This commit is contained in:
Jay D Dee
2020-03-20 16:30:12 -04:00
parent 6e8b8ed34f
commit fb9163185a
27 changed files with 1874 additions and 421 deletions

View File

@@ -163,6 +163,7 @@ cpuminer_SOURCES = \
algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/hmac-sha256-hash-4way.c \
algo/sha/sha2.c \
algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \

View File

@@ -65,6 +65,13 @@ If not what makes it happen or not happen?
Change Log
----------
v3.12.7
Issue #257: fixed a file descriptor leak which caused the CPU temperature
and frequency query to report zeros after mining for a couple of hours.
Issue #253: stale share reduction for yescrypt, sonoa.
v3.12.6.1
Issue #252: Fixed SSL mining (stratum+tcps://)
@@ -106,7 +113,7 @@ a specific algo name.
v3.12.4.6
Issue #246: fixed getwork repeated new block logs with same height. New work
for the same block is now reported as "New work" instead of New block".
for the same block is now reported as "New work" instead of "New block".
Also added a check that work is new before generating "New work" log.
Added target diff to getwork new block log.

View File

@@ -232,11 +232,6 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_X22I: register_x22i_algo ( gate ); break;
case ALGO_X25X: register_x25x_algo ( gate ); break;
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
/* case ALGO_YESCRYPT: register_yescrypt_05_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_05_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_05_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_05_algo ( gate ); break;
*/
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;

View File

@@ -0,0 +1,440 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copywright 2020 JayDDee246@gmail.com
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
// HMAC 4-way SSE2
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
hmac_sha256_4way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_4way_context ctx;
hmac_sha256_4way_init( &ctx, K, Klen );
hmac_sha256_4way_update( &ctx, in, len );
hmac_sha256_4way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_4way_init( hmac_sha256_4way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*4] __attribute__ ((aligned (64)));
unsigned char khash[32*4] __attribute__ ((aligned (64)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_4way_init( &ctx->ictx );
sha256_4way_update( &ctx->ictx, K, Klen );
sha256_4way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_4way_init( &ctx->ictx );
memset( pad, 0x36, 64*4 );
for ( i = 0; i < Klen; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_4way_init( &ctx->octx );
memset( pad, 0x5c, 64*4 );
for ( i = 0; i < Klen/4; i++ )
casti_m128i( pad, i ) = _mm_xor_si128( casti_m128i( pad, i ),
casti_m128i( K, i ) );
sha256_4way_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
void
hmac_sha256_4way_update( hmac_sha256_4way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_4way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_4way_close( hmac_sha256_4way_context *ctx, void *digest )
{
unsigned char ihash[32*4] __attribute__ ((aligned (64)));
/* Finish the inner SHA256 operation. */
sha256_4way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_4way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_4way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_4way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*4];
uint8_t _ALIGN(128) U[32*4];
__m128i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_4way_init( &PShctx, passwd, passwdlen );
hmac_sha256_4way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_4way_context) );
hmac_sha256_4way_update( &hctx, &ivec, 4 );
hmac_sha256_4way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*4 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_4way_init( &hctx, passwd, passwdlen );
hmac_sha256_4way_update( &hctx, U, 32 );
hmac_sha256_4way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m128i( T, k ) = _mm_xor_si128( casti_m128i( T, k ),
casti_m128i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*4 ], T, clen*4 );
}
}
#if defined(__AVX2__)
// HMAC 8-way AVX2
void
hmac_sha256_8way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_8way_context ctx;
hmac_sha256_8way_init( &ctx, K, Klen );
hmac_sha256_8way_update( &ctx, in, len );
hmac_sha256_8way_close( &ctx, digest );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
hmac_sha256_8way_init( hmac_sha256_8way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*8] __attribute__ ((aligned (128)));
unsigned char khash[32*8] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_8way_init( &ctx->ictx );
sha256_8way_update( &ctx->ictx, K, Klen );
sha256_8way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_8way_init( &ctx->ictx );
memset( pad, 0x36, 64*8);
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_8way_init( &ctx->octx );
memset( pad, 0x5c, 64*8 );
for ( i = 0; i < Klen/4; i++ )
casti_m256i( pad, i ) = _mm256_xor_si256( casti_m256i( pad, i ),
casti_m256i( K, i ) );
sha256_8way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_8way_update( hmac_sha256_8way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_8way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_8way_close( hmac_sha256_8way_context *ctx, void *digest )
{
unsigned char ihash[32*8] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_8way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_8way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_8way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_8way( uint8_t *buf, size_t dkLen, const uint8_t *passwd,
size_t passwdlen, const uint8_t *salt, size_t saltlen,
uint64_t c )
{
hmac_sha256_8way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*8];
uint8_t _ALIGN(128) U[32*8];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_8way_init( &PShctx, passwd, passwdlen );
// saltlen can be odd number of bytes
hmac_sha256_8way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
__m256i ivec = _mm256_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_8way_context) );
hmac_sha256_8way_update( &hctx, &ivec, 4 );
hmac_sha256_8way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*8 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_8way_init( &hctx, passwd, passwdlen );
hmac_sha256_8way_update( &hctx, U, 32 );
hmac_sha256_8way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m256i( T, k ) = _mm256_xor_si256( casti_m256i( T, k ),
casti_m256i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*8 ], T, clen*8 );
}
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// HMAC 16-way AVX512
void
hmac_sha256_16way_full( void *digest, const void *K, size_t Klen,
const void *in, size_t len )
{
hmac_sha256_16way_context ctx;
hmac_sha256_16way_init( &ctx, K, Klen );
hmac_sha256_16way_update( &ctx, in, len );
hmac_sha256_16way_close( &ctx, digest );
}
void
hmac_sha256_16way_init( hmac_sha256_16way_context *ctx, const void *_K,
size_t Klen )
{
unsigned char pad[64*16] __attribute__ ((aligned (128)));
unsigned char khash[32*16] __attribute__ ((aligned (128)));
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sha256_16way_init( &ctx->ictx );
sha256_16way_update( &ctx->ictx, K, Klen );
sha256_16way_close( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sha256_16way_init( &ctx->ictx );
memset( pad, 0x36, 64*16 );
for ( i = 0; i < Klen; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sha256_16way_init( &ctx->octx );
memset( pad, 0x5c, 64*16 );
for ( i = 0; i < Klen/4; i++ )
casti_m512i( pad, i ) = _mm512_xor_si512( casti_m512i( pad, i ),
casti_m512i( K, i ) );
sha256_16way_update( &ctx->octx, pad, 64 );
}
void
hmac_sha256_16way_update( hmac_sha256_16way_context *ctx, const void *in,
size_t len )
{
/* Feed data to the inner SHA256 operation. */
sha256_16way_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
hmac_sha256_16way_close( hmac_sha256_16way_context *ctx, void *digest )
{
unsigned char ihash[32*16] __attribute__ ((aligned (128)));
/* Finish the inner SHA256 operation. */
sha256_16way_close( &ctx->ictx, ihash );
/* Feed the inner hash to the outer SHA256 operation. */
sha256_16way_update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
sha256_16way_close( &ctx->octx, digest );
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
pbkdf2_sha256_16way( uint8_t *buf, size_t dkLen,
const uint8_t *passwd, size_t passwdlen,
const uint8_t *salt, size_t saltlen, uint64_t c )
{
hmac_sha256_16way_context PShctx, hctx;
uint8_t _ALIGN(128) T[32*16];
uint8_t _ALIGN(128) U[32*16];
__m512i ivec;
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
hmac_sha256_16way_init( &PShctx, passwd, passwdlen );
hmac_sha256_16way_update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */
for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */
ivec = _mm512_set1_epi32( bswap_32( i+1 ) );
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy( &hctx, &PShctx, sizeof(hmac_sha256_16way_context) );
hmac_sha256_16way_update( &hctx, &ivec, 4 );
hmac_sha256_16way_close( &hctx, U );
/* T_i = U_1 ... */
memcpy( T, U, 32*16 );
for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */
hmac_sha256_16way_init( &hctx, passwd, passwdlen );
hmac_sha256_16way_update( &hctx, U, 32 );
hmac_sha256_16way_close( &hctx, U );
/* ... xor U_j ... */
for ( k = 0; k < 8; k++ )
casti_m512i( T, k ) = _mm512_xor_si512( casti_m512i( T, k ),
casti_m512i( U, k ) );
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if ( clen > 32 )
clen = 32;
memcpy( &buf[ i*32*16 ], T, clen*16 );
}
}
#endif // AVX512
#endif // AVX2

