This commit is contained in:
Jay D Dee
2018-03-27 20:20:05 -04:00
parent 3363d61524
commit f449c6725f
105 changed files with 4560 additions and 1846 deletions

View File

@@ -99,18 +99,18 @@ static const char *Argon2_ErrorMessage[] = {
{ARGON2_MISSING_ARGS, */ "Missing arguments", /*},*/
};
int argon2d(argon2_context *context) { return argon2_core(context, Argon2_d); }
int argon2d(argon2_context *context) { return ar2_argon2_core(context, Argon2_d); }
int argon2i(argon2_context *context) { return argon2_core(context, Argon2_i); }
int argon2i(argon2_context *context) { return ar2_argon2_core(context, Argon2_i); }
int verify_d(argon2_context *context, const char *hash)
int ar2_verify_d(argon2_context *context, const char *hash)
{
int result;
/*if (0 == context->outlen || NULL == hash) {
return ARGON2_OUT_PTR_MISMATCH;
}*/
result = argon2_core(context, Argon2_d);
result = ar2_argon2_core(context, Argon2_d);
if (ARGON2_OK != result) {
return result;
@@ -223,7 +223,7 @@ static size_t to_base64(char *dst, size_t dst_len, const void *src)
* The output length is always exactly 32 bytes.
*/
int encode_string(char *dst, size_t dst_len, argon2_context *ctx)
int ar2_encode_string(char *dst, size_t dst_len, argon2_context *ctx)
{
#define SS(str) \
do { \

View File

@@ -255,7 +255,7 @@ int argon2id(argon2_context *context);
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
int verify_d(argon2_context *context, const char *hash);
int ar2_verify_d(argon2_context *context, const char *hash);
/*
* Get the associated error message for given error code
@@ -283,7 +283,7 @@ const char *error_message(int error_code);
* The output length is always exactly 32 bytes.
*/
int encode_string(char *dst, size_t dst_len, argon2_context *ctx);
int ar2_encode_string(char *dst, size_t dst_len, argon2_context *ctx);
#if defined(__cplusplus)
}

View File

@@ -52,22 +52,22 @@ enum {
};
/* Streaming API */
int blake2b_init(blake2b_state *S, size_t outlen);
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
int ar2_blake2b_init(blake2b_state *S, size_t outlen);
int ar2_blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen);
int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
int ar2_blake2b_init_param(blake2b_state *S, const blake2b_param *P);
int ar2_blake2b_update(blake2b_state *S, const void *in, size_t inlen);
void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen);
int blake2b_final(blake2b_state *S, void *out, size_t outlen);
int ar2_blake2b_final(blake2b_state *S, void *out, size_t outlen);
/* Simple API */
int blake2b(void *out, const void *in, const void *key, size_t keylen);
int ar2_blake2b(void *out, const void *in, const void *key, size_t keylen);
/* Argon2 Team - Begin Code */
int blake2b_long(void *out, const void *in);
int ar2_blake2b_long(void *out, const void *in);
/* Argon2 Team - End Code */
/* Miouyouyou */
void blake2b_too(void *out, const void *in);
void ar2_blake2b_too(void *out, const void *in);
#if defined(__cplusplus)
}

View File

@@ -107,7 +107,7 @@ static const blake2b_state miou = {
};
int blake2b_init_param(blake2b_state *S, const blake2b_param *P)
int ar2_blake2b_init_param(blake2b_state *S, const blake2b_param *P)
{
const unsigned char *p = (const unsigned char *)P;
unsigned int i;
@@ -133,7 +133,7 @@ void compare_buffs(uint64_t *h, size_t outlen)
}
/* Sequential blake2b initialization */
int blake2b_init(blake2b_state *S, size_t outlen)
int ar2_blake2b_init(blake2b_state *S, size_t outlen)
{
memcpy(S, &miou, sizeof(*S));
S->h[0] += outlen;
@@ -147,7 +147,7 @@ void print64(const char *name, const uint64_t *array, uint16_t size)
printf("};\n");
}
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen)
int ar2_blake2b_init_key(blake2b_state *S, size_t outlen, const void *key, size_t keylen)
{
return 0;
}
@@ -207,7 +207,7 @@ static void blake2b_compress(blake2b_state *S, const uint8_t *block)
#undef ROUND
}
int blake2b_update(blake2b_state *S, const void *in, size_t inlen)
int ar2_blake2b_update(blake2b_state *S, const void *in, size_t inlen)
{
const uint8_t *pin = (const uint8_t *)in;
/* Complete current block */
@@ -235,7 +235,7 @@ void my_blake2b_update(blake2b_state *S, const void *in, size_t inlen)
S->buflen += (unsigned int)inlen;
}
int blake2b_final(blake2b_state *S, void *out, size_t outlen)
int ar2_blake2b_final(blake2b_state *S, void *out, size_t outlen)
{
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
unsigned int i;
@@ -257,48 +257,48 @@ int blake2b_final(blake2b_state *S, void *out, size_t outlen)
return 0;
}
int blake2b(void *out, const void *in, const void *key, size_t keylen)
int ar2_blake2b(void *out, const void *in, const void *key, size_t keylen)
{
blake2b_state S;
blake2b_init(&S, 64);
ar2_blake2b_init(&S, 64);
my_blake2b_update(&S, in, 64);
blake2b_final(&S, out, 64);
ar2_blake2b_final(&S, out, 64);
burn(&S, sizeof(S));
return 0;
}
void blake2b_too(void *pout, const void *in)
void ar2_blake2b_too(void *pout, const void *in)
{
uint8_t *out = (uint8_t *)pout;
uint8_t out_buffer[64];
uint8_t in_buffer[64];
blake2b_state blake_state;
blake2b_init(&blake_state, 64);
ar2_blake2b_init(&blake_state, 64);
blake_state.buflen = blake_state.buf[1] = 4;
my_blake2b_update(&blake_state, in, 72);
blake2b_final(&blake_state, out_buffer, 64);
ar2_blake2b_final(&blake_state, out_buffer, 64);
memcpy(out, out_buffer, 32);
out += 32;
register uint8_t i = 29;
while (i--) {
memcpy(in_buffer, out_buffer, 64);
blake2b(out_buffer, in_buffer, NULL, 0);
ar2_blake2b(out_buffer, in_buffer, NULL, 0);
memcpy(out, out_buffer, 32);
out += 32;
}
memcpy(in_buffer, out_buffer, 64);
blake2b(out_buffer, in_buffer, NULL, 0);
ar2_blake2b(out_buffer, in_buffer, NULL, 0);
memcpy(out, out_buffer, 64);
burn(&blake_state, sizeof(blake_state));
}
/* Argon2 Team - Begin Code */
int blake2b_long(void *pout, const void *in)
int ar2_blake2b_long(void *pout, const void *in)
{
uint8_t *out = (uint8_t *)pout;
blake2b_state blake_state;
@@ -306,10 +306,10 @@ int blake2b_long(void *pout, const void *in)
store32(outlen_bytes, 32);
blake2b_init(&blake_state, 32);
ar2_blake2b_init(&blake_state, 32);
my_blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes));
blake2b_update(&blake_state, in, 1024);
blake2b_final(&blake_state, out, 32);
ar2_blake2b_update(&blake_state, in, 1024);
ar2_blake2b_final(&blake_state, out, 32);
burn(&blake_state, sizeof(blake_state));
return 0;
}

View File

@@ -51,15 +51,15 @@
#endif
/***************Instance and Position constructors**********/
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
void ar2_init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
//inline void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
void copy_block(block *dst, const block *src) {
void ar2_copy_block(block *dst, const block *src) {
//inline void copy_block(block *dst, const block *src) {
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_WORDS_IN_BLOCK);
}
void xor_block(block *dst, const block *src) {
void ar2_xor_block(block *dst, const block *src) {
//inline void xor_block(block *dst, const block *src) {
int i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
@@ -67,7 +67,7 @@ void xor_block(block *dst, const block *src) {
}
}
static void load_block(block *dst, const void *input) {
static void ar2_load_block(block *dst, const void *input) {
//static inline void load_block(block *dst, const void *input) {
unsigned i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
@@ -75,7 +75,7 @@ static void load_block(block *dst, const void *input) {
}
}
static void store_block(void *output, const block *src) {
static void ar2_store_block(void *output, const block *src) {
//static inline void store_block(void *output, const block *src) {
unsigned i;
for (i = 0; i < ARGON2_WORDS_IN_BLOCK; ++i) {
@@ -84,7 +84,7 @@ static void store_block(void *output, const block *src) {
}
/***************Memory allocators*****************/
int allocate_memory(block **memory, uint32_t m_cost) {
int ar2_allocate_memory(block **memory, uint32_t m_cost) {
if (memory != NULL) {
size_t memory_size = sizeof(block) * m_cost;
if (m_cost != 0 &&
@@ -105,34 +105,34 @@ int allocate_memory(block **memory, uint32_t m_cost) {
}
}
void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
void ar2_secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
//inline void secure_wipe_memory(void *v, size_t n) { memset(v, 0, n); }
/*********Memory functions*/
void clear_memory(argon2_instance_t *instance, int clear) {
void ar2_clear_memory(argon2_instance_t *instance, int clear) {
//inline void clear_memory(argon2_instance_t *instance, int clear) {
if (instance->memory != NULL && clear) {
secure_wipe_memory(instance->memory,
ar2_secure_wipe_memory(instance->memory,
sizeof(block) * /*instance->memory_blocks*/16);
}
}
void free_memory(block *memory) { free(memory); }
void ar2_free_memory(block *memory) { free(memory); }
//inline void free_memory(block *memory) { free(memory); }
void finalize(const argon2_context *context, argon2_instance_t *instance) {
void ar2_finalize(const argon2_context *context, argon2_instance_t *instance) {
if (context != NULL && instance != NULL) {
block blockhash;
copy_block(&blockhash, instance->memory + 15);
ar2_copy_block(&blockhash, instance->memory + 15);
/* Hash the result */
{
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store_block(blockhash_bytes, &blockhash);
blake2b_long(context->out, blockhash_bytes);
secure_wipe_memory(blockhash.v, ARGON2_BLOCK_SIZE);
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash_bytes */
ar2_store_block(blockhash_bytes, &blockhash);
ar2_blake2b_long(context->out, blockhash_bytes);
ar2_secure_wipe_memory(blockhash.v, ARGON2_BLOCK_SIZE);
ar2_secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE); /* clear blockhash_bytes */
}
#ifdef GENKAT
@@ -142,11 +142,11 @@ void finalize(const argon2_context *context, argon2_instance_t *instance) {
/* Clear memory */
// clear_memory(instance, 1);
free_memory(instance->memory);
ar2_free_memory(instance->memory);
}
}
uint32_t index_alpha(const argon2_instance_t *instance,
uint32_t ar2_index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane) {
/*
@@ -207,7 +207,7 @@ uint32_t index_alpha(const argon2_instance_t *instance,
return absolute_position;
}
void fill_memory_blocks(argon2_instance_t *instance) {
void ar2_fill_memory_blocks(argon2_instance_t *instance) {
uint32_t r, s;
for (r = 0; r < 2; ++r) {
@@ -218,7 +218,7 @@ void fill_memory_blocks(argon2_instance_t *instance) {
position.lane = 0;
position.slice = (uint8_t)s;
position.index = 0;
fill_segment(instance, position);
ar2_fill_segment(instance, position);
}
#ifdef GENKAT
@@ -227,19 +227,19 @@ void fill_memory_blocks(argon2_instance_t *instance) {
}
}
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
void ar2_fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
/* Make the first and second block in each lane as G(H0||i||0) or
G(H0||i||1) */
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, 0);
blake2b_too(blockhash_bytes, blockhash);
load_block(&instance->memory[0], blockhash_bytes);
ar2_blake2b_too(blockhash_bytes, blockhash);
ar2_load_block(&instance->memory[0], blockhash_bytes);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_too(blockhash_bytes, blockhash);
load_block(&instance->memory[1], blockhash_bytes);
secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
ar2_blake2b_too(blockhash_bytes, blockhash);
ar2_load_block(&instance->memory[1], blockhash_bytes);
ar2_secure_wipe_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
@@ -268,7 +268,7 @@ static const blake2b_state base_hash = {
#define SALTLEN 32
#define SECRETLEN 0
#define ADLEN 0
void initial_hash(uint8_t *blockhash, argon2_context *context,
void ar2_initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type) {
uint8_t value[sizeof(uint32_t)];
@@ -280,7 +280,7 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
PWDLEN);
secure_wipe_memory(context->pwd, PWDLEN);
ar2_secure_wipe_memory(context->pwd, PWDLEN);
context->pwdlen = 0;
store32(&value, SALTLEN);
@@ -298,19 +298,19 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
}
int initialize(argon2_instance_t *instance, argon2_context *context) {
int ar2_initialize(argon2_instance_t *instance, argon2_context *context) {
/* 1. Memory allocation */
allocate_memory(&(instance->memory), 16);
ar2_allocate_memory(&(instance->memory), 16);
/* 2. Initial hashing */
/* H_0 + 8 extra bytes to produce the first blocks */
/* Hashing all inputs */
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
initial_hash(blockhash, context, instance->type);
ar2_initial_hash(blockhash, context, instance->type);
/* Zeroing 8 extra bytes */
secure_wipe_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ar2_secure_wipe_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ARGON2_PREHASH_SEED_LENGTH -
ARGON2_PREHASH_DIGEST_LENGTH);
@@ -320,14 +320,14 @@ int initialize(argon2_instance_t *instance, argon2_context *context) {
/* 3. Creating first blocks, we always have at least two blocks in a slice
*/
fill_first_blocks(blockhash, instance);
ar2_fill_first_blocks(blockhash, instance);
/* Clearing the hash */
secure_wipe_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
ar2_secure_wipe_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
return ARGON2_OK;
}
int argon2_core(argon2_context *context, argon2_type type) {
int ar2_argon2_core(argon2_context *context, argon2_type type) {
argon2_instance_t instance;
instance.memory = NULL;
instance.type = type;
@@ -336,14 +336,14 @@ int argon2_core(argon2_context *context, argon2_type type) {
* blocks
*/
int result = initialize(&instance, context);
int result = ar2_initialize(&instance, context);
if (ARGON2_OK != result) return result;
/* 4. Filling memory */
fill_memory_blocks(&instance);
ar2_fill_memory_blocks(&instance);
/* 5. Finalization */
finalize(context, &instance);
ar2_finalize(context, &instance);
return ARGON2_OK;
}

