Compare commits

..

1 Commits
v23.5 ... v23.6

Author SHA1 Message Date
Jay D Dee
46dca7a493 v23.6 2023-10-28 16:22:14 -04:00
20 changed files with 3092 additions and 2297 deletions

View File

@@ -73,6 +73,13 @@ If not what makes it happen or not happen?
Change Log
----------
v23.6
ARM: Sha256dt, Sha256t, Sha256d 4-way now working and fully optimized for NEON, SHA also enabled but untested.
x86: Sha256dt, Sha256t, Sha256d faster SSE2 4-way.
ARM: Scrypt, Scryptn2 fully optimized for NEON, SHA also enabled but untested.
Linux: added a log when miner is started as root to discourage doing so.
v23.5
New version numbering drops the leading 3, the major version will now be the calendar year, the minor version identifies planned releases during the year.

View File

@@ -136,10 +136,10 @@ static void fill_block( __m256i *state, const block *ref_block,
#else // SSE2
static void fill_block( v128_t *state, const block *ref_block,
static void fill_block( v128u64_t *state, const block *ref_block,
block *next_block, int with_xor )
{
v128_t block_XY[ARGON2_OWORDS_IN_BLOCK];
v128u64_t block_XY[ARGON2_OWORDS_IN_BLOCK];
unsigned int i;
if ( with_xor )

View File

@@ -23,56 +23,46 @@
#if !defined(__AVX512F__)
#if !defined(__AVX2__)
static BLAKE2_INLINE v128_t fBlaMka(v128_t x, v128_t y) {
const v128_t z = v128_mulw32(x, y);
return v128_add64(v128_add64(x, y), v128_add64(z, z));
static BLAKE2_INLINE v128_t fBlaMka(v128_t x, v128_t y)
{
const v128u64_t z = v128_mulw32( x, y );
return (v128u32_t)v128_add64( v128_add64( (v128u64_t)x, (v128u64_t)y ),
v128_add64( z, z ) );
}
#define G1( A0, B0, C0, D0, A1, B1, C1, D1 ) \
do { \
{ \
A0 = fBlaMka( A0, B0 ); \
A1 = fBlaMka( A1, B1 ); \
\
D0 = v128_xor( D0, A0 ); \
D1 = v128_xor( D1, A1 ); \
\
D0 = v128_ror64( D0, 32 ); \
D1 = v128_ror64( D1, 32 ); \
\
C0 = fBlaMka( C0, D0 ); \
C1 = fBlaMka( C1, D1 ); \
\
B0 = v128_xor( B0, C0 ); \
B1 = v128_xor( B1, C1 ); \
\
B0 = v128_ror64( B0, 24 ); \
B1 = v128_ror64( B1, 24 ); \
} while ((void)0, 0)
}
#define G2( A0, B0, C0, D0, A1, B1, C1, D1 ) \
do { \
{ \
A0 = fBlaMka( A0, B0 ); \
A1 = fBlaMka( A1, B1 ); \
\
D0 = v128_xor( D0, A0 ); \
D1 = v128_xor( D1, A1 ); \
\
D0 = v128_ror64( D0, 16 ); \
D1 = v128_ror64( D1, 16 ); \
\
C0 = fBlaMka( C0, D0 ); \
C1 = fBlaMka( C1, D1 ); \
\
B0 = v128_xor( B0, C0 ); \
B1 = v128_xor( B1, C1 ); \
\
B0 = v128_ror64( B0, 63 ); \
B1 = v128_ror64( B1, 63 ); \
} while ((void)0, 0)
}
#if defined(__SSSE3__) || defined(__ARM_NEON)

View File

@@ -2303,9 +2303,8 @@ static inline void salsa_simd128_shuffle_2buf( uint32_t *xa, uint32_t *xb )
XB[2] = _mm_blend_epi16( t0, t2, 0x0f );
XB[3] = _mm_blend_epi16( t1, t3, 0xc3 );
#elif defined(__SSE2__) || defined(__ARM_NEON)
#else // SSE2 or NEON
/*
const v128u64_t mask_cc = v128_set64(0xffffffff00000000, 0xffffffff00000000);
const v128u64_t mask_f0 = v128_set64(0xffffffffffffffff, 0);
const v128u64_t mask_3c = v128_set64(0x00000000ffffffff, 0xffffffff00000000);
@@ -2326,9 +2325,10 @@ static inline void salsa_simd128_shuffle_2buf( uint32_t *xa, uint32_t *xb )
XB[1] = v128_blendv( t1, t3, mask_3c );
XB[2] = v128_blendv( t2, t0, mask_f0 );
XB[3] = v128_blendv( t3, t1, mask_3c );
*/
#endif
/*
v128_t YA0, YA1, YA2, YA3, YB0, YB1, YB2, YB3;
YA0 = v128_set32( xa[15], xa[10], xa[ 5], xa[ 0] );
@@ -2348,8 +2348,7 @@ static inline void salsa_simd128_shuffle_2buf( uint32_t *xa, uint32_t *xb )
XB[2] = YB2;
XA[3] = YA3;
XB[3] = YB3;
#endif
*/
}
static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
@@ -2377,9 +2376,8 @@ static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
XB[2] = _mm_blend_epi16( t1, t3, 0xcc );
XB[3] = _mm_blend_epi16( t1, t3, 0x33 );
#elif defined(__SSE2__) || defined(__ARM_NEON)
#else // SSE2 or NEON
/*
const v128u64_t mask_cc = v128_set64(0xffffffff00000000, 0xffffffff00000000);
const v128u64_t mask_f0 = v128_set64(0xffffffffffffffff, 0);
const v128u64_t mask_3c = v128_set64(0x00000000ffffffff, 0xffffffff00000000);
@@ -2389,19 +2387,21 @@ static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
v128_t t2 = v128_blendv( XA[1], XA[3], mask_3c );
v128_t t3 = v128_blendv( XA[3], XA[1], mask_3c );
XA[0] = v128_blendv( t0, t2, mask_cc );
XA[1] = v128_blendv( t1, t3, mask_cc );
XA[2] = v128_blendv( t2, t0, mask_cc );
XA[1] = v128_blendv( t2, t0, mask_cc );
XA[2] = v128_blendv( t1, t3, mask_cc );
XA[3] = v128_blendv( t3, t1, mask_cc );
t0 = v128_blendv( XB[0], XB[2], mask_f0 );
t1 = v128_blendv( XB[1], XB[3], mask_3c );
t2 = v128_blendv( XB[2], XB[0], mask_f0 );
t1 = v128_blendv( XB[2], XB[0], mask_f0 );
t2 = v128_blendv( XB[1], XB[3], mask_3c );
t3 = v128_blendv( XB[3], XB[1], mask_3c );
XB[0] = v128_blendv( t0, t2, mask_cc );
XB[1] = v128_blendv( t1, t3, mask_cc );
XB[2] = v128_blendv( t2, t0, mask_cc );
XB[1] = v128_blendv( t2, t0, mask_cc );
XB[2] = v128_blendv( t1, t3, mask_cc );
XB[3] = v128_blendv( t3, t1, mask_cc );
*/
#endif
/*
v128_ovly ya[4], za[4], yb[4], zb[4];
ya[0].m128 = XA[0];
@@ -2457,9 +2457,7 @@ static inline void salsa_simd128_unshuffle_2buf( uint32_t* xa, uint32_t* xb )
XB[2] = zb[2].m128;
XA[3] = za[3].m128;
XB[3] = zb[3].m128;
#endif
*/
}
static void salsa8_simd128_2buf( uint32_t * const ba, uint32_t * const bb,
@@ -2638,9 +2636,8 @@ static inline void salsa_simd128_shuffle_3buf( uint32_t *xa, uint32_t *xb,
XC[2] = _mm_blend_epi16( t0, t2, 0x0f );
XC[3] = _mm_blend_epi16( t1, t3, 0xc3 );
#elif defined(__SSE2__) || defined(__ARM_NEON)
#else // SSE2 or NEON
/*
const v128u64_t mask_cc = v128_set64(0xffffffff00000000, 0xffffffff00000000);
const v128u64_t mask_f0 = v128_set64(0xffffffffffffffff, 0);
const v128u64_t mask_3c = v128_set64(0x00000000ffffffff, 0xffffffff00000000);
@@ -2650,28 +2647,29 @@ static inline void salsa_simd128_shuffle_3buf( uint32_t *xa, uint32_t *xb,
v128_t t2 = v128_blendv( XA[2], XA[3], mask_cc );
v128_t t3 = v128_blendv( XA[3], XA[2], mask_cc );
XA[0] = v128_blendv( t0, t2, mask_f0 );
XA[1] = v128_blendv( t1, t3, mask_3c );
XA[2] = v128_blendv( t2, t0, mask_f0 );
XA[1] = v128_blendv( t2, t0, mask_f0 );
XA[2] = v128_blendv( t1, t3, mask_3c );
XA[3] = v128_blendv( t3, t1, mask_3c );
t0 = v128_blendv( XB[0], XB[1], mask_cc );
t1 = v128_blendv( XB[1], XB[0], mask_cc );
t2 = v128_blendv( XB[2], XB[3], mask_cc );
t3 = v128_blendv( XB[3], XB[2], mask_cc );
XB[0] = v128_blendv( t0, t2, mask_f0 );
XB[1] = v128_blendv( t1, t3, mask_3c );
XB[2] = v128_blendv( t2, t0, mask_f0 );
XB[1] = v128_blendv( t2, t0, mask_f0 );
XB[2] = v128_blendv( t1, t3, mask_3c );
XB[3] = v128_blendv( t3, t1, mask_3c );
t0 = v128_blendv( XC[0], XC[1], mask_cc );
t1 = v128_blendv( XC[1], XC[0], mask_cc );
t2 = v128_blendv( XC[2], XC[3], mask_cc );
t3 = v128_blendv( XC[3], XC[2], mask_cc );
XC[0] = v128_blendv( t0, t2, mask_f0 );
XC[1] = v128_blendv( t1, t3, mask_3c );
XC[2] = v128_blendv( t2, t0, mask_f0 );
XC[1] = v128_blendv( t2, t0, mask_f0 );
XC[2] = v128_blendv( t1, t3, mask_3c );
XC[3] = v128_blendv( t3, t1, mask_3c );
*/
#endif
/*
v128_t YA0, YA1, YA2, YA3, YB0, YB1, YB2, YB3, YC0, YC1, YC2, YC3;
YA0 = v128_set32( xa[15], xa[10], xa[ 5], xa[ 0] );
@@ -2699,9 +2697,7 @@ static inline void salsa_simd128_shuffle_3buf( uint32_t *xa, uint32_t *xb,
XA[3] = YA3;
XB[3] = YB3;
XC[3] = YC3;
#endif
*/
}
static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
@@ -2738,9 +2734,8 @@ static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
XC[2] = _mm_blend_epi16( t1, t3, 0xcc );
XC[3] = _mm_blend_epi16( t1, t3, 0x33 );
#elif defined(__SSE2__) || defined(__ARM_NEON)
#else // SSE2 or NEON
/*
const v128u64_t mask_cc = v128_set64(0xffffffff00000000, 0xffffffff00000000);
const v128u64_t mask_f0 = v128_set64(0xffffffffffffffff, 0);
const v128u64_t mask_3c = v128_set64(0x00000000ffffffff, 0xffffffff00000000);
@@ -2750,27 +2745,29 @@ static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
v128_t t2 = v128_blendv( XA[1], XA[3], mask_3c );
v128_t t3 = v128_blendv( XA[3], XA[1], mask_3c );
XA[0] = v128_blendv( t0, t2, mask_cc );
XA[1] = v128_blendv( t1, t3, mask_cc );
XA[2] = v128_blendv( t2, t0, mask_cc );
XA[1] = v128_blendv( t2, t0, mask_cc );
XA[2] = v128_blendv( t1, t3, mask_cc );
XA[3] = v128_blendv( t3, t1, mask_cc );
t0 = v128_blendv( XB[0], XB[2], mask_f0 );
t1 = v128_blendv( XB[1], XB[3], mask_3c );
t2 = v128_blendv( XB[2], XB[0], mask_f0 );
t1 = v128_blendv( XB[2], XB[0], mask_f0 );
t2 = v128_blendv( XB[1], XB[3], mask_3c );
t3 = v128_blendv( XB[3], XB[1], mask_3c );
XB[0] = v128_blendv( t0, t2, mask_cc );
XB[1] = v128_blendv( t1, t3, mask_cc );
XB[2] = v128_blendv( t2, t0, mask_cc );
XB[1] = v128_blendv( t2, t0, mask_cc );
XB[2] = v128_blendv( t1, t3, mask_cc );
XB[3] = v128_blendv( t3, t1, mask_cc );
t0 = v128_blendv( XC[0], XC[2], mask_f0 );
t1 = v128_blendv( XC[1], XC[3], mask_3c );
t2 = v128_blendv( XC[2], XC[0], mask_f0 );
t1 = v128_blendv( XC[2], XC[0], mask_f0 );
t2 = v128_blendv( XC[1], XC[3], mask_3c );
t3 = v128_blendv( XC[3], XC[1], mask_3c );
XC[0] = v128_blendv( t0, t2, mask_cc );
XC[1] = v128_blendv( t1, t3, mask_cc );
XC[2] = v128_blendv( t2, t0, mask_cc );
XC[1] = v128_blendv( t2, t0, mask_cc );
XC[2] = v128_blendv( t1, t3, mask_cc );
XC[3] = v128_blendv( t3, t1, mask_cc );
*/
#endif
/*
v128_ovly ya[4], za[4], yb[4], zb[4], yc[4], zc[4];
ya[0].m128 = XA[0];
@@ -2850,9 +2847,7 @@ static inline void salsa_simd128_unshuffle_3buf( uint32_t* xa, uint32_t* xb,
XA[3] = za[3].m128;
XB[3] = zb[3].m128;
XC[3] = zc[3].m128;
#endif
*/
}
// Triple buffered, 3x memory usage

