mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
v3.9.5.3
This commit is contained in:
@@ -38,6 +38,15 @@ supported.
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.9.5.3
|
||||
|
||||
Fix crash mining hodl with aes-sse42.
|
||||
More restructuring and share report tweaks.
|
||||
|
||||
v3.9.5.2
|
||||
|
||||
Revert bswap-interleave optiization for causing crashes on Windows.
|
||||
|
||||
v3.9.5.1
|
||||
|
||||
Fixed skein2 crash on Windows.
|
||||
|
@@ -412,34 +412,16 @@ do { \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm_xor_si128( S0, _mm_set_epi32( CS0, CS0, CS0, CS0 ) ); \
|
||||
V9 = _mm_xor_si128( S1, _mm_set_epi32( CS1, CS1, CS1, CS1 ) ); \
|
||||
VA = _mm_xor_si128( S2, _mm_set_epi32( CS2, CS2, CS2, CS2 ) ); \
|
||||
VB = _mm_xor_si128( S3, _mm_set_epi32( CS3, CS3, CS3, CS3 ) ); \
|
||||
VC = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
|
||||
_mm_set_epi32( CS4, CS4, CS4, CS4 ) ); \
|
||||
VD = _mm_xor_si128( _mm_set_epi32( T0, T0, T0, T0 ), \
|
||||
_mm_set_epi32( CS5, CS5, CS5, CS5 ) ); \
|
||||
VE = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ) \
|
||||
, _mm_set_epi32( CS6, CS6, CS6, CS6 ) ); \
|
||||
VF = _mm_xor_si128( _mm_set_epi32( T1, T1, T1, T1 ), \
|
||||
_mm_set_epi32( CS7, CS7, CS7, CS7 ) ); \
|
||||
M[0x0] = mm128_bswap_32( *(buf + 0) ); \
|
||||
M[0x1] = mm128_bswap_32( *(buf + 1) ); \
|
||||
M[0x2] = mm128_bswap_32( *(buf + 2) ); \
|
||||
M[0x3] = mm128_bswap_32( *(buf + 3) ); \
|
||||
M[0x4] = mm128_bswap_32( *(buf + 4) ); \
|
||||
M[0x5] = mm128_bswap_32( *(buf + 5) ); \
|
||||
M[0x6] = mm128_bswap_32( *(buf + 6) ); \
|
||||
M[0x7] = mm128_bswap_32( *(buf + 7) ); \
|
||||
M[0x8] = mm128_bswap_32( *(buf + 8) ); \
|
||||
M[0x9] = mm128_bswap_32( *(buf + 9) ); \
|
||||
M[0xA] = mm128_bswap_32( *(buf + 10) ); \
|
||||
M[0xB] = mm128_bswap_32( *(buf + 11) ); \
|
||||
M[0xC] = mm128_bswap_32( *(buf + 12) ); \
|
||||
M[0xD] = mm128_bswap_32( *(buf + 13) ); \
|
||||
M[0xE] = mm128_bswap_32( *(buf + 14) ); \
|
||||
M[0xF] = mm128_bswap_32( *(buf + 15) ); \
|
||||
V8 = _mm_xor_si128( S0, _mm_set1_epi32( CS0 ) ); \
|
||||
V9 = _mm_xor_si128( S1, _mm_set1_epi32( CS1 ) ); \
|
||||
VA = _mm_xor_si128( S2, _mm_set1_epi32( CS2 ) ); \
|
||||
VB = _mm_xor_si128( S3, _mm_set1_epi32( CS3 ) ); \
|
||||
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \
|
||||
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
|
||||
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
|
||||
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
|
||||
mm128_block_bswap_32( M, buf ); \
|
||||
mm128_block_bswap_32( M+8, buf+8 ); \
|
||||
for (r = 0; r < rounds; r ++) \
|
||||
ROUND_S_4WAY(r); \
|
||||
H0 = _mm_xor_si128( _mm_xor_si128( \
|
||||
@@ -464,6 +446,54 @@ do { \
|
||||
|
||||
// current impl
|
||||
|
||||
#if defined(__SSSE3__)
|
||||
|
||||
#define BLAKE256_4WAY_BLOCK_BSWAP32 do \
|
||||
{ \
|
||||
__m128i shuf_bswap32 = _mm_set_epi64x( 0x0c0d0e0f08090a0b, \
|
||||
0x0405060700010203 ); \
|
||||
M0 = _mm_shuffle_epi8( buf[ 0], shuf_bswap32 ); \
|
||||
M1 = _mm_shuffle_epi8( buf[ 1], shuf_bswap32 ); \
|
||||
M2 = _mm_shuffle_epi8( buf[ 2], shuf_bswap32 ); \
|
||||
M3 = _mm_shuffle_epi8( buf[ 3], shuf_bswap32 ); \
|
||||
M4 = _mm_shuffle_epi8( buf[ 4], shuf_bswap32 ); \
|
||||
M5 = _mm_shuffle_epi8( buf[ 5], shuf_bswap32 ); \
|
||||
M6 = _mm_shuffle_epi8( buf[ 6], shuf_bswap32 ); \
|
||||
M7 = _mm_shuffle_epi8( buf[ 7], shuf_bswap32 ); \
|
||||
M8 = _mm_shuffle_epi8( buf[ 8], shuf_bswap32 ); \
|
||||
M9 = _mm_shuffle_epi8( buf[ 9], shuf_bswap32 ); \
|
||||
MA = _mm_shuffle_epi8( buf[10], shuf_bswap32 ); \
|
||||
MB = _mm_shuffle_epi8( buf[11], shuf_bswap32 ); \
|
||||
MC = _mm_shuffle_epi8( buf[12], shuf_bswap32 ); \
|
||||
MD = _mm_shuffle_epi8( buf[13], shuf_bswap32 ); \
|
||||
ME = _mm_shuffle_epi8( buf[14], shuf_bswap32 ); \
|
||||
MF = _mm_shuffle_epi8( buf[15], shuf_bswap32 ); \
|
||||
} while(0)
|
||||
|
||||
#else // SSE2
|
||||
|
||||
#define BLAKE256_4WAY_BLOCK_BSWAP32 do \
|
||||
{ \
|
||||
M0 = mm128_bswap_32( buf[0] ); \
|
||||
M1 = mm128_bswap_32( buf[1] ); \
|
||||
M2 = mm128_bswap_32( buf[2] ); \
|
||||
M3 = mm128_bswap_32( buf[3] ); \
|
||||