View File

@@ -62,13 +62,13 @@ typedef struct _block { uint64_t v[ARGON2_WORDS_IN_BLOCK]; } ALIGN(16) block;
/*****************Functions that work with the block******************/
/* Initialize each byte of the block with @in */
void init_block_value(block *b, uint8_t in);
void ar2_init_block_value(block *b, uint8_t in);
/* Copy block @src to block @dst */
void copy_block(block *dst, const block *src);
void ar2_copy_block(block *dst, const block *src);
/* XOR @src onto @dst bytewise */
void xor_block(block *dst, const block *src);
void ar2_xor_block(block *dst, const block *src);
/*
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
@@ -101,24 +101,24 @@ typedef struct Argon2_position_t {
* @param m_cost number of blocks to allocate in the memory
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
*/
int allocate_memory(block **memory, uint32_t m_cost);
int ar2_allocate_memory(block **memory, uint32_t m_cost);
/* Function that securely cleans the memory
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void secure_wipe_memory(void *v, size_t n);
void ar2_secure_wipe_memory(void *v, size_t n);
/* Clears memory
* @param instance pointer to the current instance
* @param clear_memory indicates if we clear the memory with zeros.
*/
void clear_memory(argon2_instance_t *instance, int clear);
void ar2_clear_memory(argon2_instance_t *instance, int clear);
/* Deallocates memory
* @param memory pointer to the blocks
*/
void free_memory(block *memory);
void ar2_free_memory(block *memory);
/*
* Computes absolute position of reference block in the lane following a skewed
@@ -130,7 +130,7 @@ void free_memory(block *memory);
* If so we can reference the current segment
* @pre All pointers must be valid
*/
uint32_t index_alpha(const argon2_instance_t *instance,
uint32_t ar2_index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane);
@@ -141,7 +141,7 @@ uint32_t index_alpha(const argon2_instance_t *instance,
* @return ARGON2_OK if everything is all right, otherwise one of error codes
* (all defined in <argon2.h>
*/
int validate_inputs(const argon2_context *context);
int ar2_validate_inputs(const argon2_context *context);
/*
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
@@ -153,7 +153,7 @@ int validate_inputs(const argon2_context *context);
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
* allocated
*/
void initial_hash(uint8_t *blockhash, argon2_context *context,
void ar2_initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type);
/*
@@ -162,7 +162,7 @@ void initial_hash(uint8_t *blockhash, argon2_context *context,
* @param blockhash Pointer to the pre-hashing digest
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
*/
void fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
void ar2_fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
/*
* Function allocates memory, hashes the inputs with Blake, and creates first
@@ -174,7 +174,7 @@ void fill_firsts_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
* @return Zero if successful, -1 if memory failed to allocate. @context->state
* will be modified if successful.
*/
int initialize(argon2_instance_t *instance, argon2_context *context);
int ar2_initialize(argon2_instance_t *instance, argon2_context *context);
/*
* XORing the last block of each lane, hashing it, making the tag. Deallocates
@@ -187,7 +187,7 @@ int initialize(argon2_instance_t *instance, argon2_context *context);
* @pre if context->free_cbk is not NULL, it should point to a function that
* deallocates memory
*/
void finalize(const argon2_context *context, argon2_instance_t *instance);
void ar2_finalize(const argon2_context *context, argon2_instance_t *instance);
/*
* Function that fills the segment using previous segments also from other
@@ -196,7 +196,7 @@ void finalize(const argon2_context *context, argon2_instance_t *instance);
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
void ar2_fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
/*
@@ -204,13 +204,13 @@ void fill_segment(const argon2_instance_t *instance,
* blocks in each lane
* @param instance Pointer to the current instance
*/
void fill_memory_blocks(argon2_instance_t *instance);
void ar2_fill_memory_blocks(argon2_instance_t *instance);
/*
* Function that performs memory-hard hashing with certain degree of parallelism
* @param context Pointer to the Argon2 internal structure
* @return Error code if smth is wrong, ARGON2_OK otherwise
*/
int argon2_core(argon2_context *context, argon2_type type);
int ar2_argon2_core(argon2_context *context, argon2_type type);
#endif

View File

@@ -26,7 +26,7 @@
#include "blake2/blake2.h"
#include "blake2/blamka-round-opt.h"
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block)
void ar2_fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block)
{
__m128i ALIGN(16) block_XY[ARGON2_QWORDS_IN_BLOCK];
uint32_t i;
@@ -95,7 +95,7 @@ static const uint64_t bad_rands[32] = {
UINT64_C(8548260058287621283), UINT64_C(8641748798041936364)
};
void generate_addresses(const argon2_instance_t *instance,
void ar2_generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands)
{
@@ -113,7 +113,7 @@ void generate_addresses(const argon2_instance_t *instance,
#define LANE_LENGTH 16
#define POS_LANE 0
void fill_segment(const argon2_instance_t *instance,
void ar2_fill_segment(const argon2_instance_t *instance,
argon2_position_t position)
{
block *ref_block = NULL, *curr_block = NULL;
@@ -129,7 +129,7 @@ void fill_segment(const argon2_instance_t *instance,
pseudo_rands = (uint64_t *)malloc(/*sizeof(uint64_t) * 4*/32);
if (data_independent_addressing) {
generate_addresses(instance, &position, pseudo_rands);
ar2_generate_addresses(instance, &position, pseudo_rands);
}
i = 0;
@@ -173,12 +173,12 @@ void fill_segment(const argon2_instance_t *instance,
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,1);
ref_index = ar2_index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,1);
/* 2 Creating a new block */
ref_block = instance->memory + ref_index;
curr_block = instance->memory + curr_offset;
fill_block(state, (__m128i const *)ref_block->v, (__m128i *)curr_block->v);
ar2_fill_block(state, (__m128i const *)ref_block->v, (__m128i *)curr_block->v);
}
free(pseudo_rands);

View File

@@ -21,7 +21,7 @@
* @param next_block Pointer to the block to be constructed
* @pre all block pointers must be valid
*/
void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
void ar2_fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
/*
* Generate pseudo-random values to reference blocks in the segment and puts
@@ -31,7 +31,7 @@ void fill_block(__m128i *state, __m128i const *ref_block, __m128i *next_block);
* @param pseudo_rands Pointer to the array of 64-bit values
* @pre pseudo_rands must point to @a instance->segment_length allocated values
*/
void generate_addresses(const argon2_instance_t *instance,
void ar2_generate_addresses(const argon2_instance_t *instance,
const argon2_position_t *position,
uint64_t *pseudo_rands);
@@ -43,7 +43,7 @@ void generate_addresses(const argon2_instance_t *instance,
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
void ar2_fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
#endif /* ARGON2_OPT_H */

View File

@@ -24,7 +24,7 @@ inline void argon_call(void *out, void *in, void *salt, int type)
context.allocate_cbk = NULL;
context.free_cbk = NULL;
argon2_core(&context, type);
ar2_argon2_core(&context, type);
}
void argon2hash(void *output, const void *input)

View File

@@ -0,0 +1,143 @@
#include "argon2d-gate.h"
#include "argon2d/argon2.h"
static const size_t INPUT_BYTES = 80; // Lenth of a block header in bytes. Input Length = Salt Length (salt = input)
static const size_t OUTPUT_BYTES = 32; // Length of output needed for a 256-bit hash
static const unsigned int DEFAULT_ARGON2_FLAG = 2; //Same as ARGON2_DEFAULT_FLAGS
// Credits
void argon2d_crds_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 250; // Memory in KiB (~256KB)
context.lanes = 4; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 1; // Iterations
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d_crds( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2d_crds_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d_crds_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d_crds;
gate->hash = (void*)&argon2d_crds_hash;
gate->set_target = (void*)&scrypt_set_target;
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
}
// Dynamic
void argon2d_dyn_hash( void *output, const void *input )
{
argon2_context context;
context.out = (uint8_t *)output;
context.outlen = (uint32_t)OUTPUT_BYTES;
context.pwd = (uint8_t *)input;
context.pwdlen = (uint32_t)INPUT_BYTES;
context.salt = (uint8_t *)input; //salt = input
context.saltlen = (uint32_t)INPUT_BYTES;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = DEFAULT_ARGON2_FLAG; // = ARGON2_DEFAULT_FLAGS
// main configurable Argon2 hash parameters
context.m_cost = 500; // Memory in KiB (512KB)
context.lanes = 8; // Degree of Parallelism
context.threads = 1; // Threads
context.t_cost = 2; // Iterations
argon2_ctx( &context, Argon2_d );
}
int scanhash_argon2d_dyn( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2d_dyn_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
work_set_target_ratio(work, hash);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
bool register_argon2d_dyn_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_argon2d_dyn;
gate->hash = (void*)&argon2d_dyn_hash;
gate->set_target = (void*)&scrypt_set_target;
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
}

View File

@@ -0,0 +1,25 @@
#ifndef ARGON2D_GATE_H__
#define ARGON2D_GATE_H__
#include "algo-gate-api.h"
#include <stdint.h>
// Credits
bool register_argon2d_crds_algo( algo_gate_t* gate );
void argon2d_crds_hash( void *state, const void *input );
int scanhash_argon2d_crds( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
// Dynamic
bool register_argon2d_dyn_algo( algo_gate_t* gate );
void argon2d_dyn_hash( void *state, const void *input );
int scanhash_argon2d_dyn( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
#endif