View File

@@ -56,10 +56,10 @@ static const uint32_t sha256_initial_state[8] =
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SCRYPT_THROUGHPUT 16
#elif defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
#define SCRYPT_THROUGHPUT 2
#elif defined(__AVX2__)
#define SCRYPT_THROUGHPUT 8
#elif defined(__SHA__) // NEON?
#define SCRYPT_THROUGHPUT 2
#else
#define SCRYPT_THROUGHPUT 4
#endif
@@ -155,7 +155,7 @@ static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate,
output[i] = bswap_32( ostate[i] );
}
#if defined(__SHA__)
#if defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
static inline void HMAC_SHA256_80_init_SHA_2BUF( const uint32_t *key0,
const uint32_t *key1, uint32_t *tstate0, uint32_t *tstate1,
@@ -266,6 +266,9 @@ static inline void PBKDF2_SHA256_128_32_SHA_2BUF( uint32_t *tstate0,
#endif // SHA
static const uint32_t keypad_4way[4 * 12] = {
0x80000000, 0x80000000, 0x80000000, 0x80000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000,
@@ -1221,10 +1224,10 @@ static int scrypt_N_1_1_256_16way( const uint32_t *input, uint32_t *output,
#endif // AVX512
#if ( SCRYPT_THROUGHPUT == 2 ) && defined(__SHA__)
#if ( SCRYPT_THROUGHPUT == 2 ) && ( defined(__SHA__) || defined(__ARM_FEATURE_SHA2) )
static int scrypt_N_1_1_256_sha_2buf( const uint32_t *input, uint32_t *output,
uint32_t *midstate, int N, int thrid )
static int scrypt_N_1_1_256_sha_2buf( const uint32_t *input,
uint32_t *output, uint32_t *midstate, int N, int thrid )
{
uint32_t _ALIGN(128) tstate[ 2*8 ];
uint32_t _ALIGN(128) ostate[ 2*8 ];
@@ -1241,13 +1244,13 @@ static int scrypt_N_1_1_256_sha_2buf( const uint32_t *input, uint32_t *output,
scrypt_core_simd128_2buf( W, scratchbuf, N );
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32_SHA_2BUF( tstate, tstate+8, ostate, ostate+8, W, W+32,
output, output+8 );
PBKDF2_SHA256_128_32_SHA_2BUF( tstate, tstate+8, ostate,
ostate+8, W, W+32, output, output+8 );
return 1;
}
#endif
#endif // THROUGHPUT = 2 && SHA
#if ( SCRYPT_THROUGHPUT == 4 )
@@ -1267,13 +1270,10 @@ static int scrypt_N_1_1_256_4way_sha( const uint32_t *input, uint32_t *output,
HMAC_SHA256_80_init( input, tstate, ostate );
PBKDF2_SHA256_80_128( tstate, ostate, input, W );
HMAC_SHA256_80_init( input +20, tstate+ 8, ostate+ 8 );
PBKDF2_SHA256_80_128( tstate+ 8, ostate+ 8, input +20, W+32 );
HMAC_SHA256_80_init( input +40, tstate+16, ostate+16 );
PBKDF2_SHA256_80_128( tstate+16, ostate+16, input +40, W+64 );
HMAC_SHA256_80_init( input +60, tstate+24, ostate+24 );
PBKDF2_SHA256_80_128( tstate+24, ostate+24, input +60, W+96 );
@@ -1303,11 +1303,8 @@ static int scrypt_N_1_1_256_4way_sha( const uint32_t *input, uint32_t *output,
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256_128_32( tstate, ostate, W, output );
PBKDF2_SHA256_128_32( tstate+ 8, ostate+ 8, W+32, output+ 8 );
PBKDF2_SHA256_128_32( tstate+16, ostate+16, W+64, output+16 );
PBKDF2_SHA256_128_32( tstate+24, ostate+24, W+96, output+24 );
return 1;
@@ -1418,14 +1415,14 @@ extern int scanhash_scrypt( struct work *work, uint32_t max_nonce,
rc = scrypt_N_1_1_256_8way( data, hash, midstate, opt_param_n,
thr_id );
#elif ( SCRYPT_THROUGHPUT == 4 )
#if defined(__SHA__)
#if defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
rc = scrypt_N_1_1_256_4way_sha( data, hash, midstate, opt_param_n,
thr_id );
#else
rc = scrypt_N_1_1_256_4way( data, hash, midstate, opt_param_n,
thr_id );
#endif
#elif ( SCRYPT_THROUGHPUT == 2 ) && defined(__SHA__)
#elif ( SCRYPT_THROUGHPUT == 2 ) && ( defined(__SHA__) || defined(__ARM_FEATURE_SHA2) )
rc = scrypt_N_1_1_256_sha_2buf( data, hash, midstate, opt_param_n,
thr_id );
#else
@@ -1472,10 +1469,10 @@ bool scrypt_miner_thread_init( int thr_id )
bool register_scrypt_algo( algo_gate_t* gate )
{
#if defined(__SHA__)
gate->optimizations = SSE2_OPT | SHA_OPT;
#if defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
gate->optimizations = SSE2_OPT | SHA_OPT | NEON_OPT;
#else
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
#endif
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
gate->scanhash = (void*)&scanhash_scrypt;
@@ -1492,15 +1489,15 @@ bool register_scrypt_algo( algo_gate_t* gate )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 4 * 128; // 4 way
#elif defined(__SHA__) || defined(__ARM_FEATURE_SHA2)
// scrypt_throughput = 2;
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
#elif defined(__AVX2__)
// scrypt_throughput = 8;
if ( opt_param_n > 0x4000 )
scratchbuf_size = opt_param_n * 3 * 128; // 3 buf
else
scratchbuf_size = opt_param_n * 2 * 128; // 2 way
#elif defined(__SHA__)
// scrypt_throughput = 4;
scratchbuf_size = opt_param_n * 2 * 128; // 2 buf
#else
// scrypt_throughput = 4;
if ( opt_param_n > 0x4000 )