View File

@@ -0,0 +1,107 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* Copyright 2020 JayDDee@gmailcom
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef HMAC_SHA256_4WAY_H__
#define HMAC_SHA256_4WAY_H__
// Tested only 8-way with null pers
#include <sys/types.h>
#include <stdint.h>
#include "simd-utils.h"
#include "sha-hash-4way.h"
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
sha256_4way_context octx;
} hmac_sha256_4way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_4way_init( hmac_sha256_4way_context *, const void *, size_t );
void hmac_sha256_4way_update( hmac_sha256_4way_context *, const void *,
size_t );
void hmac_sha256_4way_close( hmac_sha256_4way_context *, void* );
void hmac_sha256_4way_full( void*, const void *, size_t Klen, const void *,
size_t len );
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX2__)
typedef struct _hmac_sha256_8way_context
{
sha256_8way_context ictx;
sha256_8way_context octx;
} hmac_sha256_8way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_8way_init( hmac_sha256_8way_context *, const void *, size_t );
void hmac_sha256_8way_update( hmac_sha256_8way_context *, const void *,
size_t );
void hmac_sha256_8way_close( hmac_sha256_8way_context *, void* );
void hmac_sha256_8way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct _hmac_sha256_16way_context
{
sha256_16way_context ictx;
sha256_16way_context octx;
} hmac_sha256_16way_context;
//void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void hmac_sha256_16way_init( hmac_sha256_16way_context *,
const void *, size_t );
void hmac_sha256_16way_update( hmac_sha256_16way_context *, const void *,
size_t );
void hmac_sha256_16way_close( hmac_sha256_16way_context *, void* );
void hmac_sha256_16way_full( void*, const void *, size_t Klen, const void *,
size_t len );
void pbkdf2_sha256_16way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX512
#endif // AVX2
#endif // HMAC_SHA256_4WAY_H__

View File

@@ -81,16 +81,17 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x36;
memset( pad + Klen, 0x36, 64 - Klen );
SHA256_Update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init( &ctx->octx );
memset(pad, 0x5c, 64);
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x5c;
memset( pad + Klen, 0x5c, 64 - Klen );
SHA256_Update( &ctx->octx, pad, 64 );
}
@@ -161,6 +162,12 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */
// _mm256_xor_si256( *(__m256i*)T, *(__m256i*)U );
// _mm_xor_si128( ((__m128i*)T)[0], ((__m128i*)U)[0] );
// _mm_xor_si128( ((__m128i*)T)[1], ((__m128i*)U)[1] );
// for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
}

View File

@@ -58,6 +58,7 @@ void sha256_4way_init( sha256_4way_context *sc );
void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
#endif // SSE2
@@ -75,6 +76,7 @@ typedef struct {
void sha256_8way_init( sha256_8way_context *sc );
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len );
void sha256_8way_close( sha256_8way_context *sc, void *dst );
void sha256_8way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -92,6 +94,7 @@ typedef struct {
void sha256_16way_init( sha256_16way_context *sc );
void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len );
void sha256_16way_close( sha256_16way_context *sc, void *dst );
void sha256_16way_full( void *dst, const void *data, size_t len );
#endif // AVX512
@@ -110,6 +113,7 @@ void sha512_4way_init( sha512_4way_context *sc);
void sha512_4way_update( sha512_4way_context *sc, const void *data,
size_t len );
void sha512_4way_close( sha512_4way_context *sc, void *dst );
void sha512_4way_full( void *dst, const void *data, size_t len );
#endif // AVX2
@@ -128,6 +132,7 @@ void sha512_8way_init( sha512_8way_context *sc);
void sha512_8way_update( sha512_8way_context *sc, const void *data,
size_t len );
void sha512_8way_close( sha512_8way_context *sc, void *dst );
void sha512_8way_full( void *dst, const void *data, size_t len );
#endif // AVX512

View File

@@ -330,6 +330,14 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
mm128_block_bswap_32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
{
sha256_4way_context ctx;
sha256_4way_init( &ctx );
sha256_4way_update( &ctx, data, len );
sha256_4way_close( &ctx, dst );
}
#if defined(__AVX2__)
// SHA-256 8 way
@@ -498,6 +506,10 @@ void sha256_8way_init( sha256_8way_context *sc )
*/
}
// need to handle odd byte length for yespower.
// Assume only last update is odd.
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len )
{
__m256i *vdata = (__m256i*)data;
@@ -564,6 +576,13 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
mm256_block_bswap_32( dst, sc->val );
}
void sha256_8way_full( void *dst, const void *data, size_t len )
{
sha256_8way_context ctx;
sha256_8way_init( &ctx );
sha256_8way_update( &ctx, data, len );
sha256_8way_close( &ctx, dst );
}
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
@@ -791,6 +810,14 @@ void sha256_16way_close( sha256_16way_context *sc, void *dst )
mm512_block_bswap_32( dst, sc->val );
}
void sha256_16way_full( void *dst, const void *data, size_t len )
{
sha256_16way_context ctx;
sha256_16way_init( &ctx );
sha256_16way_update( &ctx, data, len );
sha256_16way_close( &ctx, dst );
}
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__

View File

@@ -58,7 +58,7 @@ union _sonoa_8way_context_overlay
typedef union _sonoa_8way_context_overlay sonoa_8way_context_overlay;
void sonoa_8way_hash( void *state, const void *input )
int sonoa_8way_hash( void *state, const void *input, int thrid )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t vhashA[8*8] __attribute__ ((aligned (64)));
@@ -186,6 +186,7 @@ void sonoa_8way_hash( void *state, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
// 2
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -301,6 +302,7 @@ void sonoa_8way_hash( void *state, const void *input )
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
if ( work_restart[thrid].restart ) return 0;
// 3
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -430,6 +432,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_fugue512_full( &ctx.fugue, hash6, hash6, 64 );
sph_fugue512_full( &ctx.fugue, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 4
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -627,6 +630,7 @@ void sonoa_8way_hash( void *state, const void *input )
#endif
if ( work_restart[thrid].restart ) return 0;
// 5
bmw512_8way_full( &ctx.bmw, vhash, vhash, 64 );
@@ -779,6 +783,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 6
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -947,6 +952,7 @@ void sonoa_8way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash6, hash6, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash7, hash7, 64 );
if ( work_restart[thrid].restart ) return 0;
// 7
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
@@ -1108,6 +1114,8 @@ void sonoa_8way_hash( void *state, const void *input )
haval256_5_8way_init( &ctx.haval );
haval256_5_8way_update( &ctx.haval, vhashA, 64 );
haval256_5_8way_close( &ctx.haval, state );
return 1;
}
int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
@@ -1133,8 +1141,7 @@ int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
do
{
sonoa_8way_hash( hash, vdata );
if ( sonoa_8way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 8; lane++ )
if unlikely( ( hashd7[ lane ] <= targ32 ) )
{
@@ -1142,7 +1149,7 @@ int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm512_add_epi32( *noncev,
@@ -1179,7 +1186,7 @@ union _sonoa_4way_context_overlay
typedef union _sonoa_4way_context_overlay sonoa_4way_context_overlay;
void sonoa_4way_hash( void *state, const void *input )
int sonoa_4way_hash( void *state, const void *input, int thrid )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
@@ -1243,6 +1250,7 @@ void sonoa_4way_hash( void *state, const void *input )
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 2
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1302,6 +1310,7 @@ void sonoa_4way_hash( void *state, const void *input )
hamsi512_4way_update( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );
if ( work_restart[thrid].restart ) return 0;
// 3
bmw512_4way_init( &ctx.bmw );
@@ -1366,6 +1375,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_fugue512_full( &ctx.fugue, hash2, hash2, 64 );
sph_fugue512_full( &ctx.fugue, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 4
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1462,6 +1472,7 @@ void sonoa_4way_hash( void *state, const void *input )
shavite512_2way_init( &ctx.shavite );
shavite512_2way_update_close( &ctx.shavite, vhashB, vhashB, 64 );
if ( work_restart[thrid].restart ) return 0;
// 5
rintrlv_2x128_4x64( vhash, vhashA, vhashB, 512 );
@@ -1546,6 +1557,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 6
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1638,6 +1650,7 @@ void sonoa_4way_hash( void *state, const void *input )
sph_whirlpool512_full( &ctx.whirlpool, hash2, hash2, 64 );
sph_whirlpool512_full( &ctx.whirlpool, hash3, hash3, 64 );
if ( work_restart[thrid].restart ) return 0;
// 7
intrlv_4x64_512( vhash, hash0, hash1, hash2, hash3 );
@@ -1728,6 +1741,8 @@ void sonoa_4way_hash( void *state, const void *input )
haval256_5_4way_init( &ctx.haval );
haval256_5_4way_update( &ctx.haval, vhashB, 64 );
haval256_5_4way_close( &ctx.haval, state );
return 1;
}
int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
@@ -1752,8 +1767,7 @@ int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
do
{
sonoa_4way_hash( hash, vdata );
if ( sonoa_4way_hash( hash, vdata, thr_id ) )
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hashd7[ lane ] <= targ32 ) )
{
@@ -1761,7 +1775,7 @@ int scanhash_sonoa_4way( struct work *work, const uint32_t max_nonce,
if ( likely( valid_hash( lane_hash, ptarget ) && !opt_benchmark ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm256_add_epi32( *noncev,