View File

@@ -0,0 +1,680 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#ifdef _WIN32
#include <malloc.h>
#endif
#include "argon2.h"
#include "encoding.h"
#include "core.h"
const char *argon2_type2string(argon2_type type, int uppercase) {
switch (type) {
case Argon2_d:
return uppercase ? "Argon2d" : "argon2d";
}
return NULL;
}
int argon2_ctx(argon2_context *context, argon2_type type) {
/* 1. Validate all inputs */
int result = validate_inputs(context);
uint32_t memory_blocks, segment_length;
argon2_instance_t instance;
if (ARGON2_OK != result) {
return result;
}
if (Argon2_d != type) {
return ARGON2_INCORRECT_TYPE;
}
/* 2. Align memory size */
/* Minimum memory_blocks = 8L blocks, where L is the number of lanes */
memory_blocks = context->m_cost;
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * context->lanes) {
memory_blocks = 2 * ARGON2_SYNC_POINTS * context->lanes;
}
segment_length = memory_blocks / (context->lanes * ARGON2_SYNC_POINTS);
/* Ensure that all segments have equal length */
memory_blocks = segment_length * (context->lanes * ARGON2_SYNC_POINTS);
instance.memory = NULL;
instance.passes = context->t_cost;
instance.memory_blocks = memory_blocks;
instance.segment_length = segment_length;
instance.lane_length = segment_length * ARGON2_SYNC_POINTS;
instance.lanes = context->lanes;
instance.limit = 1;
instance.threads = context->threads;
instance.type = type;
if (instance.threads > instance.limit) {
instance.threads = instance.limit;
}
/* 3. Initialization: Hashing inputs, allocating memory, filling first
* blocks
*/
result = initialize(&instance, context);
if (ARGON2_OK != result) {
return result;
}
/* 4. Filling memory */
result = fill_memory_blocks(&instance);
if (ARGON2_OK != result) {
return result;
}
/* 5. Finalization */
finalize(context, &instance);
return ARGON2_OK;
}
int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt, const size_t saltlen,
void *hash, const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type){
argon2_context context;
int result;
uint8_t *out;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (saltlen > ARGON2_MAX_SALT_LENGTH) {
return ARGON2_SALT_TOO_LONG;
}
if (hashlen > ARGON2_MAX_OUTLEN) {
return ARGON2_OUTPUT_TOO_LONG;
}
if (hashlen < ARGON2_MIN_OUTLEN) {
return ARGON2_OUTPUT_TOO_SHORT;
}
out = malloc(hashlen);
if (!out) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
context.out = (uint8_t *)out;
context.outlen = (uint32_t)hashlen;
context.pwd = CONST_CAST(uint8_t *)pwd;
context.pwdlen = (uint32_t)pwdlen;
context.salt = CONST_CAST(uint8_t *)salt;
context.saltlen = (uint32_t)saltlen;
context.secret = NULL;
context.secretlen = 0;
context.ad = NULL;
context.adlen = 0;
context.t_cost = t_cost;
context.m_cost = m_cost;
context.lanes = parallelism;
context.threads = parallelism;
context.allocate_cbk = NULL;
context.free_cbk = NULL;
context.flags = ARGON2_DEFAULT_FLAGS;
result = argon2_ctx(&context, type);
if (result != ARGON2_OK) {
clear_internal_memory(out, hashlen);
free(out);
return result;
}
/* if raw hash requested, write it */
if (hash) {
memcpy(hash, out, hashlen);
}
/* if encoding requested, write it */
if (encoded && encodedlen) {
if (encode_string(encoded, encodedlen, &context, type) != ARGON2_OK) {
clear_internal_memory(out, hashlen); /* wipe buffers if error */
clear_internal_memory(encoded, encodedlen);
free(out);
return ARGON2_ENCODING_FAIL;
}
}
clear_internal_memory(out, hashlen);
free(out);
return ARGON2_OK;
}
int argon2d_hash_encoded(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, const size_t hashlen,
char *encoded, const size_t encodedlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
NULL, hashlen, encoded, encodedlen, Argon2_d);
}
int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash, const size_t hashlen) {
return argon2_hash(t_cost, m_cost, parallelism, pwd, pwdlen, salt, saltlen,
hash, hashlen, NULL, 0, Argon2_d);
}
static int argon2_compare(const uint8_t *b1, const uint8_t *b2, size_t len) {
size_t i;
uint8_t d = 0U;
for (i = 0U; i < len; i++) {
d |= b1[i] ^ b2[i];
}
return (int)((1 & ((d - 1) >> 8)) - 1);
}
int argon2_verify(const char *encoded, const void *pwd, const size_t pwdlen,
argon2_type type) {
argon2_context ctx;
uint8_t *desired_result = NULL;
int ret = ARGON2_OK;
size_t encoded_len;
uint32_t max_field_len;
if (pwdlen > ARGON2_MAX_PWD_LENGTH) {
return ARGON2_PWD_TOO_LONG;
}
if (encoded == NULL) {
return ARGON2_DECODING_FAIL;
}
encoded_len = strlen(encoded);
if (encoded_len > UINT32_MAX) {
return ARGON2_DECODING_FAIL;
}
/* No field can be longer than the encoded length */
max_field_len = (uint32_t)encoded_len;
ctx.saltlen = max_field_len;
ctx.outlen = max_field_len;
ctx.salt = malloc(ctx.saltlen);
ctx.out = malloc(ctx.outlen);
if (!ctx.salt || !ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ctx.pwd = (uint8_t *)pwd;
ctx.pwdlen = (uint32_t)pwdlen;
ret = decode_string(&ctx, encoded, type);
if (ret != ARGON2_OK) {
goto fail;
}
/* Set aside the desired result, and get a new buffer. */
desired_result = ctx.out;
ctx.out = malloc(ctx.outlen);
if (!ctx.out) {
ret = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
ret = argon2_verify_ctx(&ctx, (char *)desired_result, type);
if (ret != ARGON2_OK) {
goto fail;
}
fail:
free(ctx.salt);
free(ctx.out);
free(desired_result);
return ret;
}
int argon2d_verify(const char *encoded, const void *pwd, const size_t pwdlen) {
return argon2_verify(encoded, pwd, pwdlen, Argon2_d);
}
int argon2d_ctx(argon2_context *context) {
return argon2_ctx(context, Argon2_d);
}
int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type) {
int ret = argon2_ctx(context, type);
if (ret != ARGON2_OK) {
return ret;
}
if (argon2_compare((uint8_t *)hash, context->out, context->outlen)) {
return ARGON2_VERIFY_MISMATCH;
}
return ARGON2_OK;
}
int argon2d_verify_ctx(argon2_context *context, const char *hash) {
return argon2_verify_ctx(context, hash, Argon2_d);
}
const char *argon2_error_message(int error_code) {
switch (error_code) {
case ARGON2_OK:
return "OK";
case ARGON2_OUTPUT_PTR_NULL:
return "Output pointer is NULL";
case ARGON2_OUTPUT_TOO_SHORT:
return "Output is too short";
case ARGON2_OUTPUT_TOO_LONG:
return "Output is too long";
case ARGON2_PWD_TOO_SHORT:
return "Password is too short";
case ARGON2_PWD_TOO_LONG:
return "Password is too long";
case ARGON2_SALT_TOO_SHORT:
return "Salt is too short";
case ARGON2_SALT_TOO_LONG:
return "Salt is too long";
case ARGON2_AD_TOO_SHORT:
return "Associated data is too short";
case ARGON2_AD_TOO_LONG:
return "Associated data is too long";
case ARGON2_SECRET_TOO_SHORT:
return "Secret is too short";
case ARGON2_SECRET_TOO_LONG:
return "Secret is too long";
case ARGON2_TIME_TOO_SMALL:
return "Time cost is too small";
case ARGON2_TIME_TOO_LARGE:
return "Time cost is too large";
case ARGON2_MEMORY_TOO_LITTLE:
return "Memory cost is too small";
case ARGON2_MEMORY_TOO_MUCH:
return "Memory cost is too large";
case ARGON2_LANES_TOO_FEW:
return "Too few lanes";
case ARGON2_LANES_TOO_MANY:
return "Too many lanes";
case ARGON2_PWD_PTR_MISMATCH:
return "Password pointer is NULL, but password length is not 0";
case ARGON2_SALT_PTR_MISMATCH:
return "Salt pointer is NULL, but salt length is not 0";
case ARGON2_SECRET_PTR_MISMATCH:
return "Secret pointer is NULL, but secret length is not 0";
case ARGON2_AD_PTR_MISMATCH:
return "Associated data pointer is NULL, but ad length is not 0";
case ARGON2_MEMORY_ALLOCATION_ERROR:
return "Memory allocation error";
case ARGON2_FREE_MEMORY_CBK_NULL:
return "The free memory callback is NULL";
case ARGON2_ALLOCATE_MEMORY_CBK_NULL:
return "The allocate memory callback is NULL";
case ARGON2_INCORRECT_PARAMETER:
return "Argon2_Context context is NULL";
case ARGON2_INCORRECT_TYPE:
return "There is no such version of Argon2";
case ARGON2_OUT_PTR_MISMATCH:
return "Output pointer mismatch";
case ARGON2_THREADS_TOO_FEW:
return "Not enough threads";
case ARGON2_THREADS_TOO_MANY:
return "Too many threads";
case ARGON2_MISSING_ARGS:
return "Missing arguments";
case ARGON2_ENCODING_FAIL:
return "Encoding failed";
case ARGON2_DECODING_FAIL:
return "Decoding failed";
case ARGON2_THREAD_FAIL:
return "Threading failure";
case ARGON2_DECODING_LENGTH_FAIL:
return "Some of encoded parameters are too long or too short";
case ARGON2_VERIFY_MISMATCH:
return "The password does not match the supplied hash";
default:
return "Unknown error code";
}
}
size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost, uint32_t parallelism,
uint32_t saltlen, uint32_t hashlen, argon2_type type) {
return strlen("$$v=$m=,t=,p=$$") + strlen(argon2_type2string(type, 0)) +
numlen(t_cost) + numlen(m_cost) + numlen(parallelism) +
b64len(saltlen) + b64len(hashlen);
}
#ifdef __AVX2__
///////////////////////////
// Wolf's Additions
///////////////////////////
#include <stdbool.h>
#include <pthread.h>
#include <x86intrin.h>
#include "../blake2/blake2.h"
typedef struct _Argon2d_Block
{
union
{
uint64_t data[1024 / 8] __attribute__((aligned(32)));
__m128i dqwords[1024 / 16] __attribute__((aligned(32)));
__m256i qqwords[1024 / 32] __attribute__((aligned(32)));
};
} Argon2d_Block;
typedef struct _Argon2ThreadData
{
Argon2d_Block *Matrix;
uint32_t slice;
uint32_t lane;
} Argon2ThreadData;
#define SEGMENT_LENGTH (250U / (4U * 4U)) // memory_blocks / (context->lanes * ARGON2_SYNC_POINTS);
#define LANE_LENGTH (SEGMENT_LENGTH * 4U) // segment_length * ARGON2_SYNC_POINTS;
#define CONCURRENT_THREADS 4
static const uint64_t blake2b_IV[8] =
{
0x6A09E667F3BCC908ULL, 0xBB67AE8584CAA73BULL,
0x3C6EF372FE94F82BULL, 0xA54FF53A5F1D36F1ULL,
0x510E527FADE682D1ULL, 0x9B05688C2B3E6C1FULL,
0x1F83D9ABFB41BD6BULL, 0x5BE0CD19137E2179ULL
};
static const unsigned int blake2b_sigma[12][16] =
{
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = ROTL64(d ^ a, 32); \
c = c + d; \
b = ROTL64(b ^ c, 40); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = ROTL64(d ^ a, 48); \
c = c + d; \
b = ROTL64(b ^ c, 1); \
} while ((void)0, 0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while ((void)0, 0)
void CompressBlock(uint64_t *h, const uint64_t *m, uint64_t t, uint64_t f)
{
uint64_t v[16];
int i;
for(i = 0; i < 8; ++i) v[i] = h[i];
for(i = 8; i < 16; ++i) v[i] = blake2b_IV[i - 8];
v[12] ^= t;
v[14] ^= f;
int r;
for(r = 0; r < 12; ++r)
{
ROUND(r);
}
for(i = 0; i < 8; ++i) h[i] ^= v[i] ^ v[i + 8];
}
void Argon2dInitHash(void *HashOut, void *Input)
{
blake2b_state BlakeHash;
uint32_t InBuf[64]; // Is only 50 uint32_t, but need more space for Blake2B
memset(InBuf, 0x00, 200);
InBuf[0] = 4UL; // Lanes
InBuf[1] = 32UL; // Output Length
InBuf[2] = 250UL; // Memory Cost
InBuf[3] = 1UL; // Time Cost
InBuf[4] = 16UL; // Argon2 Version Number
InBuf[5] = 0UL; // Type
InBuf[6] = 80UL; // Password Length
memcpy(InBuf + 7, Input, 80); // Password
InBuf[27] = 80UL; // Salt Length
memcpy(InBuf + 28, Input, 80); // Salt
InBuf[48] = 0UL; // Secret Length
InBuf[49] = 0UL; // Associated Data Length
int i;
for(i = 50; i < 64; ++i) InBuf[i] = 0UL;
uint64_t H[8];
for(i = 0; i < 8; ++i) H[i] = blake2b_IV[i];
H[0] ^= 0x0000000001010040;
CompressBlock(H, (uint64_t *)InBuf, 128ULL, 0ULL);
CompressBlock(H, (uint64_t *)(InBuf + 32), 200ULL, 0xFFFFFFFFFFFFFFFFULL);
memcpy(HashOut, H, 64U);
}
void Argon2dFillFirstBlocks(Argon2d_Block *Matrix, void *InitHash)
{
uint32_t lane;
for(lane = 0; lane < 4; ++lane)
{
((uint32_t *)InitHash)[16] = 0;
((uint32_t *)InitHash)[17] = lane;
blake2b_long(Matrix[lane * LANE_LENGTH].data, 1024, InitHash, 72);
((uint32_t *)InitHash)[16] |= 1;
blake2b_long(Matrix[lane * LANE_LENGTH + 1].data, 1024, InitHash, 72);
}
}
#include "../blake2/blamka-round-opt.h"
void Argon2dFillSingleBlock(Argon2d_Block *State, Argon2d_Block *RefBlock, Argon2d_Block *NextBlock)
{
__m256i XY[32];
int i;
for(i = 0; i < 32; ++i)
XY[i] = State->qqwords[i] = _mm256_xor_si256(State->qqwords[i], RefBlock->qqwords[i]);
for(i = 0; i < 8; ++i)
{
BLAKE2_ROUND( State->dqwords[8 * i + 0], State->dqwords[8 * i + 1], State->dqwords[8 * i + 2], State->dqwords[8 * i + 3],
State->dqwords[8 * i + 4], State->dqwords[8 * i + 5], State->dqwords[8 * i + 6], State->dqwords[8 * i + 7]);
}
for(i = 0; i < 8; ++i)
{
BLAKE2_ROUND( State->dqwords[8 * 0 + i], State->dqwords[8 * 1 + i], State->dqwords[8 * 2 + i], State->dqwords[8 * 3 + i],
State->dqwords[8 * 4 + i], State->dqwords[8 * 5 + i], State->dqwords[8 * 6 + i], State->dqwords[8 * 7 + i]);
}
for(i = 0; i < 32; ++i)
{
State->qqwords[i] = _mm256_xor_si256(State->qqwords[i], XY[i]);
_mm256_store_si256(NextBlock->qqwords + i, State->qqwords[i]);
}
}
void FillSegment(Argon2d_Block *Matrix, uint32_t slice, uint32_t lane)
{
uint32_t startidx, prevoff, curoff;
Argon2d_Block State;
startidx = (!slice) ? 2 : 0;
curoff = lane * LANE_LENGTH + slice * SEGMENT_LENGTH + startidx;
//if(!(curoff % LANE_LENGTH)) prevoff = curoff + LANE_LENGTH - 1;
//else prevoff = curoff - 1;
prevoff = (!(curoff % LANE_LENGTH)) ? curoff + LANE_LENGTH - 1 : curoff - 1;
memcpy(State.data, (Matrix + prevoff)->data, 1024);
int i;
for(i = startidx; i < SEGMENT_LENGTH; ++i, ++curoff, ++prevoff)
{
if((curoff % LANE_LENGTH) == 1) prevoff = curoff - 1;
uint64_t pseudorand = Matrix[prevoff].data[0];
uint64_t reflane = (!slice) ? lane : (pseudorand >> 32) & 3; // mod lanes
uint32_t index = i;
bool samelane = reflane == lane;
pseudorand &= 0xFFFFFFFFULL;
uint32_t refareasize = ((reflane == lane) ? slice * SEGMENT_LENGTH + index - 1 : slice * SEGMENT_LENGTH + ((!index) ? -1 : 0));
if(!slice) refareasize = index - 1;
uint64_t relativepos = (pseudorand & 0xFFFFFFFFULL);
relativepos = relativepos * relativepos >> 32;
relativepos = refareasize - 1 - (refareasize * relativepos >> 32);
uint32_t startpos = 0;
uint32_t abspos = (startpos + relativepos) % LANE_LENGTH;
uint32_t refidx = abspos;
Argon2dFillSingleBlock(&State, Matrix + (LANE_LENGTH * reflane + refidx), Matrix + curoff);
}
}
void *ThreadedSegmentFill(void *ThrData)
{
Argon2ThreadData *Data = (Argon2ThreadData *)ThrData;
FillSegment(Data->Matrix, Data->slice, Data->lane);
return(NULL);
}
void Argon2dFillAllBlocks(Argon2d_Block *Matrix)
{
pthread_t ThrHandles[CONCURRENT_THREADS];
Argon2ThreadData ThrData[CONCURRENT_THREADS];
int s;
for(s = 0; s < 4; ++s)
{
// WARNING: Assumes CONCURRENT_THREADS == lanes == 4
int l;
for(l = 0; l < 4; ++l)
{
FillSegment(Matrix, s, l);
}
}
}
void Argon2dFinalizeHash(void *OutputHash, Argon2d_Block *Matrix)
{
int l;
for(l = 1; l < 4; ++l)
{
int i;
for(i = 0; i < 32; ++i)
Matrix[LANE_LENGTH - 1].qqwords[i] = _mm256_xor_si256(Matrix[LANE_LENGTH - 1].qqwords[i], Matrix[LANE_LENGTH * l + (LANE_LENGTH - 1)].qqwords[i]);
}
blake2b_long(OutputHash, 32, Matrix[LANE_LENGTH - 1].data, 1024);
}
void WolfArgon2dPoWHash(void *Output, void *Matrix, const void *BlkHdr)
{
uint8_t tmp[72];
Argon2dInitHash(tmp, (uint8_t *)BlkHdr);
Argon2dFillFirstBlocks(Matrix, tmp);
Argon2dFillAllBlocks(Matrix);
Argon2dFinalizeHash((uint8_t *)Output, Matrix);
}
void WolfArgon2dAllocateCtx(void **Matrix)
{
#ifdef _WIN32
*((Argon2d_Block **)Matrix) = (Argon2d_Block *)_aligned_malloc(32, sizeof(Argon2d_Block) * (SEGMENT_LENGTH << 4));
#else
*((Argon2d_Block **)Matrix) = (Argon2d_Block *)malloc(sizeof(Argon2d_Block) * (SEGMENT_LENGTH << 4));
posix_memalign(Matrix, 32, sizeof(Argon2d_Block) * (SEGMENT_LENGTH << 4));
#endif
}
void WolfArgon2dFreeCtx(void *Matrix)
{
free(Matrix);
}
#endif