View File

@@ -54,29 +54,29 @@ static const uint32_t K256[64] =
v128_xor( v128_xor( \
v128_ror32(x, 17), v128_ror32(x, 19) ), v128_sr32(x, 10) )
#define SHA2s_MEXP( a, b, c, d ) \
#define SHA256_4X32_MEXP( a, b, c, d ) \
v128_add4_32( SSG2_1( a ), b, SSG2_0( c ), d );
#define SHA256x4_MSG_EXPANSION( W ) \
W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] ); \
W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \
W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \
W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \
W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \
W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \
W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \
W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \
W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \
W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] ); \
W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] ); \
W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] ); \
W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] ); \
W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] );
#define SHA256_4X32_MSG_EXPANSION( W ) \
W[ 0] = SHA256_4X32_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
W[ 1] = SHA256_4X32_MEXP( W[15], W[10], W[ 2], W[ 1] ); \
W[ 2] = SHA256_4X32_MEXP( W[ 0], W[11], W[ 3], W[ 2] ); \
W[ 3] = SHA256_4X32_MEXP( W[ 1], W[12], W[ 4], W[ 3] ); \
W[ 4] = SHA256_4X32_MEXP( W[ 2], W[13], W[ 5], W[ 4] ); \
W[ 5] = SHA256_4X32_MEXP( W[ 3], W[14], W[ 6], W[ 5] ); \
W[ 6] = SHA256_4X32_MEXP( W[ 4], W[15], W[ 7], W[ 6] ); \
W[ 7] = SHA256_4X32_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] ); \
W[ 8] = SHA256_4X32_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] ); \
W[ 9] = SHA256_4X32_MEXP( W[ 7], W[ 2], W[10], W[ 9] ); \
W[10] = SHA256_4X32_MEXP( W[ 8], W[ 3], W[11], W[10] ); \
W[11] = SHA256_4X32_MEXP( W[ 9], W[ 4], W[12], W[11] ); \
W[12] = SHA256_4X32_MEXP( W[10], W[ 5], W[13], W[12] ); \
W[13] = SHA256_4X32_MEXP( W[11], W[ 6], W[14], W[13] ); \
W[14] = SHA256_4X32_MEXP( W[12], W[ 7], W[15], W[14] ); \
W[15] = SHA256_4X32_MEXP( W[13], W[ 8], W[ 0], W[15] );
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
#define SHA256_4X32_ROUND(A, B, C, D, E, F, G, H, i, j) \
{ \
v128_t T1, T2; \
v128_t K = v128_32( K256[( (j)+(i) )] ); \
T1 = v128_add32( H, v128_add4_32( BSG2_1(E), CHs(E, F, G), \
@@ -85,31 +85,41 @@ do { \
Y_xor_Z = X_xor_Y; \
D = v128_add32( D, T1 ); \
H = v128_add32( T1, T2 ); \
} while (0)
}
#define SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
#define SHA256_4X32_ROUND_NOMSG( A, B, C, D, E, F, G, H, i, j ) \
{ \
v128_t T1 = v128_add4_32( H, BSG2_1(E), CHs(E, F, G), \
v128_32( K256[(i)+(j)] ) ); \
v128_t T2 = v128_add32( BSG2_0(A), MAJs(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = v128_add32( D, T1 ); \
H = v128_add32( T1, T2 ); \
}
#define SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
{ \
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C ); \
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, j ); \
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, j ); \
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, j ); \
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, j ); \
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, j ); \
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, j ); \
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, j ); \
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, j ); \
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, j ); \
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, j ); \
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, j ); \
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, j ); \
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, j ); \
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 0, j ); \
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 1, j ); \
SHA256_4X32_ROUND( G, H, A, B, C, D, E, F, 2, j ); \
SHA256_4X32_ROUND( F, G, H, A, B, C, D, E, 3, j ); \
SHA256_4X32_ROUND( E, F, G, H, A, B, C, D, 4, j ); \
SHA256_4X32_ROUND( D, E, F, G, H, A, B, C, 5, j ); \
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 6, j ); \
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 7, j ); \
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 8, j ); \
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 9, j ); \
SHA256_4X32_ROUND( G, H, A, B, C, D, E, F, 10, j ); \
SHA256_4X32_ROUND( F, G, H, A, B, C, D, E, 11, j ); \
SHA256_4X32_ROUND( E, F, G, H, A, B, C, D, 12, j ); \
SHA256_4X32_ROUND( D, E, F, G, H, A, B, C, 13, j ); \
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 14, j ); \
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 15, j ); \
}
// LE data, no need to byte swap
static inline void SHA256_4WAY_TRANSFORM( v128_t *out, v128_t *W,
static inline void SHA256_4X32_TRANSFORM( v128_t *out, v128_t *W,
const v128_t *in )
{
v128_t A, B, C, D, E, F, G, H;
@@ -123,13 +133,13 @@ static inline void SHA256_4WAY_TRANSFORM( v128_t *out, v128_t *W,
G = in[6];
H = in[7];
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
out[0] = v128_add32( in[0], A );
out[1] = v128_add32( in[1], B );
@@ -142,47 +152,37 @@ static inline void SHA256_4WAY_TRANSFORM( v128_t *out, v128_t *W,
}
// LE data, no need to byte swap
void sha256_4way_transform_le( v128_t *state_out, const v128_t *data,
void sha256_4x32_transform_le( v128_t *state_out, const v128_t *data,
const v128_t *state_in )
{
v128_t W[16];
v128_memcpy( W, data, 16 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
SHA256_4X32_TRANSFORM( state_out, W, state_in );
}
// BE data, need to byte swap input data
void sha256_4way_transform_be( v128_t *state_out, const v128_t *data,
void sha256_4x32_transform_be( v128_t *state_out, const v128_t *data,
const v128_t *state_in )
{
v128_t W[16];
v128_block_bswap32( W, data );
v128_block_bswap32( W+8, data+8 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
SHA256_4X32_TRANSFORM( state_out, W, state_in );
}
// prehash_3rounds & final_rounds are not working
void sha256_4way_prehash_3rounds( v128_t *state_mid, v128_t *X,
void sha256_4x32_prehash_3rounds( v128_t *state_mid, v128_t *X,
const v128_t *W, const v128_t *state_in )
{
v128_t A, B, C, D, E, F, G, H;
v128_t A, B, C, D, E, F, G, H, T1;
// precalculate constant part msg expansion for second iteration.
X[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
X[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] );
X[ 2] = v128_add32( v128_add32( SSG2_1( X[ 0] ), W[11] ), W[ 2] );
X[ 3] = v128_add32( v128_add32( SSG2_1( X[ 1] ), W[12] ), SSG2_0( W[ 4] ) );
X[ 4] = v128_add32( v128_add32( W[13], SSG2_0( W[ 5] ) ), W[ 4] );
X[ 5] = v128_add32( v128_add32( W[14], SSG2_0( W[ 6] ) ), W[ 5] );
X[ 6] = v128_add32( v128_add32( W[15], SSG2_0( W[ 7] ) ), W[ 6] );
X[ 7] = v128_add32( v128_add32( X[ 0], SSG2_0( W[ 8] ) ), W[ 7] );
X[ 8] = v128_add32( v128_add32( X[ 1], SSG2_0( W[ 9] ) ), W[ 8] );
X[ 9] = v128_add32( SSG2_0( W[10] ), W[ 9] );
X[10] = v128_add32( SSG2_0( W[11] ), W[10] );
X[11] = v128_add32( SSG2_0( W[12] ), W[11] );
X[12] = v128_add32( SSG2_0( W[13] ), W[12] );
X[13] = v128_add32( SSG2_0( W[14] ), W[13] );
X[14] = v128_add32( SSG2_0( W[15] ), W[14] );
X[15] = v128_add32( SSG2_0( X[ 0] ), W[15] );
X[ 0] = v128_add32( SSG2_0( W[ 1] ), W[ 0] );
X[ 1] = v128_add32( v128_add32( SSG2_1( W[15] ), SSG2_0( W[ 2] ) ), W[ 1] );
X[ 2] = v128_add32( SSG2_1( X[ 0] ), W[ 2] );
X[ 3] = v128_add32( SSG2_1( X[ 1] ), SSG2_0( W[ 4] ) );
X[ 4] = SSG2_0( W[15] );
X[ 5] = v128_add32( SSG2_0( X[ 0] ), W[15] );
// W[0] for round 32
X[ 6] = v128_add32( SSG2_0( X[ 1] ), X[ 0] );
A = v128_load( state_in );
B = v128_load( state_in + 1 );
@@ -195,9 +195,14 @@ void sha256_4way_prehash_3rounds( v128_t *state_mid, v128_t *X,
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 0, 0 );
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 1, 0 );
SHA256_4X32_ROUND( G, H, A, B, C, D, E, F, 2, 0 );
// round 3 part 1, avoid nonces W[3]
T1 = v128_add4_32( E, BSG2_1(B), CHs(B, C, D), v128_32( K256[3] ) );
A = v128_add32( A, T1 );
E = v128_add32( T1, v128_add32( BSG2_0(F), MAJs(F, G, H) ) );
v128_store( state_mid , A );
v128_store( state_mid + 1, B );
@@ -209,7 +214,7 @@ void sha256_4way_prehash_3rounds( v128_t *state_mid, v128_t *X,
v128_store( state_mid + 7, H );
}
void sha256_4way_final_rounds( v128_t *state_out, const v128_t *data,
void sha256_4x32_final_rounds( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const v128_t *state_mid, const v128_t *X )
{
v128_t A, B, C, D, E, F, G, H;
@@ -226,45 +231,64 @@ void sha256_4way_final_rounds( v128_t *state_out, const v128_t *data,
G = v128_load( state_mid + 6 );
H = v128_load( state_mid + 7 );
v128_t X_xor_Y, Y_xor_Z = v128_xor( G, H );
v128_t X_xor_Y, Y_xor_Z = v128_xor( F, G );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
// round 3 part 2, add nonces
A = v128_add32( A, W[3] );
E = v128_add32( E, W[3] );
SHA256_4X32_ROUND( E, F, G, H, A, B, C, D, 4, 0 );
SHA256_4X32_ROUND_NOMSG( D, E, F, G, H, A, B, C, 5, 0 );