View File

@@ -4,14 +4,14 @@ bool register_sonoa_algo( algo_gate_t* gate )
{
#if defined (SONOA_8WAY)
gate->scanhash = (void*)&scanhash_sonoa_8way;
gate->hash = (void*)&sonoa_8way_hash;
// gate->hash = (void*)&sonoa_8way_hash;
#elif defined (SONOA_4WAY)
gate->scanhash = (void*)&scanhash_sonoa_4way;
gate->hash = (void*)&sonoa_4way_hash;
// gate->hash = (void*)&sonoa_4way_hash;
#else
init_sonoa_ctx();
gate->scanhash = (void*)&scanhash_sonoa;
gate->hash = (void*)&sonoa_hash;
// gate->hash = (void*)&sonoa_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
return true;

View File

@@ -14,19 +14,19 @@ bool register_sonoa_algo( algo_gate_t* gate );
#if defined(SONOA_8WAY)
void sonoa_8way_hash( void *state, const void *input );
int sonoa_8way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(SONOA_4WAY)
void sonoa_4way_hash( void *state, const void *input );
int sonoa_4way_hash( void *state, const void *input, int thrid );
int scanhash_sonoa_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void sonoa_hash( void *state, const void *input );
int sonoa_hash( void *state, const void *input, int thrid );
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_sonoa_ctx();

View File

@@ -83,7 +83,7 @@ void init_sonoa_ctx()
sph_haval256_5_init(&sonoa_ctx.haval);
};
void sonoa_hash( void *state, const void *input )
int sonoa_hash( void *state, const void *input, int thrid )
{
uint8_t hash[128] __attribute__ ((aligned (64)));
sonoa_ctx_holder ctx __attribute__ ((aligned (64)));
@@ -132,6 +132,7 @@ void sonoa_hash( void *state, const void *input )
sph_echo512_close(&ctx.echo, hash);
#endif
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
@@ -189,6 +190,7 @@ void sonoa_hash( void *state, const void *input )
sph_hamsi512(&ctx.hamsi, hash, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
@@ -222,7 +224,7 @@ void sonoa_hash( void *state, const void *input )
(const BitSequence*)hash, 64 );
cubehashInit( &ctx.cubehash, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
cubehashUpdateDigest( &ctx.cubehash, (byte*)hash,
(const byte*)hash, 64 );
sph_shavite512_init( &ctx.shavite );
@@ -250,6 +252,7 @@ void sonoa_hash( void *state, const void *input )
sph_fugue512(&ctx.fugue, hash, 64);
sph_fugue512_close(&ctx.fugue, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
@@ -333,6 +336,7 @@ void sonoa_hash( void *state, const void *input )
sph_shavite512(&ctx.shavite, hash, 64);
sph_shavite512_close(&ctx.shavite, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
@@ -406,6 +410,7 @@ void sonoa_hash( void *state, const void *input )
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
sph_bmw512(&ctx.bmw, hash, 64);
@@ -482,6 +487,7 @@ void sonoa_hash( void *state, const void *input )
sph_whirlpool(&ctx.whirlpool, hash, 64);
sph_whirlpool_close(&ctx.whirlpool, hash);
if ( work_restart[thrid].restart ) return 0;
//
sph_bmw512_init( &ctx.bmw);
@@ -560,6 +566,7 @@ void sonoa_hash( void *state, const void *input )
sph_haval256_5_close(&ctx.haval, hash);
memcpy(state, hash, 32);
return 1;
}
int scanhash_sonoa( struct work *work, uint32_t max_nonce,
@@ -579,7 +586,7 @@ int scanhash_sonoa( struct work *work, uint32_t max_nonce,
do
{
edata[19] = n;
sonoa_hash( hash64, edata );
if ( sonoa_hash( hash64, edata, thr_id ) )
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );

View File

@@ -31,6 +31,7 @@
#undef HUGEPAGE_SIZE
#endif
/*
static __inline uint32_t
le32dec(const void *pp)
{
@@ -50,6 +51,7 @@ le32enc(void *pp, uint32_t x)
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
*/
static void *
alloc_region(yescrypt_region_t * region, size_t size)
@@ -154,7 +156,7 @@ int yescrypt_init_shared(yescrypt_shared_t * shared, const uint8_t * param, size
if (yescrypt_kdf(&dummy, shared1,
param, paramlen, NULL, 0, N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
salt, sizeof(salt), 0 ) )
goto out;
half1 = half2 = *shared;
@@ -166,19 +168,19 @@ int yescrypt_init_shared(yescrypt_shared_t * shared, const uint8_t * param, size
if (p > 1 && yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_2,
salt, sizeof(salt)))
salt, sizeof(salt), 0 ))
goto out;
if (yescrypt_kdf(&half2, &half1.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
salt, sizeof(salt)))
salt, sizeof(salt), 0))
goto out;
if (yescrypt_kdf(&half1, &half2.shared1,
param, paramlen, salt, sizeof(salt), N, r, p, 0,
YESCRYPT_RW | YESCRYPT_PARALLEL_SMIX | __YESCRYPT_INIT_SHARED_1,
buf, buflen))
buf, buflen, 0))
goto out;
shared->mask1 = mask;

View File

@@ -1149,7 +1149,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen,
uint64_t N, uint32_t r, uint32_t p, uint32_t t, yescrypt_flags_t flags,
uint8_t * buf, size_t buflen)
uint8_t * buf, size_t buflen, int thrid )
{
uint8_t _ALIGN(128) sha256[32];
yescrypt_region_t tmp;
@@ -1157,6 +1157,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
size_t B_size, V_size, XY_size, need;
uint8_t * B, * S;
salsa20_blk_t * V, * XY;
int retval = 1;
/*
* YESCRYPT_PARALLEL_SMIX is a no-op at p = 1 for its intended purpose,
@@ -1312,6 +1313,12 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
if (t || flags)
memcpy(sha256, B, sizeof(sha256));
@@ -1339,9 +1346,21 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
}
}
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
if ( work_restart[thrid].restart )
{
retval = 0;
goto out;
}
/*
* Except when computing classic scrypt, allow all computation so far
* to be performed on the client. The final steps below match those of
@@ -1370,9 +1389,10 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
}
}
out:
if (free_region(&tmp))
return -1;
/* Success! */
return 0;
return retval;
}

View File

@@ -106,7 +106,8 @@ static const uint8_t* decode64_uint32(uint32_t* dst, uint32_t dstbits, const uin
}
uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
const uint8_t* passwd, size_t passwdlen, const uint8_t* setting, uint8_t* buf, size_t buflen)
const uint8_t* passwd, size_t passwdlen, const uint8_t* setting,
uint8_t* buf, size_t buflen, int thrid )
{
uint8_t hash[HASH_SIZE];
const uint8_t * src, * salt;
@@ -210,7 +211,9 @@ uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
return NULL;
}
if (yescrypt_kdf(shared, local, passwd, passwdlen, salt, saltlen, N, r, p, 0, flags, hash, sizeof(hash))) {
if ( yescrypt_kdf( shared, local, passwd, passwdlen, salt, saltlen, N, r, p,
0, flags, hash, sizeof(hash), thrid ) == -1 )
{
printf("died10 ...");
fflush(stdout);
return NULL;
@@ -237,7 +240,7 @@ uint8_t* yescrypt_r(const yescrypt_shared_t* shared, yescrypt_local_t* local,
return buf;
}
uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting)
uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting, int thrid )
{
static uint8_t buf[4 + 1 + 5 + 5 + BYTES2CHARS(32) + 1 + HASH_LEN + 1];
yescrypt_shared_t shared;
@@ -252,7 +255,7 @@ uint8_t* yescrypt(const uint8_t* passwd, const uint8_t* setting)
return NULL;
}
retval = yescrypt_r(&shared, &local,
passwd, 80, setting, buf, sizeof(buf));
passwd, 80, setting, buf, sizeof(buf), thrid );
//printf("hashse='%s'\n", (char *)retval);
if (yescrypt_free_local(&local)) {
yescrypt_free_shared(&shared);
@@ -329,7 +332,7 @@ uint8_t* yescrypt_gensalt(uint32_t N_log2, uint32_t r, uint32_t p, yescrypt_flag
static int yescrypt_bsty(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
uint8_t * buf, size_t buflen, int thrid )
{
static __thread int initialized = 0;
static __thread yescrypt_shared_t shared;
@@ -349,7 +352,7 @@ static int yescrypt_bsty(const uint8_t * passwd, size_t passwdlen,
}
retval = yescrypt_kdf(&shared, &local,
passwd, passwdlen, salt, saltlen, N, r, p, 0, YESCRYPT_FLAGS,
buf, buflen);
buf, buflen, thrid );
#if 0
if (yescrypt_free_local(&local)) {
yescrypt_free_shared(&shared);
@@ -370,16 +373,16 @@ char *yescrypt_client_key = NULL;
int yescrypt_client_key_len = 0;
/* main hash 80 bytes input */
void yescrypt_hash( const char *input, char *output, uint32_t len )
int yescrypt_hash( const char *input, char *output, uint32_t len, int thrid )
{
yescrypt_bsty( (uint8_t*)input, len, (uint8_t*)input, len, YESCRYPT_N,
YESCRYPT_R, YESCRYPT_P, (uint8_t*)output, 32 );
return yescrypt_bsty( (uint8_t*)input, len, (uint8_t*)input, len, YESCRYPT_N,
YESCRYPT_R, YESCRYPT_P, (uint8_t*)output, 32, thrid );
}
/* for util.c test */
void yescrypthash(void *output, const void *input)
int yescrypthash(void *output, const void *input, int thrid)
{
yescrypt_hash((char*) input, (char*) output, 80);
return yescrypt_hash((char*) input, (char*) output, 80, thrid);
}
int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
@@ -392,13 +395,13 @@ int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
do {
yescrypt_hash((char*) endiandata, (char*) vhash, 80);
if ( yescrypt_hash((char*) endiandata, (char*) vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );

View File

@@ -38,12 +38,13 @@ extern "C" {
#include <stdint.h>
#include <stdlib.h> /* for size_t */
#include <stdbool.h>
#include "miner.h"
//#define __SSE4_1__
void yescrypt_hash(const char* input, char* output, uint32_t len);
int yescrypt_hash(const char* input, char* output, uint32_t len, int thrid );
void yescrypthash(void *output, const void *input);
int yescrypthash(void *output, const void *input, int thrid );
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
@@ -301,7 +302,7 @@ extern int yescrypt_kdf(const yescrypt_shared_t * __shared,
const uint8_t * __salt, size_t __saltlen,
uint64_t __N, uint32_t __r, uint32_t __p, uint32_t __t,
yescrypt_flags_t __flags,
uint8_t * __buf, size_t __buflen);
uint8_t * __buf, size_t __buflen, int thrid);
/**
* yescrypt_r(shared, local, passwd, passwdlen, setting, buf, buflen):
@@ -321,7 +322,7 @@ extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared,
yescrypt_local_t * __local,
const uint8_t * __passwd, size_t __passwdlen,
const uint8_t * __setting,
uint8_t * __buf, size_t __buflen);
uint8_t * __buf, size_t __buflen, int thrid);
/**
* yescrypt(passwd, setting):
@@ -339,7 +340,7 @@ extern uint8_t * yescrypt_r(const yescrypt_shared_t * __shared,
*
* MT-unsafe.
*/
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting);
extern uint8_t * yescrypt(const uint8_t * __passwd, const uint8_t * __setting, int thrid );
/**
* yescrypt_gensalt_r(N_log2, r, p, flags, src, srclen, buf, buflen):

View File

@@ -51,6 +51,10 @@ int scanhash_yespower_r8g( struct work *work, uint32_t max_nonce,
be32enc( &endiandata[ i], pdata[ i ]);
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
yespower_tls( (unsigned char *)endiandata, params.perslen,
&params, (yespower_binary_t*)hash, thr_id );