View File

@@ -0,0 +1,345 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_H
#define ARGON2_H
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
/* Symbols visibility control */
#ifdef A2_VISCTL
#define ARGON2_PUBLIC __attribute__((visibility("default")))
#elif _MSC_VER
#define ARGON2_PUBLIC __declspec(dllexport)
#else
#define ARGON2_PUBLIC
#endif
/*
* Argon2 input parameter restrictions
*/
/* Minimum and maximum number of lanes (degree of parallelism) */
#define ARGON2_MIN_LANES UINT32_C(1)
#define ARGON2_MAX_LANES UINT32_C(0xFFFFFF)
/* Minimum and maximum number of threads */
#define ARGON2_MIN_THREADS UINT32_C(1)
#define ARGON2_MAX_THREADS UINT32_C(0xFFFFFF)
/* Number of synchronization points between lanes per pass */
#define ARGON2_SYNC_POINTS UINT32_C(4)
/* Minimum and maximum digest size in bytes */
#define ARGON2_MIN_OUTLEN UINT32_C(4)
#define ARGON2_MAX_OUTLEN UINT32_C(0xFFFFFFFF)
/* Minimum and maximum number of memory blocks (each of BLOCK_SIZE bytes) */
#define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS) /* 2 blocks per slice */
#define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
/* Max memory size is addressing-space/2, topping at 2^32 blocks (4 TB) */
#define ARGON2_MAX_MEMORY_BITS \
ARGON2_MIN(UINT32_C(32), (sizeof(void *) * CHAR_BIT - 10 - 1))
#define ARGON2_MAX_MEMORY \
ARGON2_MIN(UINT32_C(0xFFFFFFFF), UINT64_C(1) << ARGON2_MAX_MEMORY_BITS)
/* Minimum and maximum number of passes */
#define ARGON2_MIN_TIME UINT32_C(1)
#define ARGON2_MAX_TIME UINT32_C(0xFFFFFFFF)
/* Minimum and maximum password length in bytes */
#define ARGON2_MIN_PWD_LENGTH UINT32_C(0)
#define ARGON2_MAX_PWD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum associated data length in bytes */
#define ARGON2_MIN_AD_LENGTH UINT32_C(0)
#define ARGON2_MAX_AD_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum salt length in bytes */
#define ARGON2_MIN_SALT_LENGTH UINT32_C(8)
#define ARGON2_MAX_SALT_LENGTH UINT32_C(0xFFFFFFFF)
/* Minimum and maximum key length in bytes */
#define ARGON2_MIN_SECRET UINT32_C(0)
#define ARGON2_MAX_SECRET UINT32_C(0xFFFFFFFF)
/* Flags to determine which fields are securely wiped (default = no wipe). */
#define ARGON2_DEFAULT_FLAGS UINT32_C(0)
#define ARGON2_FLAG_CLEAR_PASSWORD (UINT32_C(1) << 0)
#define ARGON2_FLAG_CLEAR_SECRET (UINT32_C(1) << 1)
/* Global flag to determine if we are wiping internal memory buffers. This flag
* is defined in core.c and deafults to 1 (wipe internal memory). */
extern int FLAG_clear_internal_memory;
/* Error codes */
typedef enum Argon2_ErrorCodes {
ARGON2_OK = 0,
ARGON2_OUTPUT_PTR_NULL = -1,
ARGON2_OUTPUT_TOO_SHORT = -2,
ARGON2_OUTPUT_TOO_LONG = -3,
ARGON2_PWD_TOO_SHORT = -4,
ARGON2_PWD_TOO_LONG = -5,
ARGON2_SALT_TOO_SHORT = -6,
ARGON2_SALT_TOO_LONG = -7,
ARGON2_AD_TOO_SHORT = -8,
ARGON2_AD_TOO_LONG = -9,
ARGON2_SECRET_TOO_SHORT = -10,
ARGON2_SECRET_TOO_LONG = -11,
ARGON2_TIME_TOO_SMALL = -12,
ARGON2_TIME_TOO_LARGE = -13,
ARGON2_MEMORY_TOO_LITTLE = -14,
ARGON2_MEMORY_TOO_MUCH = -15,
ARGON2_LANES_TOO_FEW = -16,
ARGON2_LANES_TOO_MANY = -17,
ARGON2_PWD_PTR_MISMATCH = -18, /* NULL ptr with non-zero length */
ARGON2_SALT_PTR_MISMATCH = -19, /* NULL ptr with non-zero length */
ARGON2_SECRET_PTR_MISMATCH = -20, /* NULL ptr with non-zero length */
ARGON2_AD_PTR_MISMATCH = -21, /* NULL ptr with non-zero length */
ARGON2_MEMORY_ALLOCATION_ERROR = -22,
ARGON2_FREE_MEMORY_CBK_NULL = -23,
ARGON2_ALLOCATE_MEMORY_CBK_NULL = -24,
ARGON2_INCORRECT_PARAMETER = -25,
ARGON2_INCORRECT_TYPE = -26,
ARGON2_OUT_PTR_MISMATCH = -27,
ARGON2_THREADS_TOO_FEW = -28,
ARGON2_THREADS_TOO_MANY = -29,
ARGON2_MISSING_ARGS = -30,
ARGON2_ENCODING_FAIL = -31,
ARGON2_DECODING_FAIL = -32,
ARGON2_THREAD_FAIL = -33,
ARGON2_DECODING_LENGTH_FAIL = -34,
ARGON2_VERIFY_MISMATCH = -35
} argon2_error_codes;
/* Memory allocator types --- for external allocation */
typedef int (*allocate_fptr)(uint8_t **memory, size_t bytes_to_allocate);
typedef void (*deallocate_fptr)(uint8_t *memory, size_t bytes_to_allocate);
/* Argon2 external data structures */
/*
*****
* Context: structure to hold Argon2 inputs:
* output array and its length,
* password and its length,
* salt and its length,
* secret and its length,
* associated data and its length,
* number of passes, amount of used memory (in KBytes, can be rounded up a bit)
* number of parallel threads that will be run.
* All the parameters above affect the output hash value.
* Additionally, two function pointers can be provided to allocate and
* deallocate the memory (if NULL, memory will be allocated internally).
* Also, three flags indicate whether to erase password, secret as soon as they
* are pre-hashed (and thus not needed anymore), and the entire memory
*****
* Simplest situation: you have output array out[8], password is stored in
* pwd[32], salt is stored in salt[16], you do not have keys nor associated
* data. You need to spend 1 GB of RAM and you run 5 passes of Argon2d with
* 4 parallel lanes.
* You want to erase the password, but you're OK with last pass not being
* erased. You want to use the default memory allocator.
* Then you initialize:
Argon2_Context(out,8,pwd,32,salt,16,NULL,0,NULL,0,5,1<<20,4,4,NULL,NULL,true,false,false,false)
*/
typedef struct Argon2_Context {
uint8_t *out; /* output array */
uint32_t outlen; /* digest length */
uint8_t *pwd; /* password array */
uint32_t pwdlen; /* password length */
uint8_t *salt; /* salt array */
uint32_t saltlen; /* salt length */
uint8_t *secret; /* key array */
uint32_t secretlen; /* key length */
uint8_t *ad; /* associated data array */
uint32_t adlen; /* associated data length */
uint32_t t_cost; /* number of passes */
uint32_t m_cost; /* amount of memory requested (KB) */
uint32_t lanes; /* number of lanes */
uint32_t threads; /* maximum number of threads */
allocate_fptr allocate_cbk; /* pointer to memory allocator */
deallocate_fptr free_cbk; /* pointer to memory deallocator */
uint32_t flags; /* array of bool options */
} argon2_context;
/* Argon2 primitive type */
typedef enum Argon2_type {
Argon2_d = 0
} argon2_type;
/*
* Function that gives the string representation of an argon2_type.
* @param type The argon2_type that we want the string for
* @param uppercase Whether the string should have the first letter uppercase
* @return NULL if invalid type, otherwise the string representation.
*/
ARGON2_PUBLIC const char *argon2_type2string(argon2_type type, int uppercase);
/*
* Function that performs memory-hard hashing with certain degree of parallelism
* @param context Pointer to the Argon2 internal structure
* @return Error code if smth is wrong, ARGON2_OK otherwise
*/
ARGON2_PUBLIC int argon2_ctx(argon2_context *context, argon2_type type);
/**
* Hashes a password with Argon2i, producing a raw hash by allocating memory at
* @hash
* @param t_cost Number of iterations
* @param m_cost Sets memory usage to m_cost kibibytes
* @param parallelism Number of threads and compute lanes
* @param pwd Pointer to password
* @param pwdlen Password size in bytes
* @param salt Pointer to salt
* @param saltlen Salt size in bytes
* @param hash Buffer where to write the raw hash - updated by the function
* @param hashlen Desired length of the hash in bytes
* @pre Different parallelism levels will give different results
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2d_hash_raw(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen);
ARGON2_PUBLIC int argon2d_hash_encoded(const uint32_t t_cost,
const uint32_t m_cost,
const uint32_t parallelism,
const void *pwd, const size_t pwdlen,
const void *salt, const size_t saltlen,
const size_t hashlen, char *encoded,
const size_t encodedlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_hash(const uint32_t t_cost, const uint32_t m_cost,
const uint32_t parallelism, const void *pwd,
const size_t pwdlen, const void *salt,
const size_t saltlen, void *hash,
const size_t hashlen, char *encoded,
const size_t encodedlen, argon2_type type);
/**
* Verifies a password against an encoded string
* Encoded string is restricted as in validate_inputs()
* @param encoded String encoding parameters, salt, hash
* @param pwd Pointer to password
* @pre Returns ARGON2_OK if successful
*/
ARGON2_PUBLIC int argon2d_verify(const char *encoded, const void *pwd,
const size_t pwdlen);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify(const char *encoded, const void *pwd,
const size_t pwdlen, argon2_type type);
/**
* Argon2d: Version of Argon2 that picks memory blocks depending
* on the password and salt. Only for side-channel-free
* environment!!
*****
* @param context Pointer to current Argon2 context
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_ctx(argon2_context *context);
/**
* Verify if a given password is correct for Argon2d hashing
* @param context Pointer to current Argon2 context
* @param hash The password hash to verify. The length of the hash is
* specified by the context outlen member
* @return Zero if successful, a non zero error code otherwise
*/
ARGON2_PUBLIC int argon2d_verify_ctx(argon2_context *context, const char *hash);
/* generic function underlying the above ones */
ARGON2_PUBLIC int argon2_verify_ctx(argon2_context *context, const char *hash,
argon2_type type);
/**
* Get the associated error message for given error code
* @return The error message associated with the given error code
*/
ARGON2_PUBLIC const char *argon2_error_message(int error_code);
/**
* Returns the encoded hash length for the given input parameters
* @param t_cost Number of iterations
* @param m_cost Memory usage in kibibytes
* @param parallelism Number of threads; used to compute lanes
* @param saltlen Salt size in bytes
* @param hashlen Hash size in bytes
* @param type The argon2_type that we want the encoded length for
* @return The encoded hash length in bytes
*/
ARGON2_PUBLIC size_t argon2_encodedlen(uint32_t t_cost, uint32_t m_cost,
uint32_t parallelism, uint32_t saltlen,
uint32_t hashlen, argon2_type type);
#ifdef __AVX2__
///////////////////////////
// Wolf's Additions
///////////////////////////
void WolfArgon2dPoWHash(void *Output, void *Matrix, const void *BlkHdr);
void WolfArgon2dAllocateCtx(void **Matrix);
void WolfArgon2dFreeCtx(void *Matrix);
#endif
#if defined(__cplusplus)
}
#endif
#endif