M4 = mm128_bswap_32( buf[4] ); \
|
||||
M5 = mm128_bswap_32( buf[5] ); \
|
||||
M6 = mm128_bswap_32( buf[6] ); \
|
||||
M7 = mm128_bswap_32( buf[7] ); \
|
||||
M8 = mm128_bswap_32( buf[8] ); \
|
||||
M9 = mm128_bswap_32( buf[9] ); \
|
||||
MA = mm128_bswap_32( buf[10] ); \
|
||||
MB = mm128_bswap_32( buf[11] ); \
|
||||
MC = mm128_bswap_32( buf[12] ); \
|
||||
MD = mm128_bswap_32( buf[13] ); \
|
||||
ME = mm128_bswap_32( buf[14] ); \
|
||||
MF = mm128_bswap_32( buf[15] ); \
|
||||
} while(0)
|
||||
|
||||
#endif // SSSE3 else SSE2
|
||||
|
||||
#define COMPRESS32_4WAY( rounds ) \
|
||||
do { \
|
||||
__m128i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
@@ -486,22 +516,7 @@ do { \
|
||||
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
|
||||
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
|
||||
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
|
||||
M0 = mm128_bswap_32( buf[ 0] ); \
|
||||
M1 = mm128_bswap_32( buf[ 1] ); \
|
||||
M2 = mm128_bswap_32( buf[ 2] ); \
|
||||
M3 = mm128_bswap_32( buf[ 3] ); \
|
||||
M4 = mm128_bswap_32( buf[ 4] ); \
|
||||
M5 = mm128_bswap_32( buf[ 5] ); \
|
||||
M6 = mm128_bswap_32( buf[ 6] ); \
|
||||
M7 = mm128_bswap_32( buf[ 7] ); \
|
||||
M8 = mm128_bswap_32( buf[ 8] ); \
|
||||
M9 = mm128_bswap_32( buf[ 9] ); \
|
||||
MA = mm128_bswap_32( buf[10] ); \
|
||||
MB = mm128_bswap_32( buf[11] ); \
|
||||
MC = mm128_bswap_32( buf[12] ); \
|
||||
MD = mm128_bswap_32( buf[13] ); \
|
||||
ME = mm128_bswap_32( buf[14] ); \
|
||||
MF = mm128_bswap_32( buf[15] ); \
|
||||
BLAKE256_4WAY_BLOCK_BSWAP32; \
|
||||
ROUND_S_4WAY(0); \
|
||||
ROUND_S_4WAY(1); \
|
||||
ROUND_S_4WAY(2); \
|
||||
@@ -519,14 +534,14 @@ do { \
|
||||
ROUND_S_4WAY(2); \
|
||||
ROUND_S_4WAY(3); \
|
||||
} \
|
||||
H0 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V8, V0 ), S0 ), H0 ); \
|
||||
H1 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( V9, V1 ), S1 ), H1 ); \
|
||||
H2 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VA, V2 ), S2 ), H2 ); \
|
||||
H3 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VB, V3 ), S3 ), H3 ); \
|
||||
H4 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VC, V4 ), S0 ), H4 ); \
|
||||
H5 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VD, V5 ), S1 ), H5 ); \
|
||||
H6 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VE, V6 ), S2 ), H6 ); \
|
||||
H7 = _mm_xor_si128( _mm_xor_si128( _mm_xor_si128( VF, V7 ), S3 ), H7 ); \
|
||||
H0 = mm128_xor4( V8, V0, S0, H0 ); \
|
||||
H1 = mm128_xor4( V9, V1, S1, H1 ); \
|
||||
H2 = mm128_xor4( VA, V2, S2, H2 ); \
|
||||
H3 = mm128_xor4( VB, V3, S3, H3 ); \
|
||||
H4 = mm128_xor4( VC, V4, S0, H4 ); \
|
||||
H5 = mm128_xor4( VD, V5, S1, H5 ); \
|
||||
H6 = mm128_xor4( VE, V6, S2, H6 ); \
|
||||
H7 = mm128_xor4( VF, V7, S3, H7 ); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
@@ -607,6 +622,7 @@ do { \
|
||||
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
__m256i shuf_bswap32; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
@@ -623,22 +639,24 @@ do { \
|
||||
VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS7 ) ); \
|
||||
M0 = mm256_bswap_32( * buf ); \
|
||||
M1 = mm256_bswap_32( *(buf+1) ); \
|
||||
M2 = mm256_bswap_32( *(buf+2) ); \
|
||||
M3 = mm256_bswap_32( *(buf+3) ); \
|
||||
M4 = mm256_bswap_32( *(buf+4) ); \
|
||||
M5 = mm256_bswap_32( *(buf+5) ); \
|
||||
M6 = mm256_bswap_32( *(buf+6) ); \
|
||||
M7 = mm256_bswap_32( *(buf+7) ); \
|
||||
M8 = mm256_bswap_32( *(buf+8) ); \
|
||||
M9 = mm256_bswap_32( *(buf+9) ); \
|
||||
MA = mm256_bswap_32( *(buf+10) ); \
|
||||
MB = mm256_bswap_32( *(buf+11) ); \
|
||||
MC = mm256_bswap_32( *(buf+12) ); \
|
||||
MD = mm256_bswap_32( *(buf+13) ); \
|
||||
ME = mm256_bswap_32( *(buf+14) ); \
|
||||
MF = mm256_bswap_32( *(buf+15) ); \
|
||||
shuf_bswap32 = _mm256_set_epi64x( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
|
||||
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
|
||||
M0 = _mm256_shuffle_epi8( * buf , shuf_bswap32 ); \
|
||||
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
|
||||
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
|
||||
M3 = _mm256_shuffle_epi8( *(buf+ 3), shuf_bswap32 ); \
|
||||