View File

@@ -0,0 +1,692 @@
/*-
* Copyright 2009 Colin Percival
* Copyright 2013-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*
* This is a proof-of-work focused fork of yescrypt, including reference and
* cut-down implementation of the obsolete yescrypt 0.5 (based off its first
* submission to PHC back in 2014) and a new proof-of-work specific variation
* known as yespower 1.0. The former is intended as an upgrade for
* cryptocurrencies that already use yescrypt 0.5 and the latter may be used
* as a further upgrade (hard fork) by those and other cryptocurrencies. The
* version of algorithm to use is requested through parameters, allowing for
* both algorithms to co-exist in client and miner implementations (such as in
* preparation for a hard-fork).
*
* This is the reference implementation. Its purpose is to provide a simple
* human- and machine-readable specification that implementations intended
* for actual use should be tested against. It is deliberately mostly not
* optimized, and it is not meant to be used in production. Instead, use
* yespower-opt.c.
*/
/*
#warning "This reference implementation is deliberately mostly not optimized. Use yespower-opt.c instead unless you're testing (against) the reference implementation on purpose."
*/
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "algo/sha/hmac-sha256-hash-4way.h"
//#include "sysendian.h"
#include "yespower.h"
#if defined(__AVX2__)
static void blkcpy_8way( __m256i *dst, const __m256i *src, size_t count )
{
do {
*dst++ = *src++;
} while (--count);
}
static void blkxor_8way( __m256i *dst, const __m256i *src, size_t count )
{
do {
*dst++ ^= *src++;
} while (--count);
}
/**
* salsa20(B):
* Apply the Salsa20 core to the provided block.
*/
static void salsa20_8way( __m256i B[16], uint32_t rounds )
{
__m256i x[16];
size_t i;
/* SIMD unshuffle */
for ( i = 0; i < 16; i++ )
x[i * 5 % 16] = B[i];
for ( i = 0; i < rounds; i += 2 )
{
#define R( a, b, c ) mm256_rol_32( _mm256_add_epi32( a, b ), c )
/* Operate on columns */
x[ 4] = _mm256_xor_si256( x[ 4], R( x[ 0], x[12], 7 ) );
x[ 8] = _mm256_xor_si256( x[ 8], R( x[ 4], x[ 0], 9 ) );
x[12] = _mm256_xor_si256( x[12], R( x[ 8], x[ 4], 13 ) );
x[ 0] = _mm256_xor_si256( x[ 0], R( x[12], x[ 8], 18 ) );
x[ 9] = _mm256_xor_si256( x[ 9], R( x[ 5], x[ 1], 7 ) );
x[13] = _mm256_xor_si256( x[13], R( x[ 9], x[ 5], 9 ) );
x[ 1] = _mm256_xor_si256( x[ 1], R( x[13], x[ 9], 13 ) );
x[ 5] = _mm256_xor_si256( x[ 5], R( x[ 1], x[13], 18 ) );
x[14] = _mm256_xor_si256( x[14], R( x[10], x[ 6], 7 ) );
x[ 2] = _mm256_xor_si256( x[ 2], R( x[14], x[10], 9 ) );
x[ 6] = _mm256_xor_si256( x[ 6], R( x[ 2], x[14], 13 ) );
x[10] = _mm256_xor_si256( x[10], R( x[ 6], x[ 2], 18 ) );
x[ 3] = _mm256_xor_si256( x[ 3], R( x[15], x[11], 7 ) );
x[ 7] = _mm256_xor_si256( x[ 7], R( x[ 3], x[15], 9 ) );
x[11] = _mm256_xor_si256( x[11], R( x[ 7], x[ 3], 13 ) );
x[15] = _mm256_xor_si256( x[15], R( x[11], x[ 7], 18 ) );
/* Operate on rows */
x[ 1] = _mm256_xor_si256( x[ 1], R( x[ 0], x[ 3], 7 ) );
x[ 2] = _mm256_xor_si256( x[ 2], R( x[ 1], x[ 0], 9 ) );
x[ 3] = _mm256_xor_si256( x[ 3], R( x[ 2], x[ 1], 13 ) );
x[ 0] = _mm256_xor_si256( x[ 0], R( x[ 3], x[ 2], 18 ) );
x[ 6] = _mm256_xor_si256( x[ 6], R( x[ 5], x[ 4], 7 ) );
x[ 7] = _mm256_xor_si256( x[ 7], R( x[ 6], x[ 5], 9 ) );
x[ 4] = _mm256_xor_si256( x[ 4], R( x[ 7], x[ 6], 13 ) );
x[ 5] = _mm256_xor_si256( x[ 5], R( x[ 4], x[ 7], 18 ) );
x[11] = _mm256_xor_si256( x[11], R( x[10], x[ 9], 7 ) );
x[ 8] = _mm256_xor_si256( x[ 8], R( x[11], x[10], 9 ) );
x[ 9] = _mm256_xor_si256( x[ 9], R( x[ 8], x[11], 13 ) );
x[10] = _mm256_xor_si256( x[10], R( x[ 9], x[ 8], 18 ) );
x[12] = _mm256_xor_si256( x[12], R( x[15], x[14], 7 ) );
x[13] = _mm256_xor_si256( x[13], R( x[12], x[15], 9 ) );
x[14] = _mm256_xor_si256( x[14], R( x[13], x[12], 13 ) );
x[15] = _mm256_xor_si256( x[15], R( x[14], x[13], 18 ) );
#undef R
}
/* SIMD shuffle */
for (i = 0; i < 16; i++)
B[i] = _mm256_add_epi32( B[i], x[i * 5 % 16] );
}
/**
* blockmix_salsa(B):
* Compute B = BlockMix_{salsa20, 1}(B). The input B must be 128 bytes in
* length.
*/
static void blockmix_salsa_8way( __m256i *B, uint32_t rounds )
{
__m256i X[16];
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy_8way( X, &B[16], 16 );
/* 2: for i = 0 to 2r - 1 do */
for ( i = 0; i < 2; i++ )
{
/* 3: X <-- H(X xor B_i) */
blkxor_8way( X, &B[i * 16], 16 );
salsa20_8way( X, rounds );
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy_8way( &B[i * 16], X, 16 );
}
}
/*
* These are tunable, but they must meet certain constraints and are part of
* what defines a yespower version.
*/
#define PWXsimple 2
#define PWXgather 4
/* Version 0.5 */
#define PWXrounds_0_5 6
#define Swidth_0_5 8
/* Version 1.0 */
#define PWXrounds_1_0 3
#define Swidth_1_0 11
/* Derived values. Not tunable on their own. */
#define PWXbytes (PWXgather * PWXsimple * 8)
#define PWXwords (PWXbytes / sizeof(uint32_t))
#define rmin ((PWXbytes + 127) / 128)
/* Runtime derived values. Not tunable on their own. */
#define Swidth_to_Sbytes1(Swidth) ((1 << Swidth) * PWXsimple * 8)
#define Swidth_to_Smask(Swidth) (((1 << Swidth) - 1) * PWXsimple * 8)
typedef struct {
__m256i (*S0)[2], (*S1)[2], (*S2)[2];
__m256i *S;
yespower_version_t version;
uint32_t salsa20_rounds;
uint32_t PWXrounds, Swidth, Sbytes, Smask;
size_t w;
} pwxform_8way_ctx_t __attribute__ ((aligned (128)));
/**
* pwxform(B):
* Transform the provided block using the provided S-boxes.
*/
static void pwxform_8way( __m256i *B, pwxform_8way_ctx_t *ctx )
{
__m256i (*X)[PWXsimple][2] = (__m256i (*)[PWXsimple][2])B;
__m256i (*S0)[2] = ctx->S0, (*S1)[2] = ctx->S1, (*S2)[2] = ctx->S2;
__m256i Smask = _mm256_set1_epi32( ctx->Smask );
size_t w = ctx->w;
size_t i, j, k;
/* 1: for i = 0 to PWXrounds - 1 do */
for ( i = 0; i < ctx->PWXrounds; i++ )
{
/* 2: for j = 0 to PWXgather - 1 do */
for ( j = 0; j < PWXgather; j++ )
{
// Are these pointers or data?
__m256i xl = X[j][0][0];
__m256i xh = X[j][0][1];
__m256i (*p0)[2], (*p1)[2];
// 3: p0 <-- (lo(B_{j,0}) & Smask) / (PWXsimple * 8)
// playing with pointers
/*
p0 = S0 + (xl & Smask) / sizeof(*S0);
// 4: p1 <-- (hi(B_{j,0}) & Smask) / (PWXsimple * 8)
p1 = S1 + (xh & Smask) / sizeof(*S1);
*/
/* 5: for k = 0 to PWXsimple - 1 do */
for ( k = 0; k < PWXsimple; k++ )
{
// shift from 32 bit data to 64 bit data
__m256i x0, x1, s00, s01, s10, s11;
__m128i *p0k = (__m128i*)p0[k];
__m128i *p1k = (__m128i*)p1[k];
s00 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p0k[0] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p0k[2] ), 32 ) );
s01 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p0k[1] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p0k[3] ), 32 ) );
s10 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p1k[0] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p1k[2] ), 32 ) );
s11 = _mm256_add_epi64( _mm256_cvtepu32_epi64( p1k[1] ),
_mm256_slli_epi64( _mm256_cvtepu32_epi64( p1k[3] ), 32 ) );
__m128i *xx = (__m128i*)X[j][k];
x0 = _mm256_mul_epu32( _mm256_cvtepu32_epi64( xx[0] ),
_mm256_cvtepu32_epi64( xx[2] ) );
x1 = _mm256_mul_epu32( _mm256_cvtepu32_epi64( xx[1] ),
_mm256_cvtepu32_epi64( xx[3] ) );
x0 = _mm256_add_epi64( x0, s00 );
x1 = _mm256_add_epi64( x1, s01 );
x0 = _mm256_xor_si256( x0, s10 );
x1 = _mm256_xor_si256( x1, s11 );
X[j][k][0] = x0;
X[j][k][1] = x1;
}
if ( ctx->version != YESPOWER_0_5 &&
( i == 0 || j < PWXgather / 2 ) )
{
if ( j & 1 )
{
for ( k = 0; k < PWXsimple; k++ )
{
S1[w][0] = X[j][k][0];
S1[w][1] = X[j][k][1];
w++;
}
}
else
{
for ( k = 0; k < PWXsimple; k++ )
{
S0[w + k][0] = X[j][k][0];
S0[w + k][1] = X[j][k][1];
}
}
}
}
}
if ( ctx->version != YESPOWER_0_5 )
{
/* 14: (S0, S1, S2) <-- (S2, S0, S1) */
ctx->S0 = S2;
ctx->S1 = S0;
ctx->S2 = S1;
/* 15: w <-- w mod 2^Swidth */
ctx->w = w & ( ( 1 << ctx->Swidth ) * PWXsimple - 1 );
}
}
/**
* blockmix_pwxform(B, ctx, r):
* Compute B = BlockMix_pwxform{salsa20, ctx, r}(B). The input B must be
* 128r bytes in length.
*/
static void blockmix_pwxform_8way( uint32_t *B, pwxform_8way_ctx_t *ctx,
size_t r )
{
__m256i X[PWXwords];
size_t r1, i;
/* Convert 128-byte blocks to PWXbytes blocks */
/* 1: r_1 <-- 128r / PWXbytes */
r1 = 128 * r / PWXbytes;
/* 2: X <-- B'_{r_1 - 1} */
blkcpy_8way( X, &B[ (r1 - 1) * PWXwords ], PWXwords );
/* 3: for i = 0 to r_1 - 1 do */
for ( i = 0; i < r1; i++ )
{
/* 4: if r_1 > 1 */
if ( r1 > 1 )
{
/* 5: X <-- X xor B'_i */
blkxor_8way( X, &B[ i * PWXwords ], PWXwords );
}
/* 7: X <-- pwxform(X) */
pwxform_8way( X, ctx );
/* 8: B'_i <-- X */
blkcpy_8way( &B[ i * PWXwords ], X, PWXwords );
}
/* 10: i <-- floor((r_1 - 1) * PWXbytes / 64) */
i = ( r1 - 1 ) * PWXbytes / 64;
/* 11: B_i <-- H(B_i) */
salsa20_8way( &B[i * 16], ctx->salsa20_rounds );
#if 1 /* No-op with our current pwxform settings, but do it to make sure */
/* 12: for i = i + 1 to 2r - 1 do */
for ( i++; i < 2 * r; i++ )
{
/* 13: B_i <-- H(B_i xor B_{i-1}) */
blkxor_8way( &B[i * 16], &B[ (i - 1) * 16 ], 16 );
salsa20_8way( &B[i * 16], ctx->salsa20_rounds );
}
#endif
}
// This looks a lot like data dependent addressing
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static __m256i integerify8( const __m256i *B, size_t r )
{
/*
* Our 32-bit words are in host byte order. Also, they are SIMD-shuffled, but
* we only care about the least significant 32 bits anyway.
*/
const __m256i *X = &B[ (2 * r - 1) * 16 ];
return X[0];
}
/**
* p2floor(x):
* Largest power of 2 not greater than argument.
*/
static uint32_t p2floor8( uint32_t x )
{
uint32_t y;
while ( ( y = x & (x - 1) ) )
x = y;
return x;
}
/**
* wrap(x, i):
* Wrap x to the range 0 to i-1.
*/
static uint32_t wrap8( uint32_t x, uint32_t i )
{
uint32_t n = p2floor( i );
return ( x & (n - 1) ) + (i - n);
}
/**
* smix1(B, r, N, V, X, ctx):
* Compute first loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length.
*/
static void smix1_8way( __m256i *B, size_t r, uint32_t N,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx )
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* 1: X <-- B */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
X[ k * 16 + i ] = B[ k * 16 + ( i * 5 % 16 ) ];
if ( ctx->version != YESPOWER_0_5 )
{
for ( k = 1; k < r; k++ )
{
blkcpy_8way( &X[k * 32], &X[ (k - 1) * 32 ], 32 );
blockmix_pwxform_8way( &X[k * 32], ctx, 1 );
}
}
/* 2: for i = 0 to N - 1 do */
for ( i = 0; i < N; i++ )
{
/* 3: V_i <-- X */
blkcpy_8way( &V[i * s], X, s );
if ( i > 1 )
{
// is j int or vector? Integrify has data dependent addressing?
/* j <-- Wrap(Integerify(X), i) */
// j = wrap8( integerify8( X, r ), i );
/* X <-- X xor V_j */
blkxor_8way( X, &V[j * s], s );
}
/* 4: X <-- H(X) */
if ( V != ctx->S )
blockmix_pwxform_8way( X, ctx, r );
else
blockmix_salsa_8way( X, ctx->salsa20_rounds );
}
/* B' <-- X */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
B[ k * 16 + ( i * 5 % 16 ) ] = X[ k * 16 + i ];
}
/**
* smix2(B, r, N, Nloop, V, X, ctx):
* Compute second loop of B = SMix_r(B, N). The input B must be 128r bytes in
* length; the temporary storage V must be 128rN bytes in length; the temporary
* storage X must be 128r bytes in length. The value N must be a power of 2
* greater than 1.
*/
static void smix2_8way( __m256i *B, size_t r, uint32_t N, uint32_t Nloop,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx )
{
size_t s = 32 * r;
uint32_t i, j;
size_t k;
/* X <-- B */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
X[ k * 16 + i ] = B[ k * 16 + ( i * 5 % 16 ) ];
/* 6: for i = 0 to N - 1 do */
for ( i = 0; i < Nloop; i++ )
{
/* 7: j <-- Integerify(X) mod N */
// j = integerify8(X, r) & (N - 1);
/* 8.1: X <-- X xor V_j */
blkxor_8way( X, &V[j * s], s );
/* V_j <-- X */
if ( Nloop != 2 )
blkcpy_8way( &V[j * s], X, s );
/* 8.2: X <-- H(X) */
blockmix_pwxform_8way( X, ctx, r );
}
/* 10: B' <-- X */
for ( k = 0; k < 2 * r; k++ )
for ( i = 0; i < 16; i++ )
B[ k * 16 + ( i * 5 % 16 ) ] = X[ k * 16 + i ];
}
/**
* smix(B, r, N, p, t, V, X, ctx):
* Compute B = SMix_r(B, N). The input B must be 128rp bytes in length; the
* temporary storage V must be 128rN bytes in length; the temporary storage
* X must be 128r bytes in length. The value N must be a power of 2 and at
* least 16.
*/
static void smix_8way( __m256i *B, size_t r, uint32_t N,
__m256i *V, __m256i *X, pwxform_8way_ctx_t *ctx)
{
uint32_t Nloop_all = (N + 2) / 3; /* 1/3, round up */
uint32_t Nloop_rw = Nloop_all;
Nloop_all++; Nloop_all &= ~(uint32_t)1; /* round up to even */
if ( ctx->version == YESPOWER_0_5 )
Nloop_rw &= ~(uint32_t)1; /* round down to even */
else
Nloop_rw++; Nloop_rw &= ~(uint32_t)1; /* round up to even */
smix1_8way( B, 1, ctx->Sbytes / 128, ctx->S, X, ctx );
smix1_8way( B, r, N, V, X, ctx );
smix2_8way( B, r, N, Nloop_rw /* must be > 2 */, V, X, ctx );
smix2_8way( B, r, N, Nloop_all - Nloop_rw /* 0 or 2 */, V, X, ctx );
}
/**
* yespower(local, src, srclen, params, dst):
* Compute yespower(src[0 .. srclen - 1], N, r), to be checked for "< target".
*
* Return 0 on success; or -1 on error.
*/
int yespower_8way( yespower_local_t *local, const __m256i *src, size_t srclen,
const yespower_params_t *params, yespower_8way_binary_t *dst,
int thrid )
{
yespower_version_t version = params->version;
uint32_t N = params->N;
uint32_t r = params->r;
const uint8_t *pers = params->pers;
size_t perslen = params->perslen;
int retval = -1;
size_t B_size, V_size;
uint32_t *B, *V, *X, *S;
pwxform_8way_ctx_t ctx;
__m256i sha256[8];
/* Sanity-check parameters */
if ( (version != YESPOWER_0_5 && version != YESPOWER_1_0 ) ||
N < 1024 || N > 512 * 1024 || r < 8 || r > 32 ||
(N & (N - 1)) != 0 || r < rmin ||
(!pers && perslen) )
{
errno = EINVAL;
return -1;
}
/* Allocate memory */
B_size = (size_t)128 * r;
V_size = B_size * N;
if ((V = malloc(V_size)) == NULL)
return -1;
if ((B = malloc(B_size)) == NULL)
goto free_V;
if ((X = malloc(B_size)) == NULL)
goto free_B;
ctx.version = version;
if (version == YESPOWER_0_5) {
ctx.salsa20_rounds = 8;
ctx.PWXrounds = PWXrounds_0_5;
ctx.Swidth = Swidth_0_5;
ctx.Sbytes = 2 * Swidth_to_Sbytes1(ctx.Swidth);
} else {
ctx.salsa20_rounds = 2;
ctx.PWXrounds = PWXrounds_1_0;
ctx.Swidth = Swidth_1_0;
ctx.Sbytes = 3 * Swidth_to_Sbytes1(ctx.Swidth);
}
if ((S = malloc(ctx.Sbytes)) == NULL)
goto free_X;
ctx.S = S;
ctx.S0 = (__m256i (*)[2])S;
ctx.S1 = ctx.S0 + (1 << ctx.Swidth) * PWXsimple;
ctx.S2 = ctx.S1 + (1 << ctx.Swidth) * PWXsimple;
ctx.Smask = Swidth_to_Smask(ctx.Swidth);
ctx.w = 0;
// do prehash
sha256_8way_full( sha256, src, srclen );
// need flexible size, use malloc;
__m256i vpers[128];
if ( version != YESPOWER_0_5 && perslen )
for ( int i = 0; i < perslen/4 + 1; i++ )
vpers[i] = _mm256_set1_epi32( pers[i] );
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
pbkdf2_sha256_8way( B, B_size, sha256, sizeof(sha256), vpers, perslen, 1 );
blkcpy_8way( sha256, B, sizeof(sha256) / sizeof(sha256[0] ) );
/* 3: B_i <-- MF(B_i, N) */
smix_8way( B, r, N, V, X, &ctx );
if ( version == YESPOWER_0_5 )
{
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
pbkdf2_sha256_8way( dst, sizeof(*dst), sha256, sizeof(sha256),
B, B_size, 1 );
if ( pers )
{
hmac_sha256_8way_full( dst, sizeof(*dst), vpers, perslen, sha256 );
sha256_8way_full( dst, sha256, sizeof(sha256) );
}
}
else
hmac_sha256_8way_full( dst, B + B_size - 64, 64, sha256, sizeof(sha256) );
/* Success! */
retval = 1;
/* Free memory */
free(S);
free_X:
free(X);
free_B:
free(B);
free_V:
free(V);
return retval;
}
int yespower_8way_tls( const __m256i *src, size_t srclen,
const yespower_params_t *params, yespower_8way_binary_t *dst, int trhid )
{
/* The reference implementation doesn't use thread-local storage */
return yespower_8way( NULL, src, srclen, params, dst, trhid );
}
int yespower_init_local8( yespower_local_t *local )
{
/* The reference implementation doesn't use the local structure */
local->base = local->aligned = NULL;
local->base_size = local->aligned_size = 0;
return 0;
}
int yespower_free_local8( yespower_local_t *local )
{
/* The reference implementation frees its memory in yespower() */
(void)local; /* unused */
return 0;
}
int yespower_8way_hash( const char *input, char *output, uint32_t len,
int thrid )
{
return yespower_8way_tls( input, len, &yespower_params,
(yespower_binary_t*)output, thrid );
}
int scanhash_yespower_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8*8];
uint32_t _ALIGN(128) vdata[20*8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
if ( yespower_hash( vdata, hash, 80, thr_id ) )
if unlikely( valid_hash( hash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
submit_solution( work, hash, mythr );
}
endiandata[19] = ++n;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}
#endif // AVX2