View File

@@ -0,0 +1,617 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
/*For memory wiping*/
#ifdef _MSC_VER
#include <windows.h>
#include <winbase.h> /* For SecureZeroMemory */
#endif
#if defined __STDC_LIB_EXT1__
#define __STDC_WANT_LIB_EXT1__ 1
#endif
#define VC_GE_2005(version) (version >= 1400)
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "core.h"
#include "thread.h"
#include "../blake2/blake2.h"
#include "../blake2/blake2-impl.h"
#if defined(__clang__)
#if __has_attribute(optnone)
#define NOT_OPTIMIZED __attribute__((optnone))
#endif
#elif defined(__GNUC__)
#define GCC_VERSION \
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if GCC_VERSION >= 40400
#define NOT_OPTIMIZED __attribute__((optimize("O0")))
#endif
#endif
#ifndef NOT_OPTIMIZED
#define NOT_OPTIMIZED
#endif
/***************Instance and Position constructors**********/
void init_block_value(block *b, uint8_t in) { memset(b->v, in, sizeof(b->v)); }
void copy_block(block *dst, const block *src) {
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
}
void xor_block(block *dst, const block *src) {
int i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
dst->v[i] ^= src->v[i];
}
}
static void load_block(block *dst, const void *input) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
}
}
static void store_block(void *output, const block *src) {
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
}
}
/***************Memory functions*****************/
int allocate_memory(const argon2_context *context, uint8_t **memory,
size_t num, size_t size) {
size_t memory_size = num*size;
if (memory == NULL) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
/* 1. Check for multiplication overflow */
if (size != 0 && memory_size / size != num) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
/* 2. Try to allocate with appropriate allocator */
if (context->allocate_cbk) {
(context->allocate_cbk)(memory, memory_size);
} else {
*memory = malloc(memory_size);
}
if (*memory == NULL) {
return ARGON2_MEMORY_ALLOCATION_ERROR;
}
return ARGON2_OK;
}
void free_memory(const argon2_context *context, uint8_t *memory,
size_t num, size_t size) {
size_t memory_size = num*size;
clear_internal_memory(memory, memory_size);
if (context->free_cbk) {
(context->free_cbk)(memory, memory_size);
} else {
free(memory);
}
}
void NOT_OPTIMIZED secure_wipe_memory(void *v, size_t n) {
#if defined(_MSC_VER) && VC_GE_2005(_MSC_VER)
SecureZeroMemory(v, n);
#elif defined memset_s
memset_s(v, n, 0, n);
#elif defined(__OpenBSD__)
explicit_bzero(v, n);
#else
static void *(*const volatile memset_sec)(void *, int, size_t) = &memset;
memset_sec(v, 0, n);
#endif
}
/* Memory clear flag defaults to true. */
int FLAG_clear_internal_memory = 1;
void clear_internal_memory(void *v, size_t n) {
if (FLAG_clear_internal_memory && v) {
secure_wipe_memory(v, n);
}
}
void finalize(const argon2_context *context, argon2_instance_t *instance) {
if (context != NULL && instance != NULL) {
block blockhash;
uint32_t l;
copy_block(&blockhash, instance->memory + instance->lane_length - 1);
/* XOR the last blocks */
for (l = 1; l < instance->lanes; ++l) {
uint32_t last_block_in_lane =
l * instance->lane_length + (instance->lane_length - 1);
xor_block(&blockhash, instance->memory + last_block_in_lane);
}
/* Hash the result */
{
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
store_block(blockhash_bytes, &blockhash);
blake2b_long(context->out, context->outlen, blockhash_bytes,
ARGON2_BLOCK_SIZE);
/* clear blockhash and blockhash_bytes */
clear_internal_memory(blockhash.v, ARGON2_BLOCK_SIZE);
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
free_memory(context, (uint8_t *)instance->memory,
instance->memory_blocks, sizeof(block));
}
}
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane) {
/*
* Pass 0:
* This lane : all already finished segments plus already constructed
* blocks in this segment
* Other lanes : all already finished segments
* Pass 1+:
* This lane : (SYNC_POINTS - 1) last segments plus already constructed
* blocks in this segment
* Other lanes : (SYNC_POINTS - 1) last segments
*/
uint32_t reference_area_size;
uint64_t relative_position;
uint32_t start_position, absolute_position;
if (0 == position->pass) {
/* First pass */
if (0 == position->slice) {
/* First slice */
reference_area_size =
position->index - 1; /* all but the previous */
} else {
if (same_lane) {
/* The same lane => add current segment */
reference_area_size =
position->slice * instance->segment_length +
position->index - 1;
} else {
reference_area_size =
position->slice * instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
} else {
/* Second pass */
if (same_lane) {
reference_area_size = instance->lane_length -
instance->segment_length + position->index -
1;
} else {
reference_area_size = instance->lane_length -
instance->segment_length +
((position->index == 0) ? (-1) : 0);
}
}
/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
* relative position */
relative_position = pseudo_rand;
relative_position = relative_position * relative_position >> 32;
relative_position = reference_area_size - 1 -
(reference_area_size * relative_position >> 32);
/* 1.2.5 Computing starting position */
start_position = 0;
if (0 != position->pass) {
start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
? 0
: (position->slice + 1) * instance->segment_length;
}
/* 1.2.6. Computing absolute position */
absolute_position = (start_position + relative_position) %
instance->lane_length; /* absolute position */
return absolute_position;
}
/* Single-threaded version for p=1 case */
static int fill_memory_blocks_st(argon2_instance_t *instance) {
uint32_t r, s, l;
for (r = 0; r < instance->passes; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
for (l = 0; l < instance->lanes; ++l) {
argon2_position_t position = {r, l, (uint8_t)s, 0};
fill_segment(instance, position);
}
}
}
return ARGON2_OK;
}
#if !defined(ARGON2_NO_THREADS)
#ifdef _WIN32
static unsigned __stdcall fill_segment_thr(void *thread_data)
#else
static void *fill_segment_thr(void *thread_data)
#endif
{
argon2_thread_data *my_data = thread_data;
fill_segment(my_data->instance_ptr, my_data->pos);
argon2_thread_exit();
return 0;
}
/* Multi-threaded version for p > 1 case */
static int fill_memory_blocks_mt(argon2_instance_t *instance) {
uint32_t r, s;
argon2_thread_handle_t *thread = NULL;
argon2_thread_data *thr_data = NULL;
int rc = ARGON2_OK;
/* 1. Allocating space for threads */
thread = calloc(instance->lanes, sizeof(argon2_thread_handle_t));
if (thread == NULL) {
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
thr_data = calloc(instance->lanes, sizeof(argon2_thread_data));
if (thr_data == NULL) {
rc = ARGON2_MEMORY_ALLOCATION_ERROR;
goto fail;
}
for (r = 0; r < instance->passes; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
uint32_t l;
/* 2. Calling threads */
for (l = 0; l < instance->lanes; ++l) {
argon2_position_t position;
/* 2.1 Join a thread if limit is exceeded */
if (l >= instance->threads) {
if (argon2_thread_join(thread[l - instance->threads])) {
rc = ARGON2_THREAD_FAIL;
goto fail;
}
}
/* 2.2 Create thread */
position.pass = r;
position.lane = l;
position.slice = (uint8_t)s;
position.index = 0;
thr_data[l].instance_ptr =
instance; /* preparing the thread input */
memcpy(&(thr_data[l].pos), &position,
sizeof(argon2_position_t));
if (argon2_thread_create(&thread[l], &fill_segment_thr,
(void *)&thr_data[l])) {
rc = ARGON2_THREAD_FAIL;
goto fail;
}
/* fill_segment(instance, position); */
/*Non-thread equivalent of the lines above */
}
/* 3. Joining remaining threads */
for (l = instance->lanes - instance->threads; l < instance->lanes;
++l) {
if (argon2_thread_join(thread[l])) {
rc = ARGON2_THREAD_FAIL;
goto fail;
}
}
}
}
fail:
if (thread != NULL) {
free(thread);
}
if (thr_data != NULL) {
free(thr_data);
}
return rc;
}
#endif /* ARGON2_NO_THREADS */
int fill_memory_blocks(argon2_instance_t *instance) {
if (instance == NULL || instance->lanes == 0) {
return ARGON2_INCORRECT_PARAMETER;
}
#if defined(ARGON2_NO_THREADS)
return fill_memory_blocks_st(instance);
#else
return instance->threads == 1 ?
fill_memory_blocks_st(instance) : fill_memory_blocks_mt(instance);
#endif
}
int validate_inputs(const argon2_context *context) {
if (NULL == context) {
return ARGON2_INCORRECT_PARAMETER;
}
if (NULL == context->out) {
return ARGON2_OUTPUT_PTR_NULL;
}
/* Validate output length */
if (ARGON2_MIN_OUTLEN > context->outlen) {
return ARGON2_OUTPUT_TOO_SHORT;
}
if (ARGON2_MAX_OUTLEN < context->outlen) {
return ARGON2_OUTPUT_TOO_LONG;
}
/* Validate password (required param) */
if (NULL == context->pwd) {
if (0 != context->pwdlen) {
return ARGON2_PWD_PTR_MISMATCH;
}
}
if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) {
return ARGON2_PWD_TOO_SHORT;
}
if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) {
return ARGON2_PWD_TOO_LONG;
}
/* Validate salt (required param) */
if (NULL == context->salt) {
if (0 != context->saltlen) {
return ARGON2_SALT_PTR_MISMATCH;
}
}
if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {
return ARGON2_SALT_TOO_SHORT;
}
if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {
return ARGON2_SALT_TOO_LONG;
}
/* Validate secret (optional param) */
if (NULL == context->secret) {
if (0 != context->secretlen) {
return ARGON2_SECRET_PTR_MISMATCH;
}
} else {
if (ARGON2_MIN_SECRET > context->secretlen) {
return ARGON2_SECRET_TOO_SHORT;
}
if (ARGON2_MAX_SECRET < context->secretlen) {
return ARGON2_SECRET_TOO_LONG;
}
}
/* Validate associated data (optional param) */
if (NULL == context->ad) {
if (0 != context->adlen) {
return ARGON2_AD_PTR_MISMATCH;
}
} else {
if (ARGON2_MIN_AD_LENGTH > context->adlen) {
return ARGON2_AD_TOO_SHORT;
}
if (ARGON2_MAX_AD_LENGTH < context->adlen) {
return ARGON2_AD_TOO_LONG;
}
}
/* Validate memory cost */
if (ARGON2_MIN_MEMORY > context->m_cost) {
return ARGON2_MEMORY_TOO_LITTLE;
}
if (ARGON2_MAX_MEMORY < context->m_cost) {
return ARGON2_MEMORY_TOO_MUCH;
}
if (context->m_cost < 8 * context->lanes) {
return ARGON2_MEMORY_TOO_LITTLE;
}
/* Validate time cost */
if (ARGON2_MIN_TIME > context->t_cost) {
return ARGON2_TIME_TOO_SMALL;
}
if (ARGON2_MAX_TIME < context->t_cost) {
return ARGON2_TIME_TOO_LARGE;
}
/* Validate lanes */
if (ARGON2_MIN_LANES > context->lanes) {
return ARGON2_LANES_TOO_FEW;
}
if (ARGON2_MAX_LANES < context->lanes) {
return ARGON2_LANES_TOO_MANY;
}
/* Validate threads */
if (ARGON2_MIN_THREADS > context->threads) {
return ARGON2_THREADS_TOO_FEW;
}
if (ARGON2_MAX_THREADS < context->threads) {
return ARGON2_THREADS_TOO_MANY;
}
if (NULL != context->allocate_cbk && NULL == context->free_cbk) {
return ARGON2_FREE_MEMORY_CBK_NULL;
}
if (NULL == context->allocate_cbk && NULL != context->free_cbk) {
return ARGON2_ALLOCATE_MEMORY_CBK_NULL;
}
return ARGON2_OK;
}
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
uint32_t l;
/* Make the first and second block in each lane as G(H0||0||i) or
G(H0||1||i) */
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
for (l = 0; l < instance->lanes; ++l) {
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
ARGON2_PREHASH_SEED_LENGTH);
load_block(&instance->memory[l * instance->lane_length + 0],
blockhash_bytes);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
ARGON2_PREHASH_SEED_LENGTH);
load_block(&instance->memory[l * instance->lane_length + 1],
blockhash_bytes);
}
clear_internal_memory(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type) {
blake2b_state BlakeHash;
uint8_t value[sizeof(uint32_t)];
if (NULL == context || NULL == blockhash) {
return;
}
blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);
store32(&value, context->lanes);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->outlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->m_cost);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->t_cost);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, ARGON2_VERSION_NUMBER);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, (uint32_t)type);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
store32(&value, context->pwdlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->pwd != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
context->pwdlen);
if (context->flags & ARGON2_FLAG_CLEAR_PASSWORD) {
secure_wipe_memory(context->pwd, context->pwdlen);
context->pwdlen = 0;
}
}
store32(&value, context->saltlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->salt != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->salt,
context->saltlen);
}
store32(&value, context->secretlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->secret != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->secret,
context->secretlen);
if (context->flags & ARGON2_FLAG_CLEAR_SECRET) {
secure_wipe_memory(context->secret, context->secretlen);
context->secretlen = 0;
}
}
store32(&value, context->adlen);
blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
if (context->ad != NULL) {
blake2b_update(&BlakeHash, (const uint8_t *)context->ad,
context->adlen);
}
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
}
int initialize(argon2_instance_t *instance, argon2_context *context) {
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
int result = ARGON2_OK;
if (instance == NULL || context == NULL)
return ARGON2_INCORRECT_PARAMETER;
instance->context_ptr = context;
/* 1. Memory allocation */
result = allocate_memory(context, (uint8_t **)&(instance->memory),
instance->memory_blocks, sizeof(block));
if (result != ARGON2_OK) {
return result;
}
/* 2. Initial hashing */
/* H_0 + 8 extra bytes to produce the first blocks */
/* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */
/* Hashing all inputs */
initial_hash(blockhash, context, instance->type);
/* Zeroing 8 extra bytes */
clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ARGON2_PREHASH_SEED_LENGTH -
ARGON2_PREHASH_DIGEST_LENGTH);
/* 3. Creating first blocks, we always have at least two blocks in a slice
*/
fill_first_blocks(blockhash, instance);
/* Clearing the hash */
clear_internal_memory(blockhash, ARGON2_PREHASH_SEED_LENGTH);
return ARGON2_OK;
}

View File

@@ -0,0 +1,229 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_CORE_H
#define ARGON2_CORE_H
#include "argon2.h"
#define CONST_CAST(x) (x)(uintptr_t)
/**********************Argon2 internal constants*******************************/
enum argon2_core_constants {
/* Version of the algorithm */
ARGON2_VERSION_NUMBER = 0x10,
/* Memory block size in bytes */
ARGON2_BLOCK_SIZE = 1024,
ARGON2_QWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 8,
ARGON2_OWORDS_IN_BLOCK = ARGON2_BLOCK_SIZE / 16,
/* Number of pseudo-random values generated by one call to Blake in Argon2i
to
generate reference block positions */
ARGON2_ADDRESSES_IN_BLOCK = 128,
/* Pre-hashing digest length and its extension*/
ARGON2_PREHASH_DIGEST_LENGTH = 64,
ARGON2_PREHASH_SEED_LENGTH = 72
};
/*************************Argon2 internal data types***********************/
/*
* Structure for the (1KB) memory block implemented as 128 64-bit words.
* Memory blocks can be copied, XORed. Internal words can be accessed by [] (no
* bounds checking).
*/
typedef struct block_ { uint64_t v[ARGON2_QWORDS_IN_BLOCK]; } block;
/*****************Functions that work with the block******************/
/* Initialize each byte of the block with @in */
void init_block_value(block *b, uint8_t in);
/* Copy block @src to block @dst */
void copy_block(block *dst, const block *src);
/* XOR @src onto @dst bytewise */
void xor_block(block *dst, const block *src);
/*
* Argon2 instance: memory pointer, number of passes, amount of memory, type,
* and derived values.
* Used to evaluate the number and location of blocks to construct in each
* thread
*/
typedef struct Argon2_instance_t {
block *memory; /* Memory pointer */
uint32_t version;
uint32_t passes; /* Number of passes */
uint32_t memory_blocks; /* Number of blocks in memory */
uint32_t segment_length;
uint32_t lane_length;
uint32_t lanes;
uint32_t limit;
uint32_t threads;
argon2_type type;
int print_internals; /* whether to print the memory blocks */
argon2_context *context_ptr; /* points back to original context */
} argon2_instance_t;
/*
* Argon2 position: where we construct the block right now. Used to distribute
* work between threads.
*/
typedef struct Argon2_position_t {
uint32_t pass;
uint32_t lane;
uint8_t slice;
uint32_t index;
} argon2_position_t;
/*Struct that holds the inputs for thread handling FillSegment*/
typedef struct Argon2_thread_data {
argon2_instance_t *instance_ptr;
argon2_position_t pos;
} argon2_thread_data;
/*************************Argon2 core functions********************************/
/* Allocates memory to the given pointer, uses the appropriate allocator as
* specified in the context. Total allocated memory is num*size.
* @param context argon2_context which specifies the allocator
* @param memory pointer to the pointer to the memory
* @param size the size in bytes for each element to be allocated
* @param num the number of elements to be allocated
* @return ARGON2_OK if @memory is a valid pointer and memory is allocated
*/
int allocate_memory(const argon2_context *context, uint8_t **memory,
size_t num, size_t size);
/*
* Frees memory at the given pointer, uses the appropriate deallocator as
* specified in the context. Also cleans the memory using clear_internal_memory.
* @param context argon2_context which specifies the deallocator
* @param memory pointer to buffer to be freed
* @param size the size in bytes for each element to be deallocated
* @param num the number of elements to be deallocated
*/
void free_memory(const argon2_context *context, uint8_t *memory,
size_t num, size_t size);
/* Function that securely cleans the memory. This ignores any flags set
* regarding clearing memory. Usually one just calls clear_internal_memory.
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void secure_wipe_memory(void *v, size_t n);
/* Function that securely clears the memory if FLAG_clear_internal_memory is
* set. If the flag isn't set, this function does nothing.
* @param mem Pointer to the memory
* @param s Memory size in bytes
*/
void clear_internal_memory(void *v, size_t n);
/*
* Computes absolute position of reference block in the lane following a skewed
* distribution and using a pseudo-random value as input
* @param instance Pointer to the current instance
* @param position Pointer to the current position
* @param pseudo_rand 32-bit pseudo-random value used to determine the position
* @param same_lane Indicates if the block will be taken from the current lane.
* If so we can reference the current segment
* @pre All pointers must be valid
*/
uint32_t index_alpha(const argon2_instance_t *instance,
const argon2_position_t *position, uint32_t pseudo_rand,
int same_lane);
/*
* Function that validates all inputs against predefined restrictions and return
* an error code
* @param context Pointer to current Argon2 context
* @return ARGON2_OK if everything is all right, otherwise one of error codes
* (all defined in <argon2.h>
*/
int validate_inputs(const argon2_context *context);
/*
* Hashes all the inputs into @a blockhash[PREHASH_DIGEST_LENGTH], clears
* password and secret if needed
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param blockhash Buffer for pre-hashing digest
* @param type Argon2 type
* @pre @a blockhash must have at least @a PREHASH_DIGEST_LENGTH bytes
* allocated
*/
void initial_hash(uint8_t *blockhash, argon2_context *context,
argon2_type type);
/*
* Function creates first 2 blocks per lane
* @param instance Pointer to the current instance
* @param blockhash Pointer to the pre-hashing digest
* @pre blockhash must point to @a PREHASH_SEED_LENGTH allocated values
*/
void fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance);
/*
* Function allocates memory, hashes the inputs with Blake, and creates first
* two blocks. Returns the pointer to the main memory with 2 blocks per lane
* initialized
* @param context Pointer to the Argon2 internal structure containing memory
* pointer, and parameters for time and space requirements.
* @param instance Current Argon2 instance
* @return Zero if successful, -1 if memory failed to allocate. @context->state
* will be modified if successful.
*/
int initialize(argon2_instance_t *instance, argon2_context *context);
/*
* XORing the last block of each lane, hashing it, making the tag. Deallocates
* the memory.
* @param context Pointer to current Argon2 context (use only the out parameters
* from it)
* @param instance Pointer to current instance of Argon2
* @pre instance->state must point to necessary amount of memory
* @pre context->out must point to outlen bytes of memory
* @pre if context->free_cbk is not NULL, it should point to a function that
* deallocates memory
*/
void finalize(const argon2_context *context, argon2_instance_t *instance);
/*
* Function that fills the segment using previous segments also from other
* threads
* @param context current context
* @param instance Pointer to the current instance
* @param position Current position
* @pre all block pointers must be valid
*/
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position);
/*
* Function that fills the entire memory t_cost times based on the first two
* blocks in each lane
* @param instance Pointer to the current instance
* @return ARGON2_OK if successful, @context->state
*/
int fill_memory_blocks(argon2_instance_t *instance);
#endif

