0 = (uint64_t*)hash; uint64_t *hash1 = (uint64_t*)hash+ 4; uint64_t *hash2 = (uint64_t*)hash+ 8; uint64_t *hash3 = (uint64_t*)hash+12; uint64_t *hash4 = (uint64_t*)hash+16; uint64_t *hash5 = (uint64_t*)hash+20; uint64_t *hash6 = (uint64_t*)hash+24; uint64_t *hash7 = (uint64_t*)hash+28; allium_8way_ctx_holder ctx __attribute__ ((aligned (64))); blake256_8way_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 ); dintrlv_8x32( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7, vhashA, 256 ); intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 ); intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 ); keccak256_4way_init( &ctx.keccak ); keccak256_4way_update( &ctx.keccak, vhashA, 32 ); keccak256_4way_close( &ctx.keccak, vhashA ); keccak256_4way_init( &ctx.keccak ); keccak256_4way_update( &ctx.keccak, vhashB, 32 ); keccak256_4way_close( &ctx.keccak, vhashB ); dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 ); dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 ); LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 ); LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 ); LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 ); LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 ); LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 ); LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 ); LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 ); LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 ); intrlv_2x128( vhashA, hash0, hash1, 256 ); intrlv_2x128( vhashB, hash2, hash3, 256 ); cube_2way_full( &ctx.cube, vhashA, 256, vhashA, 32 ); cube_2way_full( &ctx.cube, vhashB, 256, vhashB, 32 ); dintrlv_2x128( hash0, hash1, vhashA, 256 ); dintrlv_2x128( hash2, hash3, vhashB, 256 ); intrlv_2x128( vhashA, hash4, hash5, 256 ); intrlv_2x128( vhashB, hash6, hash7, 256 ); cube_2way_full( &ctx.cube, vhashA, 256, vhashA, 32 ); cube_2way_full( &ctx.cube, vhashB, 256, vhashB, 32 ); dintrlv_2x128( hash4, hash5, vhashA, 256 ); dintrlv_2x128( hash6, hash7, vhashB, 256 ); LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 ); LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 ); LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 ); LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 ); LYRA2RE( hash4, 32, hash4, 32, hash4, 32, 1, 8, 8 ); LYRA2RE( hash5, 32, hash5, 32, hash5, 32, 1, 8, 8 ); LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 ); LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 ); intrlv_4x64( vhashA, hash0, hash1, hash2, hash3, 256 ); intrlv_4x64( vhashB, hash4, hash5, hash6, hash7, 256 ); skein256_4way_init( &ctx.skein ); skein256_4way_update( &ctx.skein, vhashA, 32 ); skein256_4way_close( &ctx.skein, vhashA ); skein256_4way_init( &ctx.skein ); skein256_4way_update( &ctx.skein, vhashB, 32 ); skein256_4way_close( &ctx.skein, vhashB ); #if defined(__VAES__) uint64_t vhashC[4*2] __attribute__ ((aligned (32))); uint64_t vhashD[4*2] __attribute__ ((aligned (32))); rintrlv_4x64_2x128( vhashC, vhashD, vhashA, 256 ); groestl256_2way_full( &ctx.groestl, vhashC, vhashC, 32 ); groestl256_2way_full( &ctx.groestl, vhashD, vhashD, 32 ); dintrlv_2x128( hash0, hash1, vhashC, 256 ); dintrlv_2x128( hash2, hash3, vhashD, 256 ); rintrlv_4x64_2x128( vhashC, vhashD, vhashB, 256 ); groestl256_2way_full( &ctx.groestl, vhashC, vhashC, 32 ); groestl256_2way_full( &ctx.groestl, vhashD, vhashD, 32 ); dintrlv_2x128( hash4, hash5, vhashC, 256 ); dintrlv_2x128( hash6, hash7, vhashD, 256 ); #else dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 ); dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 ); groestl256_full( &ctx.groestl, hash0, hash0, 256 ); groestl256_full( &ctx.groestl, hash1, hash1, 256 ); groestl256_full( &ctx.groestl, hash2, hash2, 256 ); groestl256_full( &ctx.groestl, hash3, hash3, 256 ); groestl256_full( &ctx.groestl, hash4, hash4, 256 ); groestl256_full( &ctx.groestl, hash5, hash5, 256 ); groestl256_full( &ctx.groestl, hash6, hash6, 256 ); groestl256_full( &ctx.groestl, hash7, hash7, 256 ); #endif } int scanhash_allium_8way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*8] __attribute__ ((aligned (64))); uint32_t midstate_vars[16*8] __attribute__ ((aligned (64))); __m256i block0_hash[8] __attribute__ ((aligned (64))); __m256i block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint64_t *ptarget = (uint64_t*)work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 8; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; const __m256i eight = _mm256_set1_epi32( 8 ); // Prehash first block blake256_transform_le( phash, pdata, 512, 0, 14 ); block0_hash[0] = _mm256_set1_epi32( phash[0] ); block0_hash[1] = _mm256_set1_epi32( phash[1] ); block0_hash[2] = _mm256_set1_epi32( phash[2] ); block0_hash[3] = _mm256_set1_epi32( phash[3] ); block0_hash[4] = _mm256_set1_epi32( phash[4] ); block0_hash[5] = _mm256_set1_epi32( phash[5] ); block0_hash[6] = _mm256_set1_epi32( phash[6] ); block0_hash[7] = _mm256_set1_epi32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = _mm256_set1_epi32( pdata[16] ); block_buf[ 1] = _mm256_set1_epi32( pdata[17] ); block_buf[ 2] = _mm256_set1_epi32( pdata[18] ); block_buf[ 3] = _mm256_set_epi32( n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n+ 1, n ); // Partialy prehash second block without touching nonces blake256_8way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { allium_8way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 8; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } n += 8; block_buf[ 3] = _mm256_add_epi32( block_buf[ 3], eight ); } while ( likely( (n <= last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #elif defined(__SSE2__) || defined(__ARM_NEON) /////////////////// // // 4 way typedef union { keccak256_2x64_context keccak; cubehashParam cube; skein256_2x64_context skein; #if defined(__AES__) || defined(__ARM_FEATURE_AES) hashState_groestl256 groestl; #else sph_groestl256_context groestl; #endif } allium_4way_ctx_holder; static void allium_4way_hash( void *hash, const void *midstate_vars, const void *midhash, const void *block ) { uint64_t vhashA[4*4] __attribute__ ((aligned (64))); uint64_t *hash0 = (uint64_t*)hash; uint64_t *hash1 = (uint64_t*)hash+ 4; uint64_t *hash2 = (uint64_t*)hash+ 8; uint64_t *hash3 = (uint64_t*)hash+12; allium_4way_ctx_holder ctx __attribute__ ((aligned (64))); blake256_4way_final_rounds_le( vhashA, midstate_vars, midhash, block, 14 ); dintrlv_4x32( hash0, hash1, hash2, hash3, vhashA, 256 ); intrlv_2x64( vhashA, hash0, hash1, 256 ); keccak256_2x64_init( &ctx.keccak ); keccak256_2x64_update( &ctx.keccak, vhashA, 32 ); keccak256_2x64_close( &ctx.keccak, vhashA ); dintrlv_2x64( hash0, hash1, vhashA, 256 ); intrlv_2x64( vhashA, hash2, hash3, 256 ); keccak256_2x64_init( &ctx.keccak ); keccak256_2x64_update( &ctx.keccak, vhashA, 