View File

@@ -30,7 +30,9 @@
#include "algo-gate-api.h"
static yespower_params_t yespower_params;
yespower_params_t yespower_params;
SHA256_CTX sha256_prehash_ctx;
// YESPOWER
@@ -55,6 +57,11 @@ int scanhash_yespower( struct work *work, uint32_t max_nonce,
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
if ( yespower_hash( (char*)endiandata, (char*)vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
@@ -86,11 +93,16 @@ int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
for ( int k = 0; k < 19; k++ )
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
SHA256_Init( &sha256_prehash_ctx );
SHA256_Update( &sha256_prehash_ctx, endiandata, 64 );
do {
if (yespower_b2b_hash( (char*) endiandata, (char*) vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
@@ -152,7 +164,7 @@ bool register_yespowerr16_algo( algo_gate_t* gate )
return true;
};
/* not used
/* not used, doesn't work
bool register_yescrypt_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
@@ -166,6 +178,40 @@ bool register_yescrypt_05_algo( algo_gate_t* gate )
return true;
}
bool register_yescrypt_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_yespower;
yespower_params.version = YESPOWER_0_5;
if ( opt_param_n ) yespower_params.N = opt_param_n;
else yespower_params.N = 2048;
if ( opt_param_r ) yespower_params.r = opt_param_r;
else yespower_params.r = 8;
if ( opt_param_key )
{
yespower_params.pers = opt_param_key;
yespower_params.perslen = strlen( opt_param_key );
}
else
{
yespower_params.pers = NULL;
yespower_params.perslen = 0;
}
// YESCRYPT_P = 1;
applog( LOG_NOTICE,"Yescrypt parameters: N= %d, R= %d.",
yespower_params.N, yespower_params.r );
if ( yespower_params.pers )
applog( LOG_NOTICE,"Key= \"%s\"\n", yespower_params.pers );
return true;
}
bool register_yescryptr8_05_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;