SHA256_4X32_ROUND_NOMSG( C, D, E, F, G, H, A, B, 6, 0 );
SHA256_4X32_ROUND_NOMSG( B, C, D, E, F, G, H, A, 7, 0 );
SHA256_4X32_ROUND_NOMSG( A, B, C, D, E, F, G, H, 8, 0 );
SHA256_4X32_ROUND_NOMSG( H, A, B, C, D, E, F, G, 9, 0 );
SHA256_4X32_ROUND_NOMSG( G, H, A, B, C, D, E, F, 10, 0 );
SHA256_4X32_ROUND_NOMSG( F, G, H, A, B, C, D, E, 11, 0 );
SHA256_4X32_ROUND_NOMSG( E, F, G, H, A, B, C, D, 12, 0 );
SHA256_4X32_ROUND_NOMSG( D, E, F, G, H, A, B, C, 13, 0 );
SHA256_4X32_ROUND_NOMSG( C, D, E, F, G, H, A, B, 14, 0 );
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 15, 0 );
// update precalculated msg expansion with new nonce: W[3].
W[ 0] = X[ 0];
W[ 1] = X[ 1];
W[ 2] = v128_add32( X[ 2], SSG2_0( W[ 3] ) );
W[ 3] = v128_add32( X[ 3], W[ 3] );
W[ 4] = v128_add32( X[ 4], SSG2_1( W[ 2] ) );
W[ 5] = v128_add32( X[ 5], SSG2_1( W[ 3] ) );
W[ 6] = v128_add32( X[ 6], SSG2_1( W[ 4] ) );
W[ 7] = v128_add32( X[ 7], SSG2_1( W[ 5] ) );
W[ 8] = v128_add32( X[ 8], SSG2_1( W[ 6] ) );
W[ 9] = v128_add32( X[ 9], v128_add32( SSG2_1( W[ 7] ), W[ 2] ) );
W[10] = v128_add32( X[10], v128_add32( SSG2_1( W[ 8] ), W[ 3] ) );
W[11] = v128_add32( X[11], v128_add32( SSG2_1( W[ 9] ), W[ 4] ) );
W[12] = v128_add32( X[12], v128_add32( SSG2_1( W[10] ), W[ 5] ) );
W[13] = v128_add32( X[13], v128_add32( SSG2_1( W[11] ), W[ 6] ) );
W[14] = v128_add32( X[14], v128_add32( SSG2_1( W[12] ), W[ 7] ) );
W[15] = v128_add32( X[15], v128_add32( SSG2_1( W[13] ), W[ 8] ) );
W[ 4] = v128_add32( W[ 4], SSG2_1( W[ 2] ) );
W[ 5] = SSG2_1( W[ 3] );
W[ 6] = v128_add32( W[15], SSG2_1( W[ 4] ) );
W[ 7] = v128_add32( X[ 0], SSG2_1( W[ 5] ) );
W[ 8] = v128_add32( X[ 1], SSG2_1( W[ 6] ) );
W[ 9] = v128_add32( SSG2_1( W[ 7] ), W[ 2] );
W[10] = v128_add32( SSG2_1( W[ 8] ), W[ 3] );
W[11] = v128_add32( SSG2_1( W[ 9] ), W[ 4] );
W[12] = v128_add32( SSG2_1( W[10] ), W[ 5] );
W[13] = v128_add32( SSG2_1( W[11] ), W[ 6] );
W[14] = v128_add32( X[ 4], v128_add32( SSG2_1( W[12] ), W[ 7] ) );
W[15] = v128_add32( X[ 5], v128_add32( SSG2_1( W[13] ), W[ 8] ) );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
W[ 0] = v128_add32( X[ 6], v128_add32( SSG2_1( W[14] ), W[ 9] ) );
W[ 1] = SHA256_4X32_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA256_4X32_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA256_4X32_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA256_4X32_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA256_4X32_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA256_4X32_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA256_4X32_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA256_4X32_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA256_4X32_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA256_4X32_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA256_4X32_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA256_4X32_MEXP( W[10], W[ 5], W[13], W[12] );
W[13] = SHA256_4X32_MEXP( W[11], W[ 6], W[14], W[13] );
W[14] = SHA256_4X32_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA256_4X32_MEXP( W[13], W[ 8], W[ 0], W[15] );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
A = v128_add32( A, v128_load( state_in ) );
B = v128_add32( B, v128_load( state_in + 1 ) );
@@ -285,10 +309,11 @@ void sha256_4way_final_rounds( v128_t *state_out, const v128_t *data,
v128_store( state_out + 7, H );
}
# if 0
// Working correctly but still slower
int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
int sha256_4x32_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const uint32_t *target )
{
v128_t A, B, C, D, E, F, G, H, T0, T1, T2;
@@ -308,38 +333,38 @@ int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t IV7 = H;
const v128_t IV6 = G;
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256_4X32_MSG_EXPANSION( W );
SHA256_4X32_16ROUNDS( A, B, C, D, E, F, G, H, 32 );
W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA2s_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA2s_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA2s_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA2s_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA2s_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA2s_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA2s_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA2s_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA2s_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] );
W[ 0] = SHA256_4X32_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
W[ 1] = SHA256_4X32_MEXP( W[15], W[10], W[ 2], W[ 1] );
W[ 2] = SHA256_4X32_MEXP( W[ 0], W[11], W[ 3], W[ 2] );
W[ 3] = SHA256_4X32_MEXP( W[ 1], W[12], W[ 4], W[ 3] );
W[ 4] = SHA256_4X32_MEXP( W[ 2], W[13], W[ 5], W[ 4] );
W[ 5] = SHA256_4X32_MEXP( W[ 3], W[14], W[ 6], W[ 5] );
W[ 6] = SHA256_4X32_MEXP( W[ 4], W[15], W[ 7], W[ 6] );
W[ 7] = SHA256_4X32_MEXP( W[ 5], W[ 0], W[ 8], W[ 7] );
W[ 8] = SHA256_4X32_MEXP( W[ 6], W[ 1], W[ 9], W[ 8] );
W[ 9] = SHA256_4X32_MEXP( W[ 7], W[ 2], W[10], W[ 9] );
W[10] = SHA256_4X32_MEXP( W[ 8], W[ 3], W[11], W[10] );
W[11] = SHA256_4X32_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA256_4X32_MEXP( W[10], W[ 5], W[13], W[12] );
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 48 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 48 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 48 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 48 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 48 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 48 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 48 );
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 0, 48 );
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 1, 48 );
SHA256_4X32_ROUND( G, H, A, B, C, D, E, F, 2, 48 );
SHA256_4X32_ROUND( F, G, H, A, B, C, D, E, 3, 48 );
SHA256_4X32_ROUND( E, F, G, H, A, B, C, D, 4, 48 );
SHA256_4X32_ROUND( D, E, F, G, H, A, B, C, 5, 48 );
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 6, 48 );
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 7, 48 );
SHA256_4X32_ROUND( A, B, C, D, E, F, G, H, 8, 48 );
SHA256_4X32_ROUND( H, A, B, C, D, E, F, G, 9, 48 );
T0 = v128_add32( v128_32( K256[58] ),
v128_add4_32( BSG2_1( C ), CHs( C, D, E ), W[10], F ) );
@@ -368,7 +393,7 @@ int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
F = v128_add32( T0, v128_add32( BSG2_0( G ), MAJs( G, H, A ) ) );
// round 61 part 1
W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] );
W[13] = SHA256_4X32_MEXP( W[11], W[ 6], W[14], W[13] );
T0 = v128_add32( v128_32( K256[61] ),
v128_add4_32( BSG2_1( H ), CHs( H, A, B ), W[13], C ) );
G = v128_add32( G, T0 );
@@ -401,11 +426,11 @@ int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
C = v128_add32( T0, v128_add32( BSG2_0( D ), MAJs( D, E, F ) ) );
// rounds 62 & 63
W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA2s_MEXP( W[13], W[ 8], W[ 0], W[15] );
W[14] = SHA256_4X32_MEXP( W[12], W[ 7], W[15], W[14] );
W[15] = SHA256_4X32_MEXP( W[13], W[ 8], W[ 0], W[15] );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 );
SHA256_4X32_ROUND( C, D, E, F, G, H, A, B, 14, 48 );
SHA256_4X32_ROUND( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = v128_add32( state_in[0], A );
state_out[1] = v128_add32( state_in[1], B );
@@ -420,7 +445,7 @@ return 1;
#endif
void sha256_4way_init( sha256_4way_context *sc )
void sha256_4x32_init( sha256_4x32_context *sc )
{
sc->count_high = sc->count_low = 0;
sc->val[0] = v128_32( sha256_iv[0] );
@@ -433,7 +458,7 @@ void sha256_4way_init( sha256_4way_context *sc )
sc->val[7] = v128_32( sha256_iv[7] );
}
void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
void sha256_4x32_update( sha256_4x32_context *sc, const void *data, size_t len )
{
v128_t *vdata = (v128_t*)data;
size_t ptr;
@@ -454,7 +479,7 @@ void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
len -= clen;
if ( ptr == buf_size )
{
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
sha256_4x32_transform_be( sc->val, sc->buf, sc->val );
ptr = 0;
}
clow = sc->count_low;
@@ -465,7 +490,7 @@ void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
}
}
void sha256_4way_close( sha256_4way_context *sc, void *dst )
void sha256_4x32_close( sha256_4x32_context *sc, void *dst )
{
unsigned ptr;
uint32_t low, high;
@@ -479,7 +504,7 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
if ( ptr > pad )
{
v128_memset_zero( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
sha256_4x32_transform_be( sc->val, sc->buf, sc->val );
v128_memset_zero( sc->buf, pad >> 2 );
}
else
@@ -491,17 +516,17 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
sc->buf[ pad >> 2 ] = v128_32( bswap_32( high ) );
sc->buf[( pad+4 ) >> 2 ] = v128_32( bswap_32( low ) );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
sha256_4x32_transform_be( sc->val, sc->buf, sc->val );
v128_block_bswap32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
void sha256_4x32_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
sha256_4x32_context ctx;
sha256_4x32_init( &ctx );
sha256_4x32_update( &ctx, data, len );
sha256_4x32_close( &ctx, dst );
}
#if defined(__AVX2__)