View File

@@ -0,0 +1,456 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "encoding.h"
#include "core.h"
/*
* Example code for a decoder and encoder of "hash strings", with Argon2
* parameters.
*
* This code comprises three sections:
*
* -- The first section contains generic Base64 encoding and decoding
* functions. It is conceptually applicable to any hash function
* implementation that uses Base64 to encode and decode parameters,
* salts and outputs. It could be made into a library, provided that
* the relevant functions are made public (non-static) and be given
* reasonable names to avoid collisions with other functions.
*
* -- The second section is specific to Argon2. It encodes and decodes
* the parameters, salts and outputs. It does not compute the hash
* itself.
*
* The code was originally written by Thomas Pornin <pornin@bolet.org>,
* to whom comments and remarks may be sent. It is released under what
* should amount to Public Domain or its closest equivalent; the
* following mantra is supposed to incarnate that fact with all the
* proper legal rituals:
*
* ---------------------------------------------------------------------
* This file is provided under the terms of Creative Commons CC0 1.0
* Public Domain Dedication. To the extent possible under law, the
* author (Thomas Pornin) has waived all copyright and related or
* neighboring rights to this file. This work is published from: Canada.
* ---------------------------------------------------------------------
*
* Copyright (c) 2015 Thomas Pornin
*/
/* ==================================================================== */
/*
* Common code; could be shared between different hash functions.
*
* Note: the Base64 functions below assume that uppercase letters (resp.
* lowercase letters) have consecutive numerical codes, that fit on 8
* bits. All modern systems use ASCII-compatible charsets, where these
* properties are true. If you are stuck with a dinosaur of a system
* that still defaults to EBCDIC then you already have much bigger
* interoperability issues to deal with.
*/
/*
* Some macros for constant-time comparisons. These work over values in
* the 0..255 range. Returned value is 0x00 on "false", 0xFF on "true".
*/
#define EQ(x, y) ((((0U - ((unsigned)(x) ^ (unsigned)(y))) >> 8) & 0xFF) ^ 0xFF)
#define GT(x, y) ((((unsigned)(y) - (unsigned)(x)) >> 8) & 0xFF)
#define GE(x, y) (GT(y, x) ^ 0xFF)
#define LT(x, y) GT(y, x)
#define LE(x, y) GE(y, x)
/*
* Convert value x (0..63) to corresponding Base64 character.
*/
static int b64_byte_to_char(unsigned x) {
return (LT(x, 26) & (x + 'A')) |
(GE(x, 26) & LT(x, 52) & (x + ('a' - 26))) |
(GE(x, 52) & LT(x, 62) & (x + ('0' - 52))) | (EQ(x, 62) & '+') |
(EQ(x, 63) & '/');
}
/*
* Convert character c to the corresponding 6-bit value. If character c
* is not a Base64 character, then 0xFF (255) is returned.
*/
static unsigned b64_char_to_byte(int c) {
unsigned x;
x = (GE(c, 'A') & LE(c, 'Z') & (c - 'A')) |
(GE(c, 'a') & LE(c, 'z') & (c - ('a' - 26))) |
(GE(c, '0') & LE(c, '9') & (c - ('0' - 52))) | (EQ(c, '+') & 62) |
(EQ(c, '/') & 63);
return x | (EQ(x, 0) & (EQ(c, 'A') ^ 0xFF));
}
/*
* Convert some bytes to Base64. 'dst_len' is the length (in characters)
* of the output buffer 'dst'; if that buffer is not large enough to
* receive the result (including the terminating 0), then (size_t)-1
* is returned. Otherwise, the zero-terminated Base64 string is written
* in the buffer, and the output length (counted WITHOUT the terminating
* zero) is returned.
*/
static size_t to_base64(char *dst, size_t dst_len, const void *src,
size_t src_len) {
size_t olen;
const unsigned char *buf;
unsigned acc, acc_len;
olen = (src_len / 3) << 2;
switch (src_len % 3) {
case 2:
olen++;
/* fall through */
case 1:
olen += 2;
break;
}
if (dst_len <= olen) {
return (size_t)-1;
}
acc = 0;
acc_len = 0;
buf = (const unsigned char *)src;
while (src_len-- > 0) {
acc = (acc << 8) + (*buf++);
acc_len += 8;
while (acc_len >= 6) {
acc_len -= 6;
*dst++ = (char)b64_byte_to_char((acc >> acc_len) & 0x3F);
}
}
if (acc_len > 0) {
*dst++ = (char)b64_byte_to_char((acc << (6 - acc_len)) & 0x3F);
}
*dst++ = 0;
return olen;
}
/*
* Decode Base64 chars into bytes. The '*dst_len' value must initially
* contain the length of the output buffer '*dst'; when the decoding
* ends, the actual number of decoded bytes is written back in
* '*dst_len'.
*
* Decoding stops when a non-Base64 character is encountered, or when
* the output buffer capacity is exceeded. If an error occurred (output
* buffer is too small, invalid last characters leading to unprocessed
* buffered bits), then NULL is returned; otherwise, the returned value
* points to the first non-Base64 character in the source stream, which
* may be the terminating zero.
*/
static const char *from_base64(void *dst, size_t *dst_len, const char *src) {
size_t len;
unsigned char *buf;
unsigned acc, acc_len;
buf = (unsigned char *)dst;
len = 0;
acc = 0;
acc_len = 0;
for (;;) {
unsigned d;
d = b64_char_to_byte(*src);
if (d == 0xFF) {
break;
}
src++;
acc = (acc << 6) + d;
acc_len += 6;
if (acc_len >= 8) {
acc_len -= 8;
if ((len++) >= *dst_len) {
return NULL;
}
*buf++ = (acc >> acc_len) & 0xFF;
}
}
/*
* If the input length is equal to 1 modulo 4 (which is
* invalid), then there will remain 6 unprocessed bits;
* otherwise, only 0, 2 or 4 bits are buffered. The buffered
* bits must also all be zero.
*/
if (acc_len > 4 || (acc & (((unsigned)1 << acc_len) - 1)) != 0) {
return NULL;
}
*dst_len = len;
return src;
}
/*
* Decode decimal integer from 'str'; the value is written in '*v'.
* Returned value is a pointer to the next non-decimal character in the
* string. If there is no digit at all, or the value encoding is not
* minimal (extra leading zeros), or the value does not fit in an
* 'unsigned long', then NULL is returned.
*/
static const char *decode_decimal(const char *str, unsigned long *v) {
const char *orig;
unsigned long acc;
acc = 0;
for (orig = str;; str++) {
int c;
c = *str;
if (c < '0' || c > '9') {
break;
}
c -= '0';
if (acc > (ULONG_MAX / 10)) {
return NULL;
}
acc *= 10;
if ((unsigned long)c > (ULONG_MAX - acc)) {
return NULL;
}
acc += (unsigned long)c;
}
if (str == orig || (*orig == '0' && str != (orig + 1))) {
return NULL;
}
*v = acc;
return str;
}
/* ==================================================================== */
/*
* Code specific to Argon2.
*
* The code below applies the following format:
*
* $argon2<T>[$v=<num>]$m=<num>,t=<num>,p=<num>$<bin>$<bin>
*
* where <T> is either 'd', 'id', or 'i', <num> is a decimal integer (positive,
* fits in an 'unsigned long'), and <bin> is Base64-encoded data (no '=' padding
* characters, no newline or whitespace).
*
* The last two binary chunks (encoded in Base64) are, in that order,
* the salt and the output. Both are required. The binary salt length and the
* output length must be in the allowed ranges defined in argon2.h.
*
* The ctx struct must contain buffers large enough to hold the salt and pwd
* when it is fed into decode_string.
*/
int decode_string(argon2_context *ctx, const char *str, argon2_type type) {
/* check for prefix */
#define CC(prefix) \
do { \
size_t cc_len = strlen(prefix); \
if (strncmp(str, prefix, cc_len) != 0) { \
return ARGON2_DECODING_FAIL; \
} \
str += cc_len; \
} while ((void)0, 0)
/* optional prefix checking with supplied code */
#define CC_opt(prefix, code) \
do { \
size_t cc_len = strlen(prefix); \
if (strncmp(str, prefix, cc_len) == 0) { \
str += cc_len; \
{ code; } \
} \
} while ((void)0, 0)
/* Decoding prefix into decimal */
#define DECIMAL(x) \
do { \
unsigned long dec_x; \
str = decode_decimal(str, &dec_x); \
if (str == NULL) { \
return ARGON2_DECODING_FAIL; \
} \
(x) = dec_x; \
} while ((void)0, 0)
/* Decoding prefix into uint32_t decimal */
#define DECIMAL_U32(x) \
do { \
unsigned long dec_x; \
str = decode_decimal(str, &dec_x); \
if (str == NULL || dec_x > UINT32_MAX) { \
return ARGON2_DECODING_FAIL; \
} \
(x) = (uint32_t)dec_x; \
} while ((void)0, 0)
/* Decoding base64 into a binary buffer */
#define BIN(buf, max_len, len) \
do { \
size_t bin_len = (max_len); \
str = from_base64(buf, &bin_len, str); \
if (str == NULL || bin_len > UINT32_MAX) { \
return ARGON2_DECODING_FAIL; \
} \
(len) = (uint32_t)bin_len; \
} while ((void)0, 0)
size_t maxsaltlen = ctx->saltlen;
size_t maxoutlen = ctx->outlen;
int validation_result;
const char* type_string;
/* We should start with the argon2_type we are using */
type_string = argon2_type2string(type, 0);
if (!type_string) {
return ARGON2_INCORRECT_TYPE;
}
CC("$");
CC(type_string);
CC("$m=");
DECIMAL_U32(ctx->m_cost);
CC(",t=");
DECIMAL_U32(ctx->t_cost);
CC(",p=");
DECIMAL_U32(ctx->lanes);
ctx->threads = ctx->lanes;
CC("$");
BIN(ctx->salt, maxsaltlen, ctx->saltlen);
CC("$");
BIN(ctx->out, maxoutlen, ctx->outlen);
/* The rest of the fields get the default values */
ctx->secret = NULL;
ctx->secretlen = 0;
ctx->ad = NULL;
ctx->adlen = 0;
ctx->allocate_cbk = NULL;
ctx->free_cbk = NULL;
ctx->flags = ARGON2_DEFAULT_FLAGS;
/* On return, must have valid context */
validation_result = validate_inputs(ctx);
if (validation_result != ARGON2_OK) {
return validation_result;
}
/* Can't have any additional characters */
if (*str == 0) {
return ARGON2_OK;
} else {
return ARGON2_DECODING_FAIL;
}
#undef CC
#undef CC_opt
#undef DECIMAL
#undef BIN
}
int encode_string(char *dst, size_t dst_len, argon2_context *ctx,
argon2_type type) {
#define SS(str) \
do { \
size_t pp_len = strlen(str); \
if (pp_len >= dst_len) { \
return ARGON2_ENCODING_FAIL; \
} \
memcpy(dst, str, pp_len + 1); \
dst += pp_len; \
dst_len -= pp_len; \
} while ((void)0, 0)
#define SX(x) \
do { \
char tmp[30]; \
sprintf(tmp, "%lu", (unsigned long)(x)); \
SS(tmp); \
} while ((void)0, 0)
#define SB(buf, len) \
do { \
size_t sb_len = to_base64(dst, dst_len, buf, len); \
if (sb_len == (size_t)-1) { \
return ARGON2_ENCODING_FAIL; \
} \
dst += sb_len; \
dst_len -= sb_len; \
} while ((void)0, 0)
const char* type_string = argon2_type2string(type, 0);
int validation_result = validate_inputs(ctx);
if (!type_string) {
return ARGON2_ENCODING_FAIL;
}
if (validation_result != ARGON2_OK) {
return validation_result;
}
SS("$");
SS(type_string);
SS("$m=");
SX(ctx->m_cost);
SS(",t=");
SX(ctx->t_cost);
SS(",p=");
SX(ctx->lanes);
SS("$");
SB(ctx->salt, ctx->saltlen);
SS("$");
SB(ctx->out, ctx->outlen);
return ARGON2_OK;
#undef SS
#undef SX
#undef SB
}
size_t b64len(uint32_t len) {
size_t olen = ((size_t)len / 3) << 2;
switch (len % 3) {
case 2:
olen++;
/* fall through */
case 1:
olen += 2;
break;
}
return olen;
}
size_t numlen(uint32_t num) {
size_t len = 1;
while (num >= 10) {
++len;
num = num / 10;
}
return len;
}