View File

@@ -96,6 +96,8 @@
#include <stdlib.h>
#include <string.h>
#include "algo/sha/hmac-sha256-hash.h"
#include "algo/sha/hmac-sha256-hash-4way.h"
#include "yespower.h"
#include "yespower-platform.c"
@@ -1038,12 +1040,13 @@ int yespower(yespower_local_t *local,
salsa20_blk_t *V, *XY;
pwxform_ctx_t ctx;
uint8_t sha256[32];
SHA256_CTX sha256_ctx;
/* Sanity-check parameters */
if ((version != YESPOWER_0_5 && version != YESPOWER_1_0) ||
N < 1024 || N > 512 * 1024 || r < 8 || r > 32 ||
(N & (N - 1)) != 0 ||
(!pers && perslen)) {
if ( (version != YESPOWER_0_5 && version != YESPOWER_1_0)
|| N < 1024 || N > 512 * 1024 || r < 8 || r > 32
|| (N & (N - 1)) != 0 || ( !pers && perslen ) )
{
errno = EINVAL;
return -1;
}
@@ -1051,20 +1054,22 @@ int yespower(yespower_local_t *local,
/* Allocate memory */
B_size = (size_t)128 * r;
V_size = B_size * N;
if (version == YESPOWER_0_5) {
if ( version == YESPOWER_0_5 )
{
XY_size = B_size * 2;
Swidth = Swidth_0_5;
ctx.Sbytes = 2 * Swidth_to_Sbytes1(Swidth);
ctx.Sbytes = 2 * Swidth_to_Sbytes1( Swidth );
} else {
XY_size = B_size + 64;
Swidth = Swidth_1_0;
ctx.Sbytes = 3 * Swidth_to_Sbytes1(Swidth);
ctx.Sbytes = 3 * Swidth_to_Sbytes1( Swidth );
}
need = B_size + V_size + XY_size + ctx.Sbytes;
if (local->aligned_size < need) {
if (free_region(local))
if ( local->aligned_size < need )
{
if ( free_region( local ) )
return -1;
if (!alloc_region(local, need))
if ( !alloc_region( local, need ) )
return -1;
}
B = (uint8_t *)local->aligned;
@@ -1072,48 +1077,81 @@ int yespower(yespower_local_t *local,
XY = (salsa20_blk_t *)((uint8_t *)V + V_size);
S = (uint8_t *)XY + XY_size;
ctx.S0 = S;
ctx.S1 = S + Swidth_to_Sbytes1(Swidth);
ctx.S1 = S + Swidth_to_Sbytes1( Swidth );
SHA256_Buf(src, srclen, sha256);
if (version == YESPOWER_0_5) {
PBKDF2_SHA256(sha256, sizeof(sha256), src, srclen, 1,
B, B_size);
// copy prehash, do tail
memcpy( &sha256_ctx, &sha256_prehash_ctx, sizeof sha256_ctx );
SHA256_Update( &sha256_ctx, src+64, srclen-64 );
SHA256_Final( sha256, &sha256_ctx );
if ( work_restart[thrid].restart ) return false;
// SHA256_Buf(src, srclen, sha256);
memcpy(sha256, B, sizeof(sha256));
smix(B, r, N, V, XY, &ctx);
if ( version == YESPOWER_0_5 )
{
PBKDF2_SHA256( sha256, sizeof(sha256), src, srclen, 1, B, B_size );
if ( work_restart[thrid].restart ) return false;
if ( work_restart[thrid].restart ) return 0;
PBKDF2_SHA256(sha256, sizeof(sha256), B, B_size, 1,
(uint8_t *)dst, sizeof(*dst));
memcpy( sha256, B, sizeof(sha256) );
smix( B, r, N, V, XY, &ctx );
if (pers) {
HMAC_SHA256_Buf(dst, sizeof(*dst), pers, perslen,
sha256);
if ( work_restart[thrid].restart ) return 0;
if ( work_restart[thrid].restart ) return false;
PBKDF2_SHA256( sha256, sizeof(sha256), B, B_size, 1, (uint8_t *)dst,
sizeof(*dst) );
SHA256_Buf(sha256, sizeof(sha256), (uint8_t *)dst);
}
} else {
ctx.S2 = S + 2 * Swidth_to_Sbytes1(Swidth);
ctx.w = 0;
if ( work_restart[thrid].restart ) return 0;
if (pers) {
if ( pers )
{
src = pers;
srclen = perslen;
} else {
srclen = 0;
}
else
srclen = 0;
PBKDF2_SHA256(sha256, sizeof(sha256), src, srclen, 1, B, 128);
memcpy(sha256, B, sizeof(sha256));
smix_1_0(B, r, N, V, XY, &ctx);
HMAC_SHA256_Buf(B + B_size - 64, 64,
sha256, sizeof(sha256), (uint8_t *)dst);
HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init( &ctx, dst, sizeof(*dst) );
HMAC_SHA256_Update( &ctx, src, srclen );
HMAC_SHA256_Final( sha256, &ctx );
// SHA256_CTX ctx;
SHA256_Init( &sha256_ctx );
SHA256_Update( &sha256_ctx, sha256, sizeof(sha256) );
SHA256_Final( (unsigned char*)dst, &sha256_ctx );
/*
if ( pers )
{
HMAC_SHA256_Buf( dst, sizeof(*dst), pers, perslen, sha256 );
SHA256_Buf( sha256, sizeof(sha256), (uint8_t *)dst );
}
*/
}
else
{
ctx.S2 = S + 2 * Swidth_to_Sbytes1( Swidth );
ctx.w = 0;
if ( pers )
{
src = pers;
srclen = perslen;
}
else
srclen = 0;
PBKDF2_SHA256( sha256, sizeof(sha256), src, srclen, 1, B, 128 );
memcpy( sha256, B, sizeof(sha256) );
if ( work_restart[thrid].restart ) return 0;
smix_1_0( B, r, N, V, XY, &ctx );
HMAC_SHA256_Buf( B + B_size - 64, 64, sha256, sizeof(sha256),
(uint8_t *)dst );
}
/* Success! */

View File

@@ -453,9 +453,8 @@ static void smix(uint32_t *B, size_t r, uint32_t N,
*
* Return 0 on success; or -1 on error.
*/
int yespower(yespower_local_t *local,
const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst)
int yespower( yespower_local_t *local, const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst, int thrid )
{
yespower_version_t version = params->version;
uint32_t N = params->N;
@@ -534,17 +533,16 @@ int yespower(yespower_local_t *local,
if (pers) {
HMAC_SHA256_Buf(dst, sizeof(*dst), pers, perslen,
return true;
(uint8_t *)sha256);
SHA256_Buf(sha256, sizeof(sha256), (uint8_t *)dst);
}
} else {
HMAC_SHA256_Buf_P((uint8_t *)B + B_size - 64, 64,
HMAC_SHA256_Buf((uint8_t *)B + B_size - 64, 64,
sha256, sizeof(sha256), (uint8_t *)dst);
}
/* Success! */
retval = 0;
retval = 1;
/* Free memory */
free(S);
@@ -559,10 +557,10 @@ free_V:
}
int yespower_tls(const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst)
const yespower_params_t *params, yespower_binary_t *dst, int thrid )
{
/* The reference implementation doesn't use thread-local storage */
return yespower(NULL, src, srclen, params, dst);
return yespower(NULL, src, srclen, params, dst, thrid );
}
int yespower_init_local(yespower_local_t *local)