M4 = _mm256_shuffle_epi8( *(buf+ 4), shuf_bswap32 ); \
|
||||
M5 = _mm256_shuffle_epi8( *(buf+ 5), shuf_bswap32 ); \
|
||||
M6 = _mm256_shuffle_epi8( *(buf+ 6), shuf_bswap32 ); \
|
||||
M7 = _mm256_shuffle_epi8( *(buf+ 7), shuf_bswap32 ); \
|
||||
M8 = _mm256_shuffle_epi8( *(buf+ 8), shuf_bswap32 ); \
|
||||
M9 = _mm256_shuffle_epi8( *(buf+ 9), shuf_bswap32 ); \
|
||||
MA = _mm256_shuffle_epi8( *(buf+10), shuf_bswap32 ); \
|
||||
MB = _mm256_shuffle_epi8( *(buf+11), shuf_bswap32 ); \
|
||||
MC = _mm256_shuffle_epi8( *(buf+12), shuf_bswap32 ); \
|
||||
MD = _mm256_shuffle_epi8( *(buf+13), shuf_bswap32 ); \
|
||||
ME = _mm256_shuffle_epi8( *(buf+14), shuf_bswap32 ); \
|
||||
MF = _mm256_shuffle_epi8( *(buf+15), shuf_bswap32 ); \
|
||||
ROUND_S_8WAY(0); \
|
||||
ROUND_S_8WAY(1); \
|
||||
ROUND_S_8WAY(2); \
|
||||
@@ -656,22 +674,14 @@ do { \
|
||||
ROUND_S_8WAY(2); \
|
||||
ROUND_S_8WAY(3); \
|
||||
} \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V8, V0 ), \
|
||||
S0 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( V9, V1 ), \
|
||||
S1 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VA, V2 ), \
|
||||
S2 ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VB, V3 ), \
|
||||
S3 ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VC, V4 ), \
|
||||
S0 ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VD, V5 ), \
|
||||
S1 ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VE, V6 ), \
|
||||
S2 ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( _mm256_xor_si256( VF, V7 ), \
|
||||
S3 ), H7 ); \
|
||||
H0 = mm256_xor4( V8, V0, S0, H0 ); \
|
||||
H1 = mm256_xor4( V9, V1, S1, H1 ); \
|
||||
H2 = mm256_xor4( VA, V2, S2, H2 ); \
|
||||
H3 = mm256_xor4( VB, V3, S3, H3 ); \
|
||||
H4 = mm256_xor4( VC, V4, S0, H4 ); \
|
||||
H5 = mm256_xor4( VD, V5, S1, H5 ); \
|
||||
H6 = mm256_xor4( VE, V6, S2, H6 ); \
|
||||
H7 = mm256_xor4( VF, V7, S3, H7 ); \
|
||||
} while (0)
|
||||
|
||||
|
||||
@@ -685,6 +695,7 @@ static void
|
||||
blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
|
||||
const uint32_t *salt, int rounds )
|
||||
{
|
||||
__m128i zero = m128_zero;
|
||||
casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] );
|
||||
casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] );
|
||||
casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] );
|
||||
@@ -694,16 +705,10 @@ blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
|
||||
casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] );
|
||||
casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] );
|
||||
|
||||
casti_m128i( ctx->S, 0 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 1 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 2 ) = m128_zero;
|
||||
casti_m128i( ctx->S, 3 ) = m128_zero;
|
||||
/*
|
||||
sc->S[0] = _mm_set1_epi32( salt[0] );
|
||||
sc->S[1] = _mm_set1_epi32( salt[1] );
|
||||
sc->S[2] = _mm_set1_epi32( salt[2] );
|
||||
sc->S[3] = _mm_set1_epi32( salt[3] );
|
||||
*/
|
||||
casti_m128i( ctx->S, 0 ) = zero;
|
||||
casti_m128i( ctx->S, 1 ) = zero;
|
||||
casti_m128i( ctx->S, 2 ) = zero;
|
||||
casti_m128i( ctx->S, 3 ) = zero;
|
||||
ctx->T0 = ctx->T1 = 0;
|
||||
ctx->ptr = 0;
|
||||
ctx->rounds = rounds;
|
||||
@@ -796,14 +801,7 @@ blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n,
|
||||
blake32_4way( ctx, buf, 64 );
|
||||
}
|
||||
|
||||
casti_m128i( dst, 0 ) = mm128_bswap_32( casti_m128i( ctx->H, 0 ) );
|
||||
casti_m128i( dst, 1 ) = mm128_bswap_32( casti_m128i( ctx->H, 1 ) );
|
||||
casti_m128i( dst, 2 ) = mm128_bswap_32( casti_m128i( ctx->H, 2 ) );
|
||||
casti_m128i( dst, 3 ) = mm128_bswap_32( casti_m128i( ctx->H, 3 ) );
|
||||
casti_m128i( dst, 4 ) = mm128_bswap_32( casti_m128i( ctx->H, 4 ) );
|
||||
casti_m128i( dst, 5 ) = mm128_bswap_32( casti_m128i( ctx->H, 5 ) );
|
||||
casti_m128i( dst, 6 ) = mm128_bswap_32( casti_m128i( ctx->H, 6 ) );
|
||||
casti_m128i( dst, 7 ) = mm128_bswap_32( casti_m128i( ctx->H, 7 ) );
|
||||
mm128_block_bswap_32( (__m128i*)dst, (__m128i*)ctx->H );
|
||||
}
|
||||
|
||||
#if defined (__AVX2__)
|
||||
@@ -816,11 +814,21 @@ static void
|
||||
blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
|
||||
const sph_u32 *salt, int rounds )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < 8; i++ )