View File

@@ -97,6 +97,14 @@ void sha256_neon_x2sha_final_rounds( uint32_t *state_out_X,
#define sha256_prehash_3rounds sha256_neon_sha_prehash_3rounds
#define sha256_2x_final_rounds sha256_neon_x2sha_final_rounds
// generic API
#define sha256_transform_le sha256_neon_sha_transform_le
#define sha256_transform_be sha256_neon_sha_transform_be
#define sha256_2x_transform_le sha256_neon_x2sha_transform_le
#define sha256_2x_transform_be sha256_neon_x2sha_transform_be
#define sha256_prehash_3rounds sha256_neon_sha_prehash_3rounds
#define sha256_2x_final_rounds sha256_neon_x2sha_final_rounds
#else
// without HW acceleration...
#include "sph_sha2.h"

View File

@@ -360,15 +360,17 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
#if defined(SHA256D_4WAY)
int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
int scanhash_sha256d_4x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t istate[8] __attribute__ ((aligned (32)));
v128_t mstate[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash1[8] __attribute__ ((aligned (32)));
v128_t mhash2[8] __attribute__ ((aligned (32)));
v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lhash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
@@ -376,17 +378,16 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
memset( block, 0, 16*4*4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = v128_set32( n+ 3, n+ 2, n+1, n );
vdata[16+3] = v128_set32( n+3, n+2, n+1, n );
vdata[16+4] = last_byte;
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 80*8 );
@@ -396,36 +397,39 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
block[15] = v128_32( 32*8 );
// initialize state
istate[0] = v128_32( sha256_iv[0] );
istate[1] = v128_32( sha256_iv[1] );
istate[2] = v128_32( sha256_iv[2] );
istate[3] = v128_32( sha256_iv[3] );
istate[4] = v128_32( sha256_iv[4] );
istate[5] = v128_32( sha256_iv[5] );
istate[6] = v128_32( sha256_iv[6] );
istate[7] = v128_32( sha256_iv[7] );
iv[0] = v128_32( sha256_iv[0] );
iv[1] = v128_32( sha256_iv[1] );
iv[2] = v128_32( sha256_iv[2] );
iv[3] = v128_32( sha256_iv[3] );
iv[4] = v128_32( sha256_iv[4] );
iv[5] = v128_32( sha256_iv[5] );
iv[6] = v128_32( sha256_iv[6] );
iv[7] = v128_32( sha256_iv[7] );
// hash first 64 bytes of data
sha256_4way_transform_le( mstate, vdata, istate );
sha256_4x32_transform_le( mhash1, vdata, iv );
sha256_4x32_prehash_3rounds( mhash2, mexp_pre, vdata + 16, mhash1 );
do
{
sha256_4way_transform_le( block, vdata+16, mstate );
sha256_4way_transform_le( hash32, block, istate );
v128_block_bswap32( hash32, hash32 );
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
// sha256_4x32_transform_le( block, vdata+16, mhash1 );
sha256_4x32_transform_le( hash32, block, iv );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_4x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
if ( unlikely( bswap_32( hash32_d7[ lane ] ) <= targ32_d7 ) )
{
extr_lane_4x32( lhash, hash32, lane, 256 );
casti_v128( lhash, 0 ) = v128_bswap32( casti_v128( lhash, 0 ) );
casti_v128( lhash, 1 ) = v128_bswap32( casti_v128( lhash, 1 ) );
if ( likely( valid_hash( lhash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lane_hash, mythr );
submit_solution( work, lhash, mythr );
}
}
*noncev = v128_add32( *noncev, four );
}
vdata[16+3] = v128_add32( vdata[16+3], four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;