32 ); keccak256_2x64_close( &ctx.keccak, vhashA ); dintrlv_2x64( hash2, hash3, vhashA, 256 ); LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 ); LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 ); LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 ); LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 ); cubehash_full( &ctx.cube, hash0, 256, hash0, 32 ); cubehash_full( &ctx.cube, hash1, 256, hash1, 32 ); cubehash_full( &ctx.cube, hash2, 256, hash2, 32 ); cubehash_full( &ctx.cube, hash3, 256, hash3, 32 ); LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 ); LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 ); LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 ); LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 ); intrlv_2x64( vhashA, hash0, hash1, 256 ); skein256_2x64_init( &ctx.skein ); skein256_2x64_update( &ctx.skein, vhashA, 32 ); skein256_2x64_close( &ctx.skein, vhashA ); dintrlv_2x64( hash0, hash1, vhashA, 256 ); intrlv_2x64( vhashA, hash2, hash3, 256 ); skein256_2x64_init( &ctx.skein ); skein256_2x64_update( &ctx.skein, vhashA, 32 ); skein256_2x64_close( &ctx.skein, vhashA ); dintrlv_2x64( hash2, hash3, vhashA, 256 ); #if defined(__AES__) || defined(__ARM_FEATURE_AES) groestl256_full( &ctx.groestl, hash0, hash0, 256 ); groestl256_full( &ctx.groestl, hash1, hash1, 256 ); groestl256_full( &ctx.groestl, hash2, hash2, 256 ); groestl256_full( &ctx.groestl, hash3, hash3, 256 ); #else sph_groestl256_init( &ctx.groestl ); sph_groestl256( &ctx.groestl, hash0, 32 ); sph_groestl256_close( &ctx.groestl, hash0 ); sph_groestl256_init( &ctx.groestl ); sph_groestl256( &ctx.groestl, hash1, 32 ); sph_groestl256_close( &ctx.groestl, hash1 ); sph_groestl256_init( &ctx.groestl ); sph_groestl256( &ctx.groestl, hash2, 32 ); sph_groestl256_close( &ctx.groestl, hash2 ); sph_groestl256_init( &ctx.groestl ); sph_groestl256( &ctx.groestl, hash3, 32 ); sph_groestl256_close( &ctx.groestl, hash3 ); #endif } int scanhash_allium_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint64_t hash[4*4] __attribute__ ((aligned (64))); uint32_t midstate_vars[16*4] __attribute__ ((aligned (64))); v128_t block0_hash[8] __attribute__ ((aligned (64))); v128_t block_buf[16] __attribute__ ((aligned (64))); uint32_t phash[8] __attribute__ ((aligned (32))) = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 }; uint32_t *pdata = work->data; uint64_t *ptarget = (uint64_t*)work->target; const uint32_t first_nonce = pdata[19]; const uint32_t last_nonce = max_nonce - 4; uint32_t n = first_nonce; const int thr_id = mythr->id; const bool bench = opt_benchmark; const v128u32_t four = v128_32(4); // Prehash first block blake256_transform_le( phash, pdata, 512, 0, 14 ); block0_hash[0] = v128_32( phash[0] ); block0_hash[1] = v128_32( phash[1] ); block0_hash[2] = v128_32( phash[2] ); block0_hash[3] = v128_32( phash[3] ); block0_hash[4] = v128_32( phash[4] ); block0_hash[5] = v128_32( phash[5] ); block0_hash[6] = v128_32( phash[6] ); block0_hash[7] = v128_32( phash[7] ); // Build vectored second block, interleave last 16 bytes of data using // unique nonces. block_buf[ 0] = v128_32( pdata[16] ); block_buf[ 1] = v128_32( pdata[17] ); block_buf[ 2] = v128_32( pdata[18] ); block_buf[ 3] = v128_set32( n+3, n+2, n+1, n ); block_buf[ 4] = v128_32( 0x80000000 ); block_buf[13] = v128_32( 1 ); block_buf[15] = v128_32( 640 ); // Partialy prehash second