|
||||
sc->H[i] = _mm256_set1_epi32( iv[i] );
|
||||
for ( i = 0; i < 4; i++ )
|
||||
sc->S[i] = _mm256_set1_epi32( salt[i] );
|
||||
__m256i zero = m256_zero;
|
||||
casti_m256i( sc->H, 0 ) = _mm256_set1_epi32( iv[0] );
|
||||
casti_m256i( sc->H, 1 ) = _mm256_set1_epi32( iv[1] );
|
||||
casti_m256i( sc->H, 2 ) = _mm256_set1_epi32( iv[2] );
|
||||
casti_m256i( sc->H, 3 ) = _mm256_set1_epi32( iv[3] );
|
||||
casti_m256i( sc->H, 4 ) = _mm256_set1_epi32( iv[4] );
|
||||
casti_m256i( sc->H, 5 ) = _mm256_set1_epi32( iv[5] );
|
||||
casti_m256i( sc->H, 6 ) = _mm256_set1_epi32( iv[6] );
|
||||
casti_m256i( sc->H, 7 ) = _mm256_set1_epi32( iv[7] );
|
||||
|
||||
casti_m256i( sc->S, 0 ) = zero;
|
||||
casti_m256i( sc->S, 1 ) = zero;
|
||||
casti_m256i( sc->S, 2 ) = zero;
|
||||
casti_m256i( sc->S, 3 ) = zero;
|
||||
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
sc->rounds = rounds;
|
||||
@@ -872,14 +880,10 @@ static void
|
||||
blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
|
||||
void *dst, size_t out_size_w32 )
|
||||
{
|
||||
// union {
|
||||
__m256i buf[16];
|
||||
// sph_u32 dummy;
|
||||
// } u;
|
||||
size_t ptr, k;
|
||||
__m256i buf[16];
|
||||
size_t ptr;
|
||||
unsigned bit_len;
|
||||
sph_u32 th, tl;
|
||||
__m256i *out;
|
||||
|
||||
ptr = sc->ptr;
|
||||
bit_len = ((unsigned)ptr << 3);
|
||||
@@ -923,9 +927,7 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
|
||||
*(buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) );
|
||||
blake32_8way( sc, buf, 64 );
|
||||
}
|
||||
out = (__m256i*)dst;
|
||||
for ( k = 0; k < out_size_w32; k++ )
|
||||
out[k] = mm256_bswap_32( sc->H[k] );
|
||||
mm256_block_bswap_32( (__m256i*)dst, (__m256i*)sc->H );
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -412,18 +412,18 @@ static const sph_u64 CB[16] = {
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M[0x0] = mm256_bswap_64( *(buf+0) ); \
|
||||
M[0x1] = mm256_bswap_64( *(buf+1) ); \
|
||||
M[0x2] = mm256_bswap_64( *(buf+2) ); \
|
||||
@@ -464,80 +464,76 @@ static const sph_u64 CB[16] = {
|
||||
|
||||
//current impl
|
||||
|
||||
#define COMPRESS64_4WAY do { \
|
||||
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set_epi64x( CB0, CB0, CB0, CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set_epi64x( CB1, CB1, CB1, CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set_epi64x( CB2, CB2, CB2, CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set_epi64x( CB3, CB3, CB3, CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB4, CB4, CB4, CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set_epi64x( T0, T0, T0, T0 ), \
|
||||
_mm256_set_epi64x( CB5, CB5, CB5, CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB6, CB6, CB6, CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set_epi64x( T1, T1, T1, T1 ), \
|
||||
_mm256_set_epi64x( CB7, CB7, CB7, CB7 ) ); \
|
||||
M0 = mm256_bswap_64( *(buf + 0) ); \
|
||||
M1 = mm256_bswap_64( *(buf + 1) ); \
|
||||
M2 = mm256_bswap_64( *(buf + 2) ); \
|
||||
M3 = mm256_bswap_64( *(buf + 3) ); \
|
||||
M4 = mm256_bswap_64( *(buf + 4) ); \
|
||||
M5 = mm256_bswap_64( *(buf + 5) ); \
|
||||
M6 = mm256_bswap_64( *(buf + 6) ); \
|
||||
M7 = mm256_bswap_64( *(buf + 7) ); \
|
||||
M8 = mm256_bswap_64( *(buf + 8) ); \
|
||||
M9 = mm256_bswap_64( *(buf + 9) ); \
|
||||
MA = mm256_bswap_64( *(buf + 10) ); \
|
||||
MB = mm256_bswap_64( *(buf + 11) ); \
|
||||
MC = mm256_bswap_64( *(buf + 12) ); \
|
||||
MD = mm256_bswap_64( *(buf + 13) ); \
|
||||
ME = mm256_bswap_64( *(buf + 14) ); \
|
||||
MF = mm256_bswap_64( *(buf + 15) ); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
ROUND_B_4WAY(6); \
|
||||
ROUND_B_4WAY(7); \
|
||||
ROUND_B_4WAY(8); \
|
||||
ROUND_B_4WAY(9); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
H0 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V0 ), V8 ), H0 ); \
|
||||
H1 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V1 ), V9 ), H1 ); \
|
||||
H2 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V2 ), VA ), H2 ); \
|
||||
H3 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V3 ), VB ), H3 ); \
|
||||
H4 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S0, V4 ), VC ), H4 ); \