View File

@@ -0,0 +1,57 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ENCODING_H
#define ENCODING_H
#include "argon2.h"
#define ARGON2_MAX_DECODED_LANES UINT32_C(255)
#define ARGON2_MIN_DECODED_SALT_LEN UINT32_C(8)
#define ARGON2_MIN_DECODED_OUT_LEN UINT32_C(12)
/*
* encode an Argon2 hash string into the provided buffer. 'dst_len'
* contains the size, in characters, of the 'dst' buffer; if 'dst_len'
* is less than the number of required characters (including the
* terminating 0), then this function returns ARGON2_ENCODING_ERROR.
*
* on success, ARGON2_OK is returned.
*/
int encode_string(char *dst, size_t dst_len, argon2_context *ctx,
argon2_type type);
/*
* Decodes an Argon2 hash string into the provided structure 'ctx'.
* The only fields that must be set prior to this call are ctx.saltlen and
* ctx.outlen (which must be the maximal salt and out length values that are
* allowed), ctx.salt and ctx.out (which must be buffers of the specified
* length), and ctx.pwd and ctx.pwdlen which must hold a valid password.
*
* Invalid input string causes an error. On success, the ctx is valid and all
* fields have been initialized.
*
* Returned value is ARGON2_OK on success, other ARGON2_ codes on error.
*/
int decode_string(argon2_context *ctx, const char *str, argon2_type type);
/* Returns the length of the encoded byte stream with length len */
size_t b64len(uint32_t len);
/* Returns the length of the encoded number num */
size_t numlen(uint32_t num);
#endif

View File

@@ -0,0 +1,172 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "argon2.h"
#include "core.h"
#include "../blake2/blake2.h"
#include "../blake2/blamka-round-opt.h"
/*
* Function fills a new memory block and optionally XORs the old block over the new one.
* Memory must be initialized.
* @param state Pointer to the just produced block. Content will be updated(!)
* @param ref_block Pointer to the reference block
* @param next_block Pointer to the block to be XORed over. May coincide with @ref_block
* @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
* @pre all block pointers must be valid
*/
static void fill_block(__m128i *state, const block *ref_block,
block *next_block, int with_xor) {
__m128i block_XY[ARGON2_OWORDS_IN_BLOCK];
unsigned int i;
if (with_xor) {
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
state[i] = _mm_xor_si128(
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
block_XY[i] = _mm_xor_si128(
state[i], _mm_loadu_si128((const __m128i *)next_block->v + i));
}
} else {
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
block_XY[i] = state[i] = _mm_xor_si128(
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
}
}
for (i = 0; i < 8; ++i) {
BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
state[8 * i + 6], state[8 * i + 7]);
}
for (i = 0; i < 8; ++i) {
BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
state[8 * 6 + i], state[8 * 7 + i]);
}
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
state[i] = _mm_xor_si128(state[i], block_XY[i]);
_mm_storeu_si128((__m128i *)next_block->v + i, state[i]);
}
}
static void next_addresses(block *address_block, block *input_block) {
/*Temporary zero-initialized blocks*/
__m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
__m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
memset(zero_block, 0, sizeof(zero_block));
memset(zero2_block, 0, sizeof(zero2_block));
/*Increasing index counter*/
input_block->v[6]++;
/*First iteration of G*/
fill_block(zero_block, input_block, address_block, 0);
/*Second iteration of G*/
fill_block(zero2_block, address_block, address_block, 0);
}
void fill_segment(const argon2_instance_t *instance,
argon2_position_t position) {
block *ref_block = NULL, *curr_block = NULL;
block address_block, input_block;
uint64_t pseudo_rand, ref_index, ref_lane;
uint32_t prev_offset, curr_offset;
uint32_t starting_index, i;
__m128i state[64];
int data_independent_addressing;
if (instance == NULL) {
return;
}
starting_index = 0;
if ((0 == position.pass) && (0 == position.slice)) {
starting_index = 2; /* we have already generated the first two blocks */
/* Don't forget to generate the first block of addresses: */
if (data_independent_addressing) {
next_addresses(&address_block, &input_block);
}
}
/* Offset of the current block */
curr_offset = position.lane * instance->lane_length +
position.slice * instance->segment_length + starting_index;
if (0 == curr_offset % instance->lane_length) {
/* Last block in this lane */
prev_offset = curr_offset + instance->lane_length - 1;
} else {
/* Previous block */
prev_offset = curr_offset - 1;
}
memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);
for (i = starting_index; i < instance->segment_length;
++i, ++curr_offset, ++prev_offset) {
/*1.1 Rotating prev_offset if needed */
if (curr_offset % instance->lane_length == 1) {
prev_offset = curr_offset - 1;
}
/* 1.2 Computing the index of the reference block */
/* 1.2.1 Taking pseudo-random value from the previous block */
if (data_independent_addressing) {
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
next_addresses(&address_block, &input_block);
}
pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
} else {
pseudo_rand = instance->memory[prev_offset].v[0];
}
/* 1.2.2 Computing the lane of the reference block */
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
if ((position.pass == 0) && (position.slice == 0)) {
/* Can not reference other lanes yet */
ref_lane = position.lane;
}
/* 1.2.3 Computing the number of possible reference block within the
* lane.
*/
position.index = i;
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
ref_lane == position.lane);
/* 2 Creating a new block */
ref_block =
instance->memory + instance->lane_length * ref_lane + ref_index;
curr_block = instance->memory + curr_offset;
fill_block(state, ref_block, curr_block, 0);
}
}

View File

@@ -0,0 +1,57 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#if !defined(ARGON2_NO_THREADS)
#include "thread.h"
#if defined(_WIN32)
#include <windows.h>
#endif
int argon2_thread_create(argon2_thread_handle_t *handle,
argon2_thread_func_t func, void *args) {
if (NULL == handle || func == NULL) {
return -1;
}
#if defined(_WIN32)
*handle = _beginthreadex(NULL, 0, func, args, 0, NULL);
return *handle != 0 ? 0 : -1;
#else
return pthread_create(handle, NULL, func, args);
#endif
}
int argon2_thread_join(argon2_thread_handle_t handle) {
#if defined(_WIN32)
if (WaitForSingleObject((HANDLE)handle, INFINITE) == WAIT_OBJECT_0) {
return CloseHandle((HANDLE)handle) != 0 ? 0 : -1;
}
return -1;
#else
return pthread_join(handle, NULL);
#endif
}
void argon2_thread_exit(void) {
#if defined(_WIN32)
_endthreadex(0);
#else
pthread_exit(NULL);
#endif
}
#endif /* ARGON2_NO_THREADS */

View File

@@ -0,0 +1,67 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef ARGON2_THREAD_H
#define ARGON2_THREAD_H
#if !defined(ARGON2_NO_THREADS)
/*
Here we implement an abstraction layer for the simpĺe requirements
of the Argon2 code. We only require 3 primitives---thread creation,
joining, and termination---so full emulation of the pthreads API
is unwarranted. Currently we wrap pthreads and Win32 threads.
The API defines 2 types: the function pointer type,
argon2_thread_func_t,
and the type of the thread handle---argon2_thread_handle_t.
*/
#if defined(_WIN32)
#include <process.h>
typedef unsigned(__stdcall *argon2_thread_func_t)(void *);
typedef uintptr_t argon2_thread_handle_t;
#else
#include <pthread.h>
typedef void *(*argon2_thread_func_t)(void *);
typedef pthread_t argon2_thread_handle_t;
#endif
/* Creates a thread
* @param handle pointer to a thread handle, which is the output of this
* function. Must not be NULL.
* @param func A function pointer for the thread's entry point. Must not be
* NULL.
* @param args Pointer that is passed as an argument to @func. May be NULL.
* @return 0 if @handle and @func are valid pointers and a thread is successfuly
* created.
*/
int argon2_thread_create(argon2_thread_handle_t *handle,
argon2_thread_func_t func, void *args);
/* Waits for a thread to terminate
* @param handle Handle to a thread created with argon2_thread_create.
* @return 0 if @handle is a valid handle, and joining completed successfully.
*/
int argon2_thread_join(argon2_thread_handle_t handle);
/* Terminate the current thread. Must be run inside a thread created by
* argon2_thread_create.
*/
void argon2_thread_exit(void);
#endif /* ARGON2_NO_THREADS */
#endif

View File

@@ -0,0 +1,156 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef PORTABLE_BLAKE2_IMPL_H
#define PORTABLE_BLAKE2_IMPL_H
#include <stdint.h>
#include <string.h>
#if defined(_MSC_VER)
#define BLAKE2_INLINE __inline
#elif defined(__GNUC__) || defined(__clang__)
#define BLAKE2_INLINE __inline__
#else
#define BLAKE2_INLINE
#endif
/* Argon2 Team - Begin Code */
/*
Not an exhaustive list, but should cover the majority of modern platforms
Additionally, the code will always be correct---this is only a performance
tweak.
*/
#if (defined(__BYTE_ORDER__) && \
(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \
defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || defined(__MIPSEL__) || \
defined(__AARCH64EL__) || defined(__amd64__) || defined(__i386__) || \
defined(_M_IX86) || defined(_M_X64) || defined(_M_AMD64) || \
defined(_M_ARM)
#define NATIVE_LITTLE_ENDIAN
#endif
/* Argon2 Team - End Code */
static BLAKE2_INLINE uint32_t load32(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint32_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint32_t w = *p++;
w |= (uint32_t)(*p++) << 8;
w |= (uint32_t)(*p++) << 16;
w |= (uint32_t)(*p++) << 24;
return w;
#endif
}
static BLAKE2_INLINE uint64_t load64(const void *src) {
#if defined(NATIVE_LITTLE_ENDIAN)
uint64_t w;
memcpy(&w, src, sizeof w);
return w;
#else
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
w |= (uint64_t)(*p++) << 48;
w |= (uint64_t)(*p++) << 56;
return w;
#endif
}
static BLAKE2_INLINE void store32(void *dst, uint32_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE void store64(void *dst, uint64_t w) {
#if defined(NATIVE_LITTLE_ENDIAN)
memcpy(dst, &w, sizeof w);
#else
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
#endif
}
static BLAKE2_INLINE uint64_t load48(const void *src) {
const uint8_t *p = (const uint8_t *)src;
uint64_t w = *p++;
w |= (uint64_t)(*p++) << 8;
w |= (uint64_t)(*p++) << 16;
w |= (uint64_t)(*p++) << 24;
w |= (uint64_t)(*p++) << 32;
w |= (uint64_t)(*p++) << 40;
return w;
}
static BLAKE2_INLINE void store48(void *dst, uint64_t w) {
uint8_t *p = (uint8_t *)dst;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
w >>= 8;
*p++ = (uint8_t)w;
}
static BLAKE2_INLINE uint32_t rotr32(const uint32_t w, const unsigned c) {
return (w >> c) | (w << (32 - c));
}
static BLAKE2_INLINE uint64_t rotr64(const uint64_t w, const unsigned c) {
return (w >> c) | (w << (64 - c));
}
void clear_internal_memory(void *v, size_t n);
#endif

View File

@@ -0,0 +1,91 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef PORTABLE_BLAKE2_H
#define PORTABLE_BLAKE2_H
#include <stddef.h>
#include <stdint.h>
#include <limits.h>
#if defined(__cplusplus)
extern "C" {
#endif
enum blake2b_constant {
BLAKE2B_BLOCKBYTES = 128,
BLAKE2B_OUTBYTES = 64,
BLAKE2B_KEYBYTES = 64,
BLAKE2B_SALTBYTES = 16,
BLAKE2B_PERSONALBYTES = 16
};
#pragma pack(push, 1)
typedef struct __blake2b_param {
uint8_t digest_length; /* 1 */
uint8_t key_length; /* 2 */
uint8_t fanout; /* 3 */
uint8_t depth; /* 4 */
uint32_t leaf_length; /* 8 */
uint64_t node_offset; /* 16 */
uint8_t node_depth; /* 17 */
uint8_t inner_length; /* 18 */
uint8_t reserved[14]; /* 32 */
uint8_t salt[BLAKE2B_SALTBYTES]; /* 48 */
uint8_t personal[BLAKE2B_PERSONALBYTES]; /* 64 */
} blake2b_param;
#pragma pack(pop)
typedef struct __blake2b_state {
uint64_t h[8];
uint64_t t[2];
uint64_t f[2];
uint8_t buf[BLAKE2B_BLOCKBYTES];
unsigned buflen;
unsigned outlen;
uint8_t last_node;
} blake2b_state;
/* Ensure param structs have not been wrongly padded */
/* Poor man's static_assert */
enum {
blake2_size_check_0 = 1 / !!(CHAR_BIT == 8),
blake2_size_check_2 =
1 / !!(sizeof(blake2b_param) == sizeof(uint64_t) * CHAR_BIT)
};
/* Streaming API */
int blake2b_init(blake2b_state *S, size_t outlen);
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen);
int blake2b_init_param(blake2b_state *S, const blake2b_param *P);
int blake2b_update(blake2b_state *S, const void *in, size_t inlen);
int blake2b_final(blake2b_state *S, void *out, size_t outlen);
/* Simple API */
int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
const void *key, size_t keylen);
/* Argon2 Team - Begin Code */
int blake2b_long(void *out, size_t outlen, const void *in, size_t inlen);
/* Argon2 Team - End Code */
#if defined(__cplusplus)
}
#endif
#endif