View File

@@ -33,6 +33,8 @@
#include <stdint.h>
#include <stdlib.h> /* for size_t */
#include "miner.h"
#include "simd-utils.h"
#include <openssl/sha.h>
#ifdef __cplusplus
extern "C" {
@@ -74,6 +76,10 @@ typedef struct {
unsigned char uc[32];
} yespower_binary_t __attribute__ ((aligned (64)));
yespower_params_t yespower_params;
SHA256_CTX sha256_prehash_ctx;
/**
* yespower_init_local(local):
* Initialize the thread-local (RAM) data structure. Actual memory allocation
@@ -131,6 +137,24 @@ extern int yespower_tls(const uint8_t *src, size_t srclen,
extern int yespower_b2b_tls(const uint8_t *src, size_t srclen,
const yespower_params_t *params, yespower_binary_t *dst, int thr_id);
#if defined(__AVX2__)
typedef struct
{
__m256i uc[8];
} yespower_8way_binary_t __attribute__ ((aligned (128)));
extern int yespower_8way( yespower_local_t *local, const __m256i *src,
size_t srclen, const yespower_params_t *params,
yespower_8way_binary_t *dst, int thrid );
extern int yespower_8way_tls( const __m256i *src, size_t srclen,
const yespower_params_t *params, yespower_8way_binary_t *dst, int thr_id );
#endif // AVX2
#ifdef __cplusplus
}
#endif

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.12.6.1.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.12.7.
#
#
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@@ -577,8 +577,8 @@ MAKEFLAGS=
# Identity of this package.
PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='3.12.6.1'
PACKAGE_STRING='cpuminer-opt 3.12.6.1'
PACKAGE_VERSION='3.12.7'
PACKAGE_STRING='cpuminer-opt 3.12.7'
PACKAGE_BUGREPORT=''
PACKAGE_URL=''
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF
\`configure' configures cpuminer-opt 3.12.6.1 to adapt to many kinds of systems.
\`configure' configures cpuminer-opt 3.12.7 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1404,7 +1404,7 @@ fi
if test -n "$ac_init_help"; then
case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 3.12.6.1:";;
short | recursive ) echo "Configuration of cpuminer-opt 3.12.7:";;
esac
cat <<\_ACEOF
@@ -1509,7 +1509,7 @@ fi
test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
cat <<\_ACEOF
cpuminer-opt configure 3.12.6.1
cpuminer-opt configure 3.12.7
generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 3.12.6.1, which was
It was created by cpuminer-opt $as_me 3.12.7, which was
generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@
@@ -2993,7 +2993,7 @@ fi
# Define the identity of the package.
PACKAGE='cpuminer-opt'
VERSION='3.12.6.1'
VERSION='3.12.7'
cat >>confdefs.h <<_ACEOF
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by cpuminer-opt $as_me 3.12.6.1, which was
This file was extended by cpuminer-opt $as_me 3.12.7, which was
generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES
@@ -6756,7 +6756,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\
cpuminer-opt config.status 3.12.6.1
cpuminer-opt config.status 3.12.7
configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.12.6.1])
AC_INIT([cpuminer-opt], [3.12.7])
AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM

View File

@@ -193,6 +193,7 @@ static uint64_t submit_sum = 0;
static uint64_t accept_sum = 0;
static uint64_t stale_sum = 0;
static uint64_t reject_sum = 0;
static uint64_t solved_sum = 0;
static double norm_diff_sum = 0.;
static uint32_t last_block_height = 0;
static double highest_share = 0; // all shares include discard and reject
@@ -954,6 +955,7 @@ void report_summary_log( bool force )
uint64_t accepts = accept_sum; accept_sum = 0;
uint64_t rejects = reject_sum; reject_sum = 0;
uint64_t stales = stale_sum; stale_sum = 0;
uint64_t solved = solved_sum; solved_sum = 0;
memcpy( &start_time, &five_min_start, sizeof start_time );
memcpy( &five_min_start, &now, sizeof now );
@@ -1020,8 +1022,8 @@ void report_summary_log( bool force )
applog2( LOG_INFO,"Rejected %6d %6d",
rejects, rejected_share_count );
if ( solved_block_count )
applog2( LOG_INFO,"Blocks Solved %6d",
solved_block_count );
applog2( LOG_INFO,"Blocks Solved %6d %6d",
solved, solved_block_count );
applog2( LOG_INFO, "Hi/Lo Share Diff %.5g / %.5g",
highest_share, lowest_share );
@@ -1132,6 +1134,7 @@ static int share_result( int result, struct work *work,
{
accept_sum++;
norm_diff_sum += my_stats.target_diff;
if ( solved ) solved_sum++;
}
else
{
@@ -2197,16 +2200,18 @@ static void *miner_thread( void *userdata )
}
#if !(defined(__WINDOWS__) || defined(_WIN64) || defined(_WIN32))
// Display CPU temperature and clock rate.
if (!opt_quiet && mythr->id == 0 )
{
int temp = cpu_temp(0);
static struct timeval cpu_temp_time = {0};
timeval_subtract( &diff, &tv_end, &cpu_temp_time );
int wait = temp >= 80 ? 30 : temp >= 70 ? 60 : 120;
if ( ( diff.tv_sec > wait ) || ( temp > hi_temp ) )
{
char tempstr[32];
int lo_freq, hi_freq;
float lo_freq = 0., hi_freq = 0.;
linux_cpu_hilo_freq( &lo_freq, &hi_freq );
memcpy( &cpu_temp_time, &tv_end, sizeof(cpu_temp_time) );
if ( use_colors && ( temp >= 70 ) )
@@ -2219,11 +2224,12 @@ static void *miner_thread( void *userdata )
else
sprintf( tempstr, "%d C", temp );
applog( LOG_NOTICE,"CPU temp: curr %s (max %d), Freq: %.3f/%.3f GHz",
tempstr, hi_temp, (float)lo_freq / 1e6, (float)hi_freq/ 1e6 );
tempstr, hi_temp, lo_freq / 1e6, hi_freq / 1e6 );
if ( temp > hi_temp ) hi_temp = temp;
}
}
#endif
// display hashrate
if ( unlikely( opt_hash_meter ) )
{

View File

@@ -676,6 +676,14 @@ static inline void mm128_bswap32_intrlv80_4x32( void *d, const void *src )
d[7] = *( (const uint32_t*)(s7) +(i) ); \
} while(0)
static inline void intrlv_8x32b( void *dst, const void *s0, const void *s1,
const void *s2, const void *s3, const void *s4, const void *s5,
const void *s6, const void *s7, const int bit_len )
{
for ( int i = 0; i < bit_len/32; i++ )
ILEAVE_8x32( i );
}
static inline void intrlv_8x32( void *dst, const void *s0, const void *s1,
const void *s2, const void *s3, const void *s4, const void *s5,
const void *s6, const void *s7, const int bit_len )
@@ -730,6 +738,14 @@ static inline void intrlv_8x32_512( void *dst, const void *s0, const void *s1,
*( (uint32_t*)(d7) +(i) ) = s[7]; \
} while(0)
static inline void dintrlv_8x32b( void *d0, void *d1, void *d2, void *d3,
void *d4, void *d5, void *d6, void *d7, const void *src,
const int bit_len )
{
for ( int i = 0; i < bit_len/32; i++ )
DLEAVE_8x32( i );
}
static inline void dintrlv_8x32( void *d0, void *d1, void *d2, void *d3,
void *d4, void *d5, void *d6, void *d7, const void *src,
const int bit_len )

View File

@@ -67,7 +67,6 @@
#define HWMON_ALT5 \
"/sys/class/hwmon/hwmon0/device/temp1_input"
static inline float linux_cputemp(int core)
{
float tc = 0.0;
@@ -97,49 +96,43 @@ static inline float linux_cputemp(int core)
return tc;
}
#define CPUFREQ_PATH \
#define CPUFREQ_PATH0\
"/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq"
#define CPUFREQ_PATHn \
"/sys/devices/system/cpu/cpu%d/cpufreq/scaling_cur_freq"
// "/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq"
static inline uint32_t linux_cpufreq(int core)
static inline float linux_cpufreq(int core)
{
FILE *fd = fopen(CPUFREQ_PATH, "r");
uint32_t freq = 0;
FILE *fd = fopen( CPUFREQ_PATH0, "r" );
long int freq = 0;
if (!fd)
return freq;
if (!fscanf(fd, "%d", &freq))
return freq;
return freq;
if ( !fd ) return (float)freq;
if ( !fscanf( fd, "%ld", &freq ) ) freq = 0;
fclose( fd );
return (float)freq;
}
static inline void linux_cpu_hilo_freq( uint32_t* lo, uint32_t *hi )
static inline void linux_cpu_hilo_freq( float *lo, float *hi )
{
uint64_t freq = 0, hi_freq = 0, lo_freq = 0xffffffffffffffff;
long int freq = 0, hi_freq = 0, lo_freq = 0x7fffffff;
for ( int i = 0; i < num_cpus; i++ )
{
char path[64];
sprintf( path, CPUFREQ_PATHn, i );
FILE *fd = fopen( path, "r" );
if ( fd )
{
if ( fscanf( fd, "%ld", &freq ) )
if ( !fd ) return;
else if ( fscanf( fd, "%ld", &freq ) )
{
if ( freq > hi_freq ) hi_freq = freq;
if ( freq < lo_freq ) lo_freq = freq;
}
fclose( fd );
}
}
*hi = hi_freq;
*lo = lo_freq;
*hi = (float)hi_freq;
*lo = (float)lo_freq;
}