|
||||
H5 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S1, V5 ), VD ), H5 ); \
|
||||
H6 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S2, V6 ), VE ), H6 ); \
|
||||
H7 = _mm256_xor_si256( _mm256_xor_si256( \
|
||||
_mm256_xor_si256( S3, V7 ), VF ), H7 ); \
|
||||
} while (0)
|
||||
#define COMPRESS64_4WAY do \
|
||||
{ \
|
||||
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
|
||||
__m256i M8, M9, MA, MB, MC, MD, ME, MF; \
|
||||
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
|
||||
__m256i V8, V9, VA, VB, VC, VD, VE, VF; \
|
||||
__m256i shuf_bswap64; \
|
||||
V0 = H0; \
|
||||
V1 = H1; \
|
||||
V2 = H2; \
|
||||
V3 = H3; \
|
||||
V4 = H4; \
|
||||
V5 = H5; \
|
||||
V6 = H6; \
|
||||
V7 = H7; \
|
||||
V8 = _mm256_xor_si256( S0, _mm256_set1_epi64x( CB0 ) ); \
|
||||
V9 = _mm256_xor_si256( S1, _mm256_set1_epi64x( CB1 ) ); \
|
||||
VA = _mm256_xor_si256( S2, _mm256_set1_epi64x( CB2 ) ); \
|
||||
VB = _mm256_xor_si256( S3, _mm256_set1_epi64x( CB3 ) ); \
|
||||
VC = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
|
||||
_mm256_set1_epi64x( CB4 ) ); \
|
||||
VD = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
|
||||
_mm256_set1_epi64x( CB5 ) ); \
|
||||
VE = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
|
||||
_mm256_set1_epi64x( CB6 ) ); \
|
||||
VF = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
|
||||
_mm256_set1_epi64x( CB7 ) ); \
|
||||
shuf_bswap64 = _mm256_set_epi64x( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
|
||||
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
|
||||
M0 = _mm256_shuffle_epi8( *(buf+ 0), shuf_bswap64 ); \
|
||||
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap64 ); \
|
||||
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap64 ); \
|
||||
M3 = _mm256_shuffle_epi8( *(buf+ 3), shuf_bswap64 ); \
|
||||
M4 = _mm256_shuffle_epi8( *(buf+ 4), shuf_bswap64 ); \
|
||||
M5 = _mm256_shuffle_epi8( *(buf+ 5), shuf_bswap64 ); \
|
||||
M6 = _mm256_shuffle_epi8( *(buf+ 6), shuf_bswap64 ); \
|
||||
M7 = _mm256_shuffle_epi8( *(buf+ 7), shuf_bswap64 ); \
|
||||
M8 = _mm256_shuffle_epi8( *(buf+ 8), shuf_bswap64 ); \
|
||||
M9 = _mm256_shuffle_epi8( *(buf+ 9), shuf_bswap64 ); \
|
||||
MA = _mm256_shuffle_epi8( *(buf+10), shuf_bswap64 ); \
|
||||
MB = _mm256_shuffle_epi8( *(buf+11), shuf_bswap64 ); \
|
||||
MC = _mm256_shuffle_epi8( *(buf+12), shuf_bswap64 ); \
|
||||
MD = _mm256_shuffle_epi8( *(buf+13), shuf_bswap64 ); \
|
||||
ME = _mm256_shuffle_epi8( *(buf+14), shuf_bswap64 ); \
|
||||
MF = _mm256_shuffle_epi8( *(buf+15), shuf_bswap64 ); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
ROUND_B_4WAY(6); \
|
||||
ROUND_B_4WAY(7); \
|
||||
ROUND_B_4WAY(8); \
|
||||
ROUND_B_4WAY(9); \
|
||||
ROUND_B_4WAY(0); \
|
||||
ROUND_B_4WAY(1); \
|
||||
ROUND_B_4WAY(2); \
|
||||
ROUND_B_4WAY(3); \
|
||||
ROUND_B_4WAY(4); \
|
||||
ROUND_B_4WAY(5); \
|
||||
H0 = mm256_xor4( V8, V0, S0, H0 ); \
|
||||
H1 = mm256_xor4( V9, V1, S1, H1 ); \
|
||||
H2 = mm256_xor4( VA, V2, S2, H2 ); \
|
||||
H3 = mm256_xor4( VB, V3, S3, H3 ); \
|
||||
H4 = mm256_xor4( VC, V4, S0, H4 ); \
|
||||
H5 = mm256_xor4( VD, V5, S1, H5 ); \
|
||||
H6 = mm256_xor4( VE, V6, S2, H6 ); \
|
||||
H7 = mm256_xor4( VF, V7, S3, H7 ); \
|
||||
} while (0)
|
||||
|
||||
#endif
|
||||
|
||||
@@ -547,13 +543,23 @@ static void
|
||||
blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
|
||||
const sph_u64 *salt )
|
||||
{
|
||||
int i;
|
||||
for ( i = 0; i < 8; i++ )
|
||||
sc->H[i] = _mm256_set1_epi64x( iv[i] );
|
||||
for ( i = 0; i < 4; i++ )
|
||||
sc->S[i] = _mm256_set1_epi64x( salt[i] );
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
__m256i zero = m256_zero;
|
||||
casti_m256i( sc->H, 0 ) = _mm256_set1_epi64x( iv[0] );
|
||||
casti_m256i( sc->H, 1 ) = _mm256_set1_epi64x( iv[1] );
|
||||
casti_m256i( sc->H, 2 ) = _mm256_set1_epi64x( iv[2] );
|
||||
casti_m256i( sc->H, 3 ) = _mm256_set1_epi64x( iv[3] );
|
||||
casti_m256i( sc->H, 4 ) = _mm256_set1_epi64x( iv[4] );
|
||||
casti_m256i( sc->H, 5 ) = _mm256_set1_epi64x( iv[5] );
|
||||
casti_m256i( sc->H, 6 ) = _mm256_set1_epi64x( iv[6] );
|
||||
casti_m256i( sc->H, 7 ) = _mm256_set1_epi64x( iv[7] );
|