View File

@@ -7,15 +7,15 @@
#include "sph_sha2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SHA256DT_16X64 1
#define SHA256DT_16X32 1
#elif defined(__x86_64__) && defined(__SHA__)
#define SHA256DT_X86_SHA256 1
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_SHA2)
#define SHA256DT_NEON_SHA256 1
#elif defined(__AVX2__)
#define SHA256DT_8X64 1
#define SHA256DT_8X32 1
#elif defined (__SSE2__) || defined(__ARM_NEON)
#define SHA256DT_4X64 1
#define SHA256DT_4X32 1
#endif
// else ref, should never happen
@@ -183,9 +183,9 @@ int scanhash_sha256dt_neon_x2sha( struct work *work, uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_16X64)
#elif defined(SHA256DT_16X32)
int scanhash_sha256dt_16x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_16x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m512i block[16] __attribute__ ((aligned (128)));
@@ -275,9 +275,9 @@ int scanhash_sha256dt_16x64( struct work *work, const uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_8X64)
#elif defined(SHA256DT_8X32)
int scanhash_sha256dt_8x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_8x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m256i vdata[32] __attribute__ ((aligned (64)));
@@ -355,16 +355,18 @@ int scanhash_sha256dt_8x64( struct work *work, const uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_4X64)
#elif defined(SHA256DT_4X32)
int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_4x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash[8] __attribute__ ((aligned (32)));
v128_t mhash1[8] __attribute__ ((aligned (32)));
v128_t mhash2[8] __attribute__ ((aligned (32)));
v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lhash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
@@ -373,26 +375,24 @@ int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
memset( block, 0, 16*4*4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = v128_set32( n+ 3, n+ 2, n+1, n );
vdata[16+3] = v128_set32( n+3, n+2, n+1, n );
vdata[16+4] = last_byte;
v128_memset_zero( vdata+16 + 5, 10 );
v128_memset_zero( vdata+16 + 5, 9 );
vdata[16+15] = v128_32( 0x480 );
block[ 8] = last_byte;
v128_memset_zero( block + 9, 6 );
v128_memset_zero( block + 9, 5 );
block[15] = v128_32( 0x300 );
// initialize state
iv[0] = v128_32( sha256dt_iv[0] );
iv[1] = v128_32( sha256dt_iv[1] );
iv[2] = v128_32( sha256dt_iv[2] );
@@ -402,62 +402,15 @@ int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
iv[6] = v128_32( sha256dt_iv[6] );
iv[7] = v128_32( sha256dt_iv[7] );
// hash first 64 bytes of data
sha256_4x32_transform_le( mhash, vdata, iv );
/*
uint32_t m1 [8] __attribute__ ((aligned (32)));
uint32_t h1 [8] __attribute__ ((aligned (32)));
uint32_t b1 [16] __attribute__ ((aligned (32)));
uint32_t e16 [16] __attribute__ ((aligned (32)));
uint32_t *m4 = (uint32_t*)&midstate;
uint32_t *h4 = (uint32_t*)hash32;
sha256_transform_le( m1, pdata, sha256dt_iv );
memcpy( e16, pdata + 16, 12 );
e16[3] = n;
e16[4] = 0x80000000;
memset( &e16[5], 0, 40 );
e16[15] = 0x480; // funky bit count
b1[8] = 0x80000000;
memset( &b1[9], 0, 24 );
b1[9] = b1[10] = b1[11] = b1[12] = b1[13] = b1[14] = 0;
b1[15] = 0x300; // bit count
*/
sha256_4x32_transform_le( mhash1, vdata, iv );
sha256_4x32_prehash_3rounds( mhash2, mexp_pre, vdata + 16, mhash1 );
do
{
sha256_4x32_transform_le( block, vdata+16, mhash );
//sha256_transform_le( b1, e16, m1 );
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
// sha256_4x32_transform_le( block, vdata+16, mhash1 );
sha256_4x32_transform_le( hash32, block, iv );
/*
sha256_transform_le( h1, b1, sha256dt_iv );
printf("final hash1: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h1[0],h1[1],h1[2],h1[3],h1[4],h1[5],h1[6],h1[7]);
printf("final hash4: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h4[0],h4[4],h4[8],h4[12],h4[16],h4[20],h4[24],h4[28]);
casti_v128( h1,0 ) = v128_bswap32( casti_v128( h1,0 ) );
casti_v128( h1,1 ) = v128_bswap32( casti_v128( h1,1 ) );
*/
// v128_block_bswap32( hash32, hash32 );
/*
printf("bswap hash1: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h1[0],h1[1],h1[2],h1[3],h1[4],h1[5],h1[6],h1[7]);
printf("bswap hash4: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h4[0],h4[4],h4[8],h4[12],h4[16],h4[20],h4[24],h4[28]);
exit(0);
*/
for ( int lane = 0; lane < 4; lane++ )
{
if ( unlikely( bswap_32( hash32_d7[ lane ] ) <= targ32_d7 ) )
@@ -472,7 +425,7 @@ exit(0);
}
}
}
*noncev = v128_add32( *noncev, four );
vdata[16+3] = v128_add32( vdata[16+3], four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
@@ -485,9 +438,9 @@ exit(0);
int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (32)));
uint32_t block2a[16] __attribute__ ((aligned (32)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t block1[16] __attribute__ ((aligned (32)));
uint32_t block2[16] __attribute__ ((aligned (32)));
uint32_t hash32[8] __attribute__ ((aligned (32)));
uint32_t mstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -497,37 +450,40 @@ int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
memset( block1, 0, 64 );
memset( block2, 0, 64 );
// hash first 64 byte block of data
sha256_transform_le( mstate, pdata, sha256dt_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
block1a[ 3] = 0;
block1a[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
block1a[15] = 0x480; // funky bit count
memcpy( block1, pdata + 16, 12 );
block1[ 3] = n;
block1[ 4] = 0x80000000;
memset( block1 + 5, 0, 40 );
block1[15] = 0x480; // funky bit count
// Pad third block
block2a[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
block2a[15] = 0x300; // bit count
block2[ 8] = 0x80000000;
memset( block2 + 9, 0, 24 );
block2[15] = 0x300; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
sha256_transform_le( block2a, block1a, mstate );
block1[3] = n;
sha256_transform_le( block2, block1, mstate );
sha256_transform_le( hasha, block2a, sha256dt_iv );
sha256_transform_le( hash32, block2, sha256dt_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
if ( unlikely( bswap_32( hash32[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
casti_v128( hash32, 0 ) = v128_bswap32( casti_v128( hash32, 0 ) );
casti_v128( hash32, 1 ) = v128_bswap32( casti_v128( hash32, 1 ) );
if ( likely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
submit_solution( work, hash32, mythr );
}
}
n += 1;
@@ -543,18 +499,18 @@ int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
bool register_sha256dt_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
#if defined(SHA256DT_16X64)
gate->scanhash = (void*)&scanhash_sha256dt_16x64;
#if defined(SHA256DT_16X32)
gate->scanhash = (void*)&scanhash_sha256dt_16x32;
#elif defined(SHA256DT_X86_SHA256)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_x86_x2sha;
#elif defined(SHA256DT_NEON_SHA256)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_neon_x2sha;
#elif defined(SHA256DT_8X64)
gate->scanhash = (void*)&scanhash_sha256dt_8x64;
#elif defined(SHA256DT_4X64)
gate->scanhash = (void*)&scanhash_sha256dt_4x64;
#elif defined(SHA256DT_8X32)
gate->scanhash = (void*)&scanhash_sha256dt_8x32;
#elif defined(SHA256DT_4X32)
gate->scanhash = (void*)&scanhash_sha256dt_4x32;
#else
gate->scanhash = (void*)&scanhash_sha256dt_ref;
#endif