View File

@@ -0,0 +1,390 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "blake2.h"
#include "blake2-impl.h"
static const uint64_t blake2b_IV[8] = {
UINT64_C(0x6a09e667f3bcc908), UINT64_C(0xbb67ae8584caa73b),
UINT64_C(0x3c6ef372fe94f82b), UINT64_C(0xa54ff53a5f1d36f1),
UINT64_C(0x510e527fade682d1), UINT64_C(0x9b05688c2b3e6c1f),
UINT64_C(0x1f83d9abfb41bd6b), UINT64_C(0x5be0cd19137e2179)};
static const unsigned int blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
static BLAKE2_INLINE void blake2b_set_lastnode(blake2b_state *S) {
S->f[1] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_set_lastblock(blake2b_state *S) {
if (S->last_node) {
blake2b_set_lastnode(S);
}
S->f[0] = (uint64_t)-1;
}
static BLAKE2_INLINE void blake2b_increment_counter(blake2b_state *S,
uint64_t inc) {
S->t[0] += inc;
S->t[1] += (S->t[0] < inc);
}
static BLAKE2_INLINE void blake2b_invalidate_state(blake2b_state *S) {
clear_internal_memory(S, sizeof(*S)); /* wipe */
blake2b_set_lastblock(S); /* invalidate for further use */
}
static BLAKE2_INLINE void blake2b_init0(blake2b_state *S) {
memset(S, 0, sizeof(*S));
memcpy(S->h, blake2b_IV, sizeof(S->h));
}
int blake2b_init_param(blake2b_state *S, const blake2b_param *P) {
const unsigned char *p = (const unsigned char *)P;
unsigned int i;
if (NULL == P || NULL == S) {
return -1;
}
blake2b_init0(S);
/* IV XOR Parameter Block */
for (i = 0; i < 8; ++i) {
S->h[i] ^= load64(&p[i * sizeof(S->h[i])]);
}
S->outlen = P->digest_length;
return 0;
}
/* Sequential blake2b initialization */
int blake2b_init(blake2b_state *S, size_t outlen) {
blake2b_param P;
if (S == NULL) {
return -1;
}
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
/* Setup Parameter Block for unkeyed BLAKE2 */
P.digest_length = (uint8_t)outlen;
P.key_length = 0;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
memset(P.reserved, 0, sizeof(P.reserved));
memset(P.salt, 0, sizeof(P.salt));
memset(P.personal, 0, sizeof(P.personal));
return blake2b_init_param(S, &P);
}
int blake2b_init_key(blake2b_state *S, size_t outlen, const void *key,
size_t keylen) {
blake2b_param P;
if (S == NULL) {
return -1;
}
if ((outlen == 0) || (outlen > BLAKE2B_OUTBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
if ((key == 0) || (keylen == 0) || (keylen > BLAKE2B_KEYBYTES)) {
blake2b_invalidate_state(S);
return -1;
}
/* Setup Parameter Block for keyed BLAKE2 */
P.digest_length = (uint8_t)outlen;
P.key_length = (uint8_t)keylen;
P.fanout = 1;
P.depth = 1;
P.leaf_length = 0;
P.node_offset = 0;
P.node_depth = 0;
P.inner_length = 0;
memset(P.reserved, 0, sizeof(P.reserved));
memset(P.salt, 0, sizeof(P.salt));
memset(P.personal, 0, sizeof(P.personal));
if (blake2b_init_param(S, &P) < 0) {
blake2b_invalidate_state(S);
return -1;
}
{
uint8_t block[BLAKE2B_BLOCKBYTES];
memset(block, 0, BLAKE2B_BLOCKBYTES);
memcpy(block, key, keylen);
blake2b_update(S, block, BLAKE2B_BLOCKBYTES);
/* Burn the key from stack */
clear_internal_memory(block, BLAKE2B_BLOCKBYTES);
}
return 0;
}
static void blake2b_compress(blake2b_state *S, const uint8_t *block) {
uint64_t m[16];
uint64_t v[16];
unsigned int i, r;
for (i = 0; i < 16; ++i) {
m[i] = load64(block + i * sizeof(m[i]));
}
for (i = 0; i < 8; ++i) {
v[i] = S->h[i];
}
v[8] = blake2b_IV[0];
v[9] = blake2b_IV[1];
v[10] = blake2b_IV[2];
v[11] = blake2b_IV[3];
v[12] = blake2b_IV[4] ^ S->t[0];
v[13] = blake2b_IV[5] ^ S->t[1];
v[14] = blake2b_IV[6] ^ S->f[0];
v[15] = blake2b_IV[7] ^ S->f[1];
#define G(r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define ROUND(r) \
do { \
G(r, 0, v[0], v[4], v[8], v[12]); \
G(r, 1, v[1], v[5], v[9], v[13]); \
G(r, 2, v[2], v[6], v[10], v[14]); \
G(r, 3, v[3], v[7], v[11], v[15]); \
G(r, 4, v[0], v[5], v[10], v[15]); \
G(r, 5, v[1], v[6], v[11], v[12]); \
G(r, 6, v[2], v[7], v[8], v[13]); \
G(r, 7, v[3], v[4], v[9], v[14]); \
} while ((void)0, 0)
for (r = 0; r < 12; ++r) {
ROUND(r);
}
for (i = 0; i < 8; ++i) {
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
}
#undef G
#undef ROUND
}
int blake2b_update(blake2b_state *S, const void *in, size_t inlen) {
const uint8_t *pin = (const uint8_t *)in;
if (inlen == 0) {
return 0;
}
/* Sanity check */
if (S == NULL || in == NULL) {
return -1;
}
/* Is this a reused state? */
if (S->f[0] != 0) {
return -1;
}
if (S->buflen + inlen > BLAKE2B_BLOCKBYTES) {
/* Complete current block */
size_t left = S->buflen;
size_t fill = BLAKE2B_BLOCKBYTES - left;
memcpy(&S->buf[left], pin, fill);
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, S->buf);
S->buflen = 0;
inlen -= fill;
pin += fill;
/* Avoid buffer copies when possible */
while (inlen > BLAKE2B_BLOCKBYTES) {
blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES);
blake2b_compress(S, pin);
inlen -= BLAKE2B_BLOCKBYTES;
pin += BLAKE2B_BLOCKBYTES;
}
}
memcpy(&S->buf[S->buflen], pin, inlen);
S->buflen += (unsigned int)inlen;
return 0;
}
int blake2b_final(blake2b_state *S, void *out, size_t outlen) {
uint8_t buffer[BLAKE2B_OUTBYTES] = {0};
unsigned int i;
/* Sanity checks */
if (S == NULL || out == NULL || outlen < S->outlen) {
return -1;
}
/* Is this a reused state? */
if (S->f[0] != 0) {
return -1;
}
blake2b_increment_counter(S, S->buflen);
blake2b_set_lastblock(S);
memset(&S->buf[S->buflen], 0, BLAKE2B_BLOCKBYTES - S->buflen); /* Padding */
blake2b_compress(S, S->buf);
for (i = 0; i < 8; ++i) { /* Output full hash to temp buffer */
store64(buffer + sizeof(S->h[i]) * i, S->h[i]);
}
memcpy(out, buffer, S->outlen);
clear_internal_memory(buffer, sizeof(buffer));
clear_internal_memory(S->buf, sizeof(S->buf));
clear_internal_memory(S->h, sizeof(S->h));
return 0;
}
int blake2b(void *out, size_t outlen, const void *in, size_t inlen,
const void *key, size_t keylen) {
blake2b_state S;
int ret = -1;
/* Verify parameters */
if (NULL == in && inlen > 0) {
goto fail;
}
if (NULL == out || outlen == 0 || outlen > BLAKE2B_OUTBYTES) {
goto fail;
}
if ((NULL == key && keylen > 0) || keylen > BLAKE2B_KEYBYTES) {
goto fail;
}
if (keylen > 0) {
if (blake2b_init_key(&S, outlen, key, keylen) < 0) {
goto fail;
}
} else {
if (blake2b_init(&S, outlen) < 0) {
goto fail;
}
}
if (blake2b_update(&S, in, inlen) < 0) {
goto fail;
}
ret = blake2b_final(&S, out, outlen);
fail:
clear_internal_memory(&S, sizeof(S));
return ret;
}
/* Argon2 Team - Begin Code */
int blake2b_long(void *pout, size_t outlen, const void *in, size_t inlen) {
uint8_t *out = (uint8_t *)pout;
blake2b_state blake_state;
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
int ret = -1;
if (outlen > UINT32_MAX) {
goto fail;
}
/* Ensure little-endian byte order! */
store32(outlen_bytes, (uint32_t)outlen);
#define TRY(statement) \
do { \
ret = statement; \
if (ret < 0) { \
goto fail; \
} \
} while ((void)0, 0)
if (outlen <= BLAKE2B_OUTBYTES) {
TRY(blake2b_init(&blake_state, outlen));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, in, inlen));
TRY(blake2b_final(&blake_state, out, outlen));
} else {
uint32_t toproduce;
uint8_t out_buffer[BLAKE2B_OUTBYTES];
uint8_t in_buffer[BLAKE2B_OUTBYTES];
TRY(blake2b_init(&blake_state, BLAKE2B_OUTBYTES));
TRY(blake2b_update(&blake_state, outlen_bytes, sizeof(outlen_bytes)));
TRY(blake2b_update(&blake_state, in, inlen));
TRY(blake2b_final(&blake_state, out_buffer, BLAKE2B_OUTBYTES));
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce = (uint32_t)outlen - BLAKE2B_OUTBYTES / 2;
while (toproduce > BLAKE2B_OUTBYTES) {
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, BLAKE2B_OUTBYTES, in_buffer,
BLAKE2B_OUTBYTES, NULL, 0));
memcpy(out, out_buffer, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
toproduce -= BLAKE2B_OUTBYTES / 2;
}
memcpy(in_buffer, out_buffer, BLAKE2B_OUTBYTES);
TRY(blake2b(out_buffer, toproduce, in_buffer, BLAKE2B_OUTBYTES, NULL,
0));
memcpy(out, out_buffer, toproduce);
}
fail:
clear_internal_memory(&blake_state, sizeof(blake_state));
return ret;
#undef TRY
}
/* Argon2 Team - End Code */

View File

@@ -0,0 +1,180 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef BLAKE_ROUND_MKA_OPT_H
#define BLAKE_ROUND_MKA_OPT_H
#include "blake2-impl.h"
#include <emmintrin.h>
#if defined(__SSSE3__)
#include <tmmintrin.h> /* for _mm_shuffle_epi8 and _mm_alignr_epi8 */
#endif
#if defined(__XOP__) && (defined(__GNUC__) || defined(__clang__))
#include <x86intrin.h>
#endif
#if !defined(__XOP__)
#if defined(__SSSE3__)
#define r16 \
(_mm_setr_epi8(2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9))
#define r24 \
(_mm_setr_epi8(3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10))
#define _mm_roti_epi64(x, c) \
(-(c) == 32) \
? _mm_shuffle_epi32((x), _MM_SHUFFLE(2, 3, 0, 1)) \
: (-(c) == 24) \
? _mm_shuffle_epi8((x), r24) \
: (-(c) == 16) \
? _mm_shuffle_epi8((x), r16) \
: (-(c) == 63) \
? _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
_mm_add_epi64((x), (x))) \
: _mm_xor_si128(_mm_srli_epi64((x), -(c)), \
_mm_slli_epi64((x), 64 - (-(c))))
#else /* defined(__SSE2__) */
#define _mm_roti_epi64(r, c) \
_mm_xor_si128(_mm_srli_epi64((r), -(c)), _mm_slli_epi64((r), 64 - (-(c))))
#endif
#else
#endif
static BLAKE2_INLINE __m128i fBlaMka(__m128i x, __m128i y) {
const __m128i z = _mm_mul_epu32(x, y);
return _mm_add_epi64(_mm_add_epi64(x, y), _mm_add_epi64(z, z));
}
#define G1(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
A0 = fBlaMka(A0, B0); \
A1 = fBlaMka(A1, B1); \
\
D0 = _mm_xor_si128(D0, A0); \
D1 = _mm_xor_si128(D1, A1); \
\
D0 = _mm_roti_epi64(D0, -32); \
D1 = _mm_roti_epi64(D1, -32); \
\
C0 = fBlaMka(C0, D0); \
C1 = fBlaMka(C1, D1); \
\
B0 = _mm_xor_si128(B0, C0); \
B1 = _mm_xor_si128(B1, C1); \
\
B0 = _mm_roti_epi64(B0, -24); \
B1 = _mm_roti_epi64(B1, -24); \
} while ((void)0, 0)
#define G2(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
A0 = fBlaMka(A0, B0); \
A1 = fBlaMka(A1, B1); \
\
D0 = _mm_xor_si128(D0, A0); \
D1 = _mm_xor_si128(D1, A1); \
\
D0 = _mm_roti_epi64(D0, -16); \
D1 = _mm_roti_epi64(D1, -16); \
\
C0 = fBlaMka(C0, D0); \
C1 = fBlaMka(C1, D1); \
\
B0 = _mm_xor_si128(B0, C0); \
B1 = _mm_xor_si128(B1, C1); \
\
B0 = _mm_roti_epi64(B0, -63); \
B1 = _mm_roti_epi64(B1, -63); \
} while ((void)0, 0)
#if defined(__SSSE3__)
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = _mm_alignr_epi8(B1, B0, 8); \
__m128i t1 = _mm_alignr_epi8(B0, B1, 8); \
B0 = t0; \
B1 = t1; \
\
t0 = C0; \
C0 = C1; \
C1 = t0; \
\
t0 = _mm_alignr_epi8(D1, D0, 8); \
t1 = _mm_alignr_epi8(D0, D1, 8); \
D0 = t1; \
D1 = t0; \
} while ((void)0, 0)
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = _mm_alignr_epi8(B0, B1, 8); \
__m128i t1 = _mm_alignr_epi8(B1, B0, 8); \
B0 = t0; \
B1 = t1; \
\
t0 = C0; \
C0 = C1; \
C1 = t0; \
\
t0 = _mm_alignr_epi8(D0, D1, 8); \
t1 = _mm_alignr_epi8(D1, D0, 8); \
D0 = t1; \
D1 = t0; \
} while ((void)0, 0)
#else /* SSE2 */
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0 = D0; \
__m128i t1 = B0; \
D0 = C0; \
C0 = C1; \
C1 = D0; \
D0 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t0, t0)); \
D1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(D1, D1)); \
B0 = _mm_unpackhi_epi64(B0, _mm_unpacklo_epi64(B1, B1)); \
B1 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(t1, t1)); \
} while ((void)0, 0)
#define UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \
do { \
__m128i t0, t1; \
t0 = C0; \
C0 = C1; \
C1 = t0; \
t0 = B0; \
t1 = D0; \
B0 = _mm_unpackhi_epi64(B1, _mm_unpacklo_epi64(B0, B0)); \
B1 = _mm_unpackhi_epi64(t0, _mm_unpacklo_epi64(B1, B1)); \
D0 = _mm_unpackhi_epi64(D0, _mm_unpacklo_epi64(D1, D1)); \
D1 = _mm_unpackhi_epi64(D1, _mm_unpacklo_epi64(t1, t1)); \
} while ((void)0, 0)
#endif
#define BLAKE2_ROUND(A0, A1, B0, B1, C0, C1, D0, D1) \
do { \
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
\
DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
\
G1(A0, B0, C0, D0, A1, B1, C1, D1); \
G2(A0, B0, C0, D0, A1, B1, C1, D1); \
\
UNDIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1); \
} while ((void)0, 0)
#endif

View File

@@ -0,0 +1,56 @@
/*
* Argon2 reference source code package - reference C implementations
*
* Copyright 2015
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*
* You may use this work under the terms of a Creative Commons CC0 1.0
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
* these licenses can be found at:
*
* - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0
* - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0
*
* You should have received a copy of both of these licenses along with this
* software. If not, they may be obtained at the above URLs.
*/
#ifndef BLAKE_ROUND_MKA_H
#define BLAKE_ROUND_MKA_H
#include "blake2.h"
#include "blake2-impl.h"
/*designed by the Lyra PHC team */
static BLAKE2_INLINE uint64_t fBlaMka(uint64_t x, uint64_t y) {
const uint64_t m = UINT64_C(0xFFFFFFFF);
const uint64_t xy = (x & m) * (y & m);
return x + y + 2 * xy;
}
#define G(a, b, c, d) \
do { \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 32); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 24); \
a = fBlaMka(a, b); \
d = rotr64(d ^ a, 16); \
c = fBlaMka(c, d); \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define BLAKE2_ROUND_NOMSG(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
v12, v13, v14, v15) \
do { \
G(v0, v4, v8, v12); \
G(v1, v5, v9, v13); \
G(v2, v6, v10, v14); \
G(v3, v7, v11, v15); \
G(v0, v5, v10, v15); \
G(v1, v6, v11, v12); \
G(v2, v7, v8, v13); \
G(v3, v4, v9, v14); \
} while ((void)0, 0)
#endif