||||
|
||||
casti_m256i( sc->S, 0 ) = zero;
|
||||
casti_m256i( sc->S, 1 ) = zero;
|
||||
casti_m256i( sc->S, 2 ) = zero;
|
||||
casti_m256i( sc->S, 3 ) = zero;
|
||||
|
||||
sc->T0 = sc->T1 = 0;
|
||||
sc->ptr = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
@@ -604,15 +610,11 @@ static void
|
||||
blake64_4way_close( blake_4way_big_context *sc,
|
||||
unsigned ub, unsigned n, void *dst, size_t out_size_w64)
|
||||
{
|
||||
// union {
|
||||
__m256i buf[16];
|
||||
// sph_u64 dummy;
|
||||
// } u;
|
||||
size_t ptr, k;
|
||||
__m256i buf[16];
|
||||
size_t ptr;
|
||||
unsigned bit_len;
|
||||
uint64_t z, zz;
|
||||
sph_u64 th, tl;
|
||||
__m256i *out;
|
||||
|
||||
ptr = sc->ptr;
|
||||
bit_len = ((unsigned)ptr << 3);
|
||||
@@ -665,9 +667,7 @@ blake64_4way_close( blake_4way_big_context *sc,
|
||||
|
||||
blake64_4way( sc, buf, 128 );
|
||||
}
|
||||
out = (__m256i*)dst;
|
||||
for ( k = 0; k < out_size_w64; k++ )
|
||||
out[k] = mm256_bswap_64( sc->H[k] );
|
||||
mm256_block_bswap_64( (__m256i*)dst, sc->H );
|
||||
}
|
||||
|
||||
void
|
||||
|
@@ -113,50 +113,27 @@ static const uint32_t IV256[] = {
|
||||
|
||||
|
||||
#define expand1s( qt, M, H, i ) \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( ss1( qt[ (i)-16 ] ), \
|
||||
ss2( qt[ (i)-15 ] ) ), \
|
||||
_mm_add_epi32( ss3( qt[ (i)-14 ] ), \
|
||||
ss0( qt[ (i)-13 ] ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( ss1( qt[ (i)-12 ] ), \
|
||||
ss2( qt[ (i)-11 ] ) ), \
|
||||
_mm_add_epi32( ss3( qt[ (i)-10 ] ), \
|
||||
ss0( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( ss1( qt[ (i)- 8 ] ), \
|
||||
ss2( qt[ (i)- 7 ] ) ), \
|
||||
_mm_add_epi32( ss3( qt[ (i)- 6 ] ), \
|
||||
ss0( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( ss1( qt[ (i)- 4 ] ), \
|
||||
ss2( qt[ (i)- 3 ] ) ), \
|
||||
_mm_add_epi32( ss3( qt[ (i)- 2 ] ), \
|
||||
ss0( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
_mm_add_epi32( mm128_add4_32( \
|
||||
mm128_add4_32( ss1( qt[ (i)-16 ] ), ss2( qt[ (i)-15 ] ), \
|
||||
ss3( qt[ (i)-14 ] ), ss0( qt[ (i)-13 ] ) ), \
|
||||
mm128_add4_32( ss1( qt[ (i)-12 ] ), ss2( qt[ (i)-11 ] ), \
|
||||
ss3( qt[ (i)-10 ] ), ss0( qt[ (i)- 9 ] ) ), \
|
||||
mm128_add4_32( ss1( qt[ (i)- 8 ] ), ss2( qt[ (i)- 7 ] ), \
|
||||
ss3( qt[ (i)- 6 ] ), ss0( qt[ (i)- 5 ] ) ), \
|
||||
mm128_add4_32( ss1( qt[ (i)- 4 ] ), ss2( qt[ (i)- 3 ] ), \
|
||||
ss3( qt[ (i)- 2 ] ), ss0( qt[ (i)- 1 ] ) ) ), \
|
||||
add_elt_s( M, H, (i)-16 ) )
|
||||
|
||||
#define expand2s( qt, M, H, i) \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( qt[ (i)-16 ], rs1( qt[ (i)-15 ] ) ), \
|
||||
_mm_add_epi32( qt[ (i)-14 ], rs2( qt[ (i)-13 ] ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( qt[ (i)-12 ], rs3( qt[ (i)-11 ] ) ), \
|
||||
_mm_add_epi32( qt[ (i)-10 ], rs4( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( qt[ (i)- 8 ], rs5( qt[ (i)- 7 ] ) ), \
|
||||
_mm_add_epi32( qt[ (i)- 6 ], rs6( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm_add_epi32( \
|
||||
_mm_add_epi32( qt[ (i)- 4 ], rs7( qt[ (i)- 3 ] ) ), \
|
||||
_mm_add_epi32( ss4( qt[ (i)- 2 ] ), \
|
||||
ss5( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
_mm_add_epi32( mm128_add4_32( \
|
||||
mm128_add4_32( qt[ (i)-16 ], rs1( qt[ (i)-15 ] ), \
|
||||
qt[ (i)-14 ], rs2( qt[ (i)-13 ] ) ), \
|
||||
mm128_add4_32( qt[ (i)-12 ], rs3( qt[ (i)-11 ] ), \
|
||||
qt[ (i)-10 ], rs4( qt[ (i)- 9 ] ) ), \
|
||||
mm128_add4_32( qt[ (i)- 8 ], rs5( qt[ (i)- 7 ] ), \
|
||||
qt[ (i)- 6 ], rs6( qt[ (i)- 5 ] ) ), \
|
||||
mm128_add4_32( qt[ (i)- 4 ], rs7( qt[ (i)- 3 ] ), \
|
||||
ss4( qt[ (i)- 2 ] ), ss5( qt[ (i)- 1 ] ) ) ), \
|
||||
add_elt_s( M, H, (i)-16 ) )
|
||||
|
||||
#define Ws0 \
|
||||
@@ -357,17 +334,11 @@ void compress_small( const __m128i *M, const __m128i H[16], __m128i dH[16] )
|
||||
qt[30] = expand2s( qt, M, H, 30 );
|
||||
qt[31] = expand2s( qt, M, H, 31 );
|
||||
|
||||
xl = _mm_xor_si128(
|
||||
_mm_xor_si128( _mm_xor_si128( qt[16], qt[17] ),
|
||||
_mm_xor_si128( qt[18], qt[19] ) ),
|
||||
_mm_xor_si128( _mm_xor_si128( qt[20], qt[21] ),
|
||||
_mm_xor_si128( qt[22], qt[23] ) ) );
|
||||
xh = _mm_xor_si128( xl,
|
||||
_mm_xor_si128(
|
||||
_mm_xor_si128( _mm_xor_si128( qt[24], qt[25] ),