View File

@@ -375,11 +375,11 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t istate[8] __attribute__ ((aligned (32)));
v128_t mstate[8] __attribute__ ((aligned (32)));
// v128_t mstate2[8] __attribute__ ((aligned (32)));
// v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash1[8] __attribute__ ((aligned (32)));
v128_t mhash2[8] __attribute__ ((aligned (32)));
v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lhash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
@@ -387,61 +387,58 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
memset( block, 0, 16*4*4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = v128_set32( n+ 3, n+ 2, n+1, n );
vdata[16+3] = v128_set32( n+3, n+2, n+1, n );
vdata[16+4] = last_byte;
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 80*8 ); // bit count
vdata[16+15] = v128_32( 80*8 );
block[ 8] = last_byte;
v128_memset_zero( block + 9, 6 );
block[15] = v128_32( 32*8 ); // bit count
block[15] = v128_32( 32*8 );
// initialize state
istate[0] = v128_32( sha256_iv[0] );
istate[1] = v128_32( sha256_iv[1] );
istate[2] = v128_32( sha256_iv[2] );
istate[3] = v128_32( sha256_iv[3] );
istate[4] = v128_32( sha256_iv[4] );
istate[5] = v128_32( sha256_iv[5] );
istate[6] = v128_32( sha256_iv[6] );
istate[7] = v128_32( sha256_iv[7] );
iv[0] = v128_32( sha256_iv[0] );
iv[1] = v128_32( sha256_iv[1] );
iv[2] = v128_32( sha256_iv[2] );
iv[3] = v128_32( sha256_iv[3] );
iv[4] = v128_32( sha256_iv[4] );
iv[5] = v128_32( sha256_iv[5] );
iv[6] = v128_32( sha256_iv[6] );
iv[7] = v128_32( sha256_iv[7] );
// hash first 64 bytes of data
sha256_4way_transform_le( mstate, vdata, istate );
// sha256_4way_prehash_3rounds( mstate2, mexp_pre, vdata + 16, mstate1 );
sha256_4x32_transform_le( mhash1, vdata, iv );
sha256_4x32_prehash_3rounds( mhash2, mexp_pre, vdata + 16, mhash1 );
do
{
// sha256_4way_final_rounds( block, vdata+16, mstate1, mstate2,
// mexp_pre );
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
sha256_4way_transform_le( block, block, iv );
sha256_4way_transform_le( hash32, block, iv );
sha256_4way_transform_le( block, vdata+16, mstate );
sha256_4way_transform_le( block, block, istate );
sha256_4way_transform_le( hash32, block, istate );
v128_block_bswap32( hash32, hash32 );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
extr_lane_4x32( lane_hash, hash32, lane, 256 );
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
if ( unlikely( bswap_32( hash32_d7[ lane ] ) <= targ32_d7 ) )
{
extr_lane_4x32( lhash, hash32, lane, 256 );
casti_v128( lhash, 0 ) = v128_bswap32( casti_v128( lhash, 0 ) );
casti_v128( lhash, 1 ) = v128_bswap32( casti_v128( lhash, 1 ) );
if ( likely( valid_hash( lhash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
submit_solution( work, lane_hash, mythr );
submit_solution( work, lhash, mythr );
}
}
*noncev = v128_add32( *noncev, four );
}
vdata[16+3] = v128_add32( vdata[16+3], four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;

View File

@@ -53,7 +53,6 @@
#include <stdlib.h>
#include <string.h>
#include "algo/sha/hmac-sha256-hash.h"
#include "algo/sha/hmac-sha256-hash-4way.h"
#include "yespower.h"
#include "yespower-platform.c"

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.71 for cpuminer-opt 23.5.
# Generated by GNU Autoconf 2.71 for cpuminer-opt 23.6.
#
#
# Copyright (C) 1992-1996, 1998-2017, 2020-2021 Free Software Foundation,
@@ -608,8 +608,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='23.5'
PACKAGE_STRING='cpuminer-opt 23.5'
PACKAGE_VERSION='23.6'
PACKAGE_STRING='cpuminer-opt 23.6'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@@ -1360,7 +1360,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures cpuminer-opt 23.5 to adapt to many kinds of systems.
\`configure' configures cpuminer-opt 23.6 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1432,7 +1432,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 23.5:";;
short | recursive ) echo "Configuration of cpuminer-opt 23.6:";;
esac
cat <<\_ACEOF
@@ -1538,7 +1538,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
cpuminer-opt configure 23.5
cpuminer-opt configure 23.6
generated by GNU Autoconf 2.71
Copyright (C) 2021 Free Software Foundation, Inc.
@@ -1985,7 +1985,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 23.5, which was
It was created by cpuminer-opt $as_me 23.6, which was
generated by GNU Autoconf 2.71. Invocation command line was
$ $0$ac_configure_args_raw
@@ -3593,7 +3593,7 @@ fi
# Define the identity of the package.
PACKAGE='cpuminer-opt'
VERSION='23.5'
VERSION='23.6'
printf "%s\n" "#define PACKAGE \"$PACKAGE\"" >>confdefs.h
@@ -7508,7 +7508,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by cpuminer-opt $as_me 23.5, which was
This file was extended by cpuminer-opt $as_me 23.6, which was
generated by GNU Autoconf 2.71. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -7576,7 +7576,7 @@ ac_cs_config_escaped=`printf "%s\n" "$ac_cs_config" | sed "s/^ //; s/'/'\\\\\\\\
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config='$ac_cs_config_escaped'
ac_cs_version="\\
cpuminer-opt config.status 23.5
cpuminer-opt config.status 23.6
configured by $0, generated by GNU Autoconf 2.71,
with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [23.5])
AC_INIT([cpuminer-opt], [23.6])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

4291
configure~

File diff suppressed because it is too large Load Diff

View File

@@ -2321,6 +2321,12 @@ static void *miner_thread( void *userdata )
gettimeofday( (struct timeval *) &tv_start, NULL );
// Scan for nonce
// nonce_found = scanhash_sha256dt_ref( &work, max_nonce, &hashes_done,
// mythr );
// nonce_found = scanhash_sha256dt_4x32( &work, max_nonce, &hashes_done,
// mythr );
nonce_found = algo_gate.scanhash( &work, max_nonce, &hashes_done,
mythr );
@@ -3677,58 +3683,44 @@ static int thread_create(struct thr_info *thr, void* func)
void get_defconfig_path(char *out, size_t bufsize, char *argv0);
#include "simd-utils.h"
#include "algo/sha/sha512-hash.h"
int main(int argc, char *argv[])
{
struct thr_info *thr;
long flags;
int i, err;
/*
#include "simd-utils.h"
uint64_t h1[8] __attribute__((aligned(32)));;
uint64_t h2[8*2] __attribute__((aligned(32)));
uint64_t hx[8*2] __attribute__((aligned(32)));
printf("bswap32: %08x, bswap64: %016lx\n", bswap_32( 0x03020100 ), bswap_64( 0x0706050403020100 ) );
printf("ror32: %08x, ror64: %016lx\n", ror32( 0x03020100, 8 ), ror64( 0x0706050403020100, 8 ) );
exit(0);
uint64_t inp[20*2] __attribute__((aligned(32))) = {0};
uint64x2_t a64 = v128_set64( 0x5555555555555555, 0xcccccccccccccccc ) ;
uint64x2_t c64 = v128_set64( 0xffffffffffffffff, 0x0000000000000000 ) ;
uint64x2_t mask = v128_set64( 0x0f0f0f0ff0f0f0f0, 0xf0f0f0f00f0f0f0f ) ;
sha512_2x64_context ctx2;
sph_sha512_context ctx1;
uint32x4_t a32 = v128_set32( 0x0f0e0d0c, 0x0b0a0908, 0x07060504, 0x03020100 );
uint16x8_t a16 = v128_set16( 0x0f0e, 0x00d0c, 0x0b0a, 0x0908, 0x0706, 0x0504, 0x0302, 0x0100 );
uint8x16_t a8 = v128_set8( 0xff, 0xee, 0xdd, 0xcc, 0xbb, 0xaa, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, 0x00 );
sha512_2x64_ctx( &ctx2, h2, inp, 80 );
sha512_2x64_init( &ctx2 );
sha512_2x64_update( &ctx2, inp, 80 );
sha512_2x64_close( &ctx2, h2 );
a64 = v128_bswap64( a32 );
a32 = v128_bswap32( a32 );
a16 = v128_bswap16( a16 );
uint64_t *b64 = (uint64_t*)&a64;
uint32_t *b32 = (uint32_t*)&a32;
uint16_t *b16 = (uint16_t*)&a16;
//a32 = v128_ror32( a32, 4 );
sph_sha512_init( &ctx1 );
sph_sha512( &ctx1, inp, 80 );
sph_sha512_close( &ctx1, h1 );
printf("64: %016lx, %016lx\n", b64[1], b64[0] );
printf("h1: %016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx\n", h1[0], h1[1], h1[2], h1[3], h1[4], h1[5], h1[6], h1[7]);
printf("32: %08x %08x %08x %08x\n", b32[3], b32[2], b32[1], b32[0] );
printf("16: %04x %04x %04x %04x %04x %04x %04x %04x\n", b16[7], b16[6], b16[5], b16[4], b16[3], b16[2], b16[1], b16[0] );
//a32 = v128_ror32( a32, 28 );
//printf("32: %08x %08x %08x %08x\n", b32[3], b32[2], b32[1], b32[0] );
//a32 = v128_rol32( a32, 4 );
//printf("32: %08x %08x %08x %08x\n", b32[3], b32[2], b32[1], b32[0] );
//a32 = v128_rol32( a32, 28 );
//printf("32: %08x %08x %08x %08x\n", b32[3], b32[2], b32[1], b32[0] );
printf("h2: %016lx %016lx %016lx %016lx %016lx %016lx %016lx %016lx\n\n", h2[0], h2[2], h2[4], h2[ 6], h2[ 8], h2[10], h2[12], h2[14]);
exit(0);
*/
pthread_mutex_init(&applog_lock, NULL);
show_credits();
@@ -3864,6 +3856,9 @@ exit(0);
return 1;
}
if ( is_root() )
applog( LOG_NOTICE, "Running cpuminer as Superuser is discouraged.");
#ifndef WIN32
if (opt_background)
{