block without touching nonces blake256_4way_round0_prehash_le( midstate_vars, block0_hash, block_buf ); do { allium_4way_hash( hash, midstate_vars, block0_hash, block_buf ); for ( int lane = 0; lane < 4; lane++ ) { const uint64_t *lane_hash = hash + (lane<<2); if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) ) { pdata[19] = n + lane; submit_solution( work, lane_hash, mythr ); } } n += 4; block_buf[3] = v128_add32( block_buf[3], four ); } while ( likely( (n <= last_nonce) && !work_restart[thr_id].restart ) ); pdata[19] = n; *hashes_done = n - first_nonce; return 0; } #endif //////////// // // 1 way typedef struct { blake256_context blake; sph_keccak256_context keccak; cubehashParam cube; sph_skein256_context skein; #if defined (__AES__) || defined(__ARM_FEATURE_AES) hashState_groestl256 groestl; #else sph_groestl256_context groestl; #endif } allium_ctx_holder; static __thread allium_ctx_holder allium_ctx; bool init_allium_ctx() { sph_keccak256_init( &allium_ctx.keccak ); cubehashInit( &allium_ctx.cube, 256, 16, 32 ); sph_skein256_init( &allium_ctx.skein ); #if defined (__AES__) || defined(__ARM_FEATURE_AES) init_groestl256( &allium_ctx.groestl, 32 ); #else sph_groestl256_init( &allium_ctx.groestl ); #endif return true; } void allium_hash(void *state, const void *input) { uint32_t hash[8] __attribute__ ((aligned (64))); allium_ctx_holder ctx __attribute__ ((aligned (32))); memcpy( &ctx, &allium_ctx, sizeof(allium_ctx) ); blake256_update( &ctx.blake, input + 64, 16 ); blake256_close( &ctx.blake, hash ); sph_keccak256( &ctx.keccak, hash, 32 ); sph_keccak256_close( &ctx.keccak, hash ); LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 ); cubehashUpdateDigest( &ctx.cube, (byte*)hash, (const byte*)hash, 32 ); LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 ); sph_skein256( &ctx.skein, hash, 32 ); sph_skein256_close( &ctx.skein, hash ); #if defined (__AES__) || defined(__ARM_FEATURE_AES) update_and_final_groestl256( &ctx.groestl, hash, hash, 256 ); #else sph_groestl256( &ctx.groestl, hash, 32 ); sph_groestl256_close( &ctx.groestl, hash ); #endif memcpy(state, hash, 32); } int scanhash_allium( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t _ALIGN(128) hash[8]; uint32_t _ALIGN(128) edata[20]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint32_t nonce = first_nonce; const int thr_id = mythr->id; if ( opt_benchmark ) ptarget[7] = 0x3ffff; for ( int i = 0; i < 19; i++ ) edata[i] = bswap_32( pdata[i] ); blake256_init( &allium_ctx.blake ); blake256_update( &allium_ctx.blake, edata, 64 ); do { edata[19] = nonce; allium_hash( hash, edata ); if ( valid_hash( hash, ptarget ) && !opt_benchmark ) { pdata[19] = bswap_32( nonce ); submit_solution( work, hash, mythr ); } nonce++; } while ( nonce < max_nonce && !work_restart[thr_id].restart ); pdata[19] = nonce; *hashes_done = pdata[19] - first_nonce; return 0; } bool register_allium_algo( algo_gate_t* gate ) { #if defined (ALLIUM_16WAY) gate->scanhash = (void*)&scanhash_allium_16way; #elif defined (ALLIUM_8WAY) gate->scanhash = (void*)&scanhash_allium_8way; #elif defined (ALLIUM_4WAY) gate->scanhash = (void*)&scanhash_allium_4way; #else gate->miner_thread_init = (void*)&init_allium_ctx; gate->scanhash = (void*)&scanhash_allium; gate->hash = (void*)&allium_hash; #endif gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT | NEON_OPT; opt_target_factor = 256.0; return true; };