|
||||
_mm_xor_si128( qt[26], qt[27] ) ),
|
||||
_mm_xor_si128( _mm_xor_si128( qt[28], qt[29] ),
|
||||
_mm_xor_si128( qt[30], qt[31] ) )));
|
||||
xl = _mm_xor_si128( mm128_xor4( qt[16], qt[17], qt[18], qt[19] ),
|
||||
mm128_xor4( qt[20], qt[21], qt[22], qt[23] ) );
|
||||
xh = _mm_xor_si128( xl, _mm_xor_si128(
|
||||
mm128_xor4( qt[24], qt[25], qt[26], qt[27] ),
|
||||
mm128_xor4( qt[28], qt[29], qt[30], qt[31] ) ) );
|
||||
|
||||
dH[ 0] = _mm_add_epi32(
|
||||
_mm_xor_si128( M[0],
|
||||
@@ -695,22 +666,15 @@ bmw256_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
|
||||
|
||||
#define expand2s8( qt, M, H, i) \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( qt[ (i)-16 ], r8s1( qt[ (i)-15 ] ) ), \
|
||||
_mm256_add_epi32( qt[ (i)-14 ], r8s2( qt[ (i)-13 ] ) ) ), \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( qt[ (i)-12 ], r8s3( qt[ (i)-11 ] ) ), \
|
||||
_mm256_add_epi32( qt[ (i)-10 ], r8s4( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( qt[ (i)- 8 ], r8s5( qt[ (i)- 7 ] ) ), \
|
||||
_mm256_add_epi32( qt[ (i)- 6 ], r8s6( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm256_add_epi32( \
|
||||
_mm256_add_epi32( qt[ (i)- 4 ], r8s7( qt[ (i)- 3 ] ) ), \
|
||||
_mm256_add_epi32( s8s4( qt[ (i)- 2 ] ), \
|
||||
s8s5( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
mm256_add4_32( \
|
||||
mm256_add4_32( qt[ (i)-16 ], r8s1( qt[ (i)-15 ] ), \
|
||||
qt[ (i)-14 ], r8s2( qt[ (i)-13 ] ) ), \
|
||||
mm256_add4_32( qt[ (i)-12 ], r8s3( qt[ (i)-11 ] ), \
|
||||
qt[ (i)-10 ], r8s4( qt[ (i)- 9 ] ) ), \
|
||||
mm256_add4_32( qt[ (i)- 8 ], r8s5( qt[ (i)- 7 ] ), \
|
||||
qt[ (i)- 6 ], r8s6( qt[ (i)- 5 ] ) ), \
|
||||
mm256_add4_32( qt[ (i)- 4 ], r8s7( qt[ (i)- 3 ] ), \
|
||||
s8s4( qt[ (i)- 2 ] ), s8s5( qt[ (i)- 1 ] ) ) ), \
|
||||
add_elt_s8( M, H, (i)-16 ) )
|
||||
|
||||
|
||||
@@ -913,16 +877,11 @@ void compress_small_8way( const __m256i *M, const __m256i H[16],
|
||||
qt[31] = expand2s8( qt, M, H, 31 );
|
||||
|
||||
xl = _mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[16], qt[17] ),
|
||||
_mm256_xor_si256( qt[18], qt[19] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[20], qt[21] ),
|
||||
_mm256_xor_si256( qt[22], qt[23] ) ) );
|
||||
xh = _mm256_xor_si256( xl,
|
||||
_mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[24], qt[25] ),
|
||||
_mm256_xor_si256( qt[26], qt[27] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[28], qt[29] ),
|
||||
_mm256_xor_si256( qt[30], qt[31] ) )));
|
||||
mm256_xor4( qt[16], qt[17], qt[18], qt[19] ),
|
||||
mm256_xor4( qt[20], qt[21], qt[22], qt[23] ) );
|
||||
xh = _mm256_xor_si256( xl, _mm256_xor_si256(
|
||||
mm256_xor4( qt[24], qt[25], qt[26], qt[27] ),
|
||||
mm256_xor4( qt[28], qt[29], qt[30], qt[31] ) ) );
|
||||
|
||||
dH[ 0] = _mm256_add_epi32(
|
||||
_mm256_xor_si256( M[0],
|
||||
|
@@ -569,28 +569,20 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
|
||||
|
||||
|
||||
#define sb0(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 1), \
|
||||
_mm256_slli_epi64( (x), 3) ), \
|
||||
_mm256_xor_si256( mm256_rol_64( (x), 4), \
|
||||
mm256_rol_64( (x), 37) ) )
|
||||
mm256_xor4( _mm256_srli_epi64( (x), 1), _mm256_slli_epi64( (x), 3), \
|
||||
mm256_rol_64( (x), 4), mm256_rol_64( (x),37) )
|
||||
|
||||
#define sb1(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 1), \
|
||||
_mm256_slli_epi64( (x), 2) ), \
|
||||
_mm256_xor_si256( mm256_rol_64( (x), 13), \
|
||||
mm256_rol_64( (x), 43) ) )
|
||||
mm256_xor4( _mm256_srli_epi64( (x), 1), _mm256_slli_epi64( (x), 2), \
|
||||
mm256_rol_64( (x),13), mm256_rol_64( (x),43) )
|
||||
|
||||
#define sb2(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 2), \
|
||||
_mm256_slli_epi64( (x), 1) ), \
|
||||
_mm256_xor_si256( mm256_rol_64( (x), 19), \
|
||||
mm256_rol_64( (x), 53) ) )
|
||||
mm256_xor4( _mm256_srli_epi64( (x), 2), _mm256_slli_epi64( (x), 1), \
|
||||
mm256_rol_64( (x),19), mm256_rol_64( (x),53) )
|
||||
|
||||
#define sb3(x) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( _mm256_srli_epi64( (x), 2), \
|
||||
_mm256_slli_epi64( (x), 2) ), \
|
||||
_mm256_xor_si256( mm256_rol_64( (x), 28), \
|
||||
mm256_rol_64( (x), 59) ) )
|
||||