13
miner.h
View File

@@ -20,7 +20,7 @@
#define USER_AGENT_OS
#endif
#define USER_AGENT PACKAGE_NAME "-" PACKAGE_VERSION "-" USER_AGENT_ARCH "-" USER_AGENT_OS
#define USER_AGENT PACKAGE_NAME "-" PACKAGE_VERSION "-" USER_AGENT_ARCH USER_AGENT_OS
//#define MAX_CPUS 128
@@ -46,7 +46,7 @@
#include <stdbool.h>
#include <inttypes.h>
#include <sys/time.h>
#include <unistd.h>
#include <pthread.h>
#include <jansson.h>
#include <curl/curl.h>
@@ -76,6 +76,15 @@
#endif
static inline bool is_root()
{
#if defined(WIN32)
return false;
#else
return !getuid();
#endif
}
/*
#ifndef min
#define min(a,b) (a>b ? (b) :(a))

View File

@@ -1509,20 +1509,20 @@ static inline void v128_bswap32_intrlv80_2x64( void *d, const void *src )
#elif defined(__ARM_NEON)
casti_v128u64( d,0 ) = vdupq_laneq_u64( s0, 0 );
casti_v128u64( d,1 ) = vdupq_laneq_u64( s0, 1 );
casti_v128u64( d,0 ) = vdupq_laneq_u64( (uint64x2_t)s0, 0 );
casti_v128u64( d,1 ) = vdupq_laneq_u64( (uint64x2_t)s0, 1 );
casti_v128u64( d,2 ) = vdupq_laneq_u64( s1, 0 );
casti_v128u64( d,3 ) = vdupq_laneq_u64( s1, 1 );
casti_v128u64( d,2 ) = vdupq_laneq_u64( (uint64x2_t)s1, 0 );
casti_v128u64( d,3 ) = vdupq_laneq_u64( (uint64x2_t)s1, 1 );
casti_v128u64( d,4 ) = vdupq_laneq_u64( s2, 0 );
casti_v128u64( d,5 ) = vdupq_laneq_u64( s2, 1 );
casti_v128u64( d,4 ) = vdupq_laneq_u64( (uint64x2_t)s2, 0 );
casti_v128u64( d,5 ) = vdupq_laneq_u64( (uint64x2_t)s2, 1 );
casti_v128u64( d,6 ) = vdupq_laneq_u64( s3, 0 );
casti_v128u64( d,7 ) = vdupq_laneq_u64( s3, 1 );
casti_v128u64( d,6 ) = vdupq_laneq_u64( (uint64x2_t)s3, 0 );
casti_v128u64( d,7 ) = vdupq_laneq_u64( (uint64x2_t)s3, 1 );
casti_v128u64( d,8 ) = vdupq_laneq_u64( s4, 0 );
casti_v128u64( d,9 ) = vdupq_laneq_u64( s4, 1 );
casti_v128u64( d,8 ) = vdupq_laneq_u64( (uint64x2_t)s4, 0 );
casti_v128u64( d,9 ) = vdupq_laneq_u64( (uint64x2_t)s4, 1 );
#endif
}

View File

@@ -100,13 +100,15 @@ static inline uint64x2_t v128_mulw32( uint32x4_t v1, uint32x4_t v0 )
#define v128_sra32 vshrq_n_s32
#define v128_sra16 vshrq_n_s16
// logic
// unary logic
#define v128_not vmvnq_u32
// binary
#define v128_or vorrq_u32
#define v128_and vandq_u32
#define v128_not vmvnq_u32
#define v128_xor veorq_u32
#define v128_andnot( v1, v0 ) vandq_u32( vmvnq_u32(v1), v0 )
#define v128_xnor( a, b ) v128_not( v128_xor( a, b ) )
#define v128_andnot vandq_u32
#define v128_xnor( v1, v0 ) v128_not( v128_xor( v1, v0 ) )
#define v128_ornot vornq_u32
// ternary logic, veorq_u32 not defined
@@ -136,7 +138,7 @@ static inline uint64x2_t v128_mulw32( uint32x4_t v1, uint32x4_t v0 )
#define v128_unpacklo8( v1, v0 ) vzip1q_u8( v0, v1 )
#define v128_unpackhi8( v1, v0 ) vzip2q_u8( v0, v1 )
// Shorter agnostic names for unpack using NEON-like syntax
// Shorter achchitecture agnostic names for unpack using NEON-like mnemonics
#define v128_ziplo64 vzip1q_u64
#define v128_ziphi64 vzip2q_u64
#define v128_ziplo32 vzip1q_u32
@@ -279,28 +281,44 @@ static inline void v128_memcpy( void *dst, const void *src, const int n )
//TODO, maybe, Optimize 64 bit rotations
// Fall back for odd bit rotations
static inline uint64x2_t v128_ror64( uint64x2_t v, int c )
{ return vsriq_n_u64( vshlq_n_u64( v, 64-c ), v, c ); }
{
return vsriq_n_u64( vshlq_n_u64( (uint64x2_t)v, 64-c ), (uint64x2_t)v, c );
}
static inline uint64x2_t v128_rol64( uint64x2_t v, int c )
{ return vsriq_n_u64( vshlq_n_u64( v, c ), v, 64-c ); }
{
return vsliq_n_u64( vshrq_n_u64( (uint64x2_t)v, 64-c ), (uint64x2_t)v, c );
}
//static inline uint64x2_t v128_rol64( uint64x2_t v, int c )
//{ return vsriq_n_u64( vshlq_n_u64( v, c ), v, 64-c ); }
static inline uint32x4_t v128_ror32( uint32x4_t v, int c )
{ return vsriq_n_u32( vshlq_n_u32( v, 32-c ), v, c ); }
static inline uint32x4_t v128_rol32( uint32x4_t v, int c )
{ return vsriq_n_u32( vshlq_n_u32( v, c ), v, 32-c ); }
{ return vsliq_n_u32( vshrq_n_u32( v, 32-c ), v, c ); }
//static inline uint32x4_t v128_rol32( uint32x4_t v, int c )
//{ return vsriq_n_u32( vshlq_n_u32( v, c ), v, 32-c ); }
static inline uint16x8_t v128_ror16( uint16x8_t v, int c )
{ return vsriq_n_u16( vshlq_n_u16( v, 16-c ), v, c ); }
static inline uint16x8_t v128_rol16( uint16x8_t v, int c )
{ return vsriq_n_u16( vshlq_n_u16( v, c ), v, 16-c ); }
{ return vsliq_n_u16( vshrq_n_u16( v, 16-c ), v, c ); }
//static inline uint16x8_t v128_rol16( uint16x8_t v, int c )
//{ return vsriq_n_u16( vshlq_n_u16( v, c ), v, 16-c ); }
static inline uint8x16_t v128_ror8( uint8x16_t v, int c )
{ return vsriq_n_u8( vshlq_n_u8( v, 8-c ), v, c ); }
static inline uint8x16_t v128_rol8( uint16x8_t v, int c )
{ return vsriq_n_u8( vshlq_n_u8( v, c ), v, 8-c ); }
static inline uint8x16_t v128_rol8( uint8x16_t v, int c )
{ return vsliq_n_u8( vshrq_n_u8( v, 8-c ), v, c ); }
//static inline uint8x16_t v128_rol8( uint16x8_t v, int c )
//{ return vsriq_n_u8( vshlq_n_u8( v, c ), v, 8-c ); }
/*
// Optimzed for half element rotations (swap)
@@ -358,7 +376,7 @@ static inline uint8x16_t v128_rol8( uint16x8_t v, int c )
}
// vector rotation , size?
static inline uint32x4_t v128_swap64( uint32x4_t v )
static inline uint64x2_t v128_swap64( uint64x2_t v )
{ return vextq_u64( v, v, 1 ); }
static inline uint32x4_t v128_shuflr32( uint32x4_t v )
@@ -413,10 +431,10 @@ static inline uint32x4_t v128_shufll32( uint32x4_t v )
#define v128_bitrev8( v ) vrbitq_u8
// reverse byte order
#define v128_bswap16 vrev16q_u8
#define v128_bswap32 vrev32q_u8
#define v128_bswap64 vrev64q_u8
#define v128_bswap128(v) v128_swap64( v128_bswap64(v) )
#define v128_bswap16(v) (uint16x8_t)vrev16q_u8( (uint8x16_t)(v) )
#define v128_bswap32(v) (uint32x4_t)vrev32q_u8( (uint8x16_t)(v) )
#define v128_bswap64(v) (uint64x2_t)vrev64q_u8( (uint8x16_t)(v) )
#define v128_bswap128(v) (uint32x4_t)v128_swap64( v128_bswap64(v) )
#define v128_bswap256(p) v128_bswap128( (p)[0], (p)[1] )
// Usefull for x86_64 but does nothing for ARM