mm256_xor4( _mm256_srli_epi64( (x), 2), _mm256_slli_epi64( (x), 2), \
|
||||
mm256_rol_64( (x),28), mm256_rol_64( (x),59) )
|
||||
|
||||
#define sb4(x) \
|
||||
_mm256_xor_si256( (x), _mm256_srli_epi64( (x), 1 ) )
|
||||
@@ -618,55 +610,32 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
|
||||
rol_off_64( M, j, 10 ) ), \
|
||||
_mm256_set1_epi64x( ( (j) + 16 ) * 0x0555555555555555ULL ) ), \
|
||||
H[ ( (j)+7 ) & 0xF ] )
|
||||
|
||||
|
||||
|
||||
#define expand1b( qt, M, H, i ) \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)-16 ] ), \
|
||||
sb2( qt[ (i)-15 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)-14 ] ), \
|
||||
sb0( qt[ (i)-13 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)-12 ] ), \
|
||||
sb2( qt[ (i)-11 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)-10 ] ), \
|
||||
sb0( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)- 8 ] ), \
|
||||
sb2( qt[ (i)- 7 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)- 6 ] ), \
|
||||
sb0( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( sb1( qt[ (i)- 4 ] ), \
|
||||
sb2( qt[ (i)- 3 ] ) ), \
|
||||
_mm256_add_epi64( sb3( qt[ (i)- 2 ] ), \
|
||||
sb0( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
_mm256_add_epi64( mm256_add4_64( \
|
||||
mm256_add4_64( sb1( qt[ (i)-16 ] ), sb2( qt[ (i)-15 ] ), \
|
||||
sb3( qt[ (i)-14 ] ), sb0( qt[ (i)-13 ] )), \
|
||||
mm256_add4_64( sb1( qt[ (i)-12 ] ), sb2( qt[ (i)-11 ] ), \
|
||||
sb3( qt[ (i)-10 ] ), sb0( qt[ (i)- 9 ] )), \
|
||||
mm256_add4_64( sb1( qt[ (i)- 8 ] ), sb2( qt[ (i)- 7 ] ), \
|
||||
sb3( qt[ (i)- 6 ] ), sb0( qt[ (i)- 5 ] )), \
|
||||
mm256_add4_64( sb1( qt[ (i)- 4 ] ), sb2( qt[ (i)- 3 ] ), \
|
||||
sb3( qt[ (i)- 2 ] ), sb0( qt[ (i)- 1 ] ) ) ), \
|
||||
add_elt_b( M, H, (i)-16 ) )
|
||||
|
||||
#define expand2b( qt, M, H, i) \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)-16 ], rb1( qt[ (i)-15 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)-14 ], rb2( qt[ (i)-13 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)-12 ], rb3( qt[ (i)-11 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)-10 ], rb4( qt[ (i)- 9 ] ) ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)- 8 ], rb5( qt[ (i)- 7 ] ) ), \
|
||||
_mm256_add_epi64( qt[ (i)- 6 ], rb6( qt[ (i)- 5 ] ) ) ), \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( qt[ (i)- 4 ], rb7( qt[ (i)- 3 ] ) ), \
|
||||
_mm256_add_epi64( sb4( qt[ (i)- 2 ] ), \
|
||||
sb5( qt[ (i)- 1 ] ) ) ) ) ), \
|
||||
_mm256_add_epi64( mm256_add4_64( \
|
||||
mm256_add4_64( qt[ (i)-16 ], rb1( qt[ (i)-15 ] ), \
|
||||
qt[ (i)-14 ], rb2( qt[ (i)-13 ] ) ), \
|
||||
mm256_add4_64( qt[ (i)-12 ], rb3( qt[ (i)-11 ] ), \
|
||||
qt[ (i)-10 ], rb4( qt[ (i)- 9 ] ) ), \
|
||||
mm256_add4_64( qt[ (i)- 8 ], rb5( qt[ (i)- 7 ] ), \
|
||||
qt[ (i)- 6 ], rb6( qt[ (i)- 5 ] ) ), \
|
||||
mm256_add4_64( qt[ (i)- 4 ], rb7( qt[ (i)- 3 ] ), \
|
||||
sb4( qt[ (i)- 2 ] ), sb5( qt[ (i)- 1 ] ) ) ), \
|
||||
add_elt_b( M, H, (i)-16 ) )
|
||||
|
||||
|
||||
#define Wb0 \
|
||||
_mm256_add_epi64( \
|
||||
_mm256_add_epi64( \
|
||||
@@ -864,95 +833,90 @@ void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
|
||||
qt[30] = expand2b( qt, M, H, 30 );
|
||||
qt[31] = expand2b( qt, M, H, 31 );
|
||||
|
||||
xl = _mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[16], qt[17] ),
|
||||
_mm256_xor_si256( qt[18], qt[19] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[20], qt[21] ),
|
||||
_mm256_xor_si256( qt[22], qt[23] ) ) );
|
||||
xh = _mm256_xor_si256( xl,
|
||||
_mm256_xor_si256(
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[24], qt[25] ),
|
||||
_mm256_xor_si256( qt[26], qt[27] ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( qt[28], qt[29] ),
|
||||
_mm256_xor_si256( qt[30], qt[31] ) )));
|
||||
xl = _mm256_xor_si256(
|
||||
mm256_xor4( qt[16], qt[17], qt[18], qt[19] ),
|
||||
mm256_xor4( qt[20], qt[21], qt[22], qt[23] ) );
|
||||
xh = _mm256_xor_si256( xl, _mm256_xor_si256(
|
||||
mm256_xor4( qt[24], qt[25], qt[26], qt[27] ),
|
||||
mm256_xor4( qt[28], qt[29], qt[30], qt[31] ) ) );
|
||||
|
||||
dH[ 0] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[0],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 5 ),
|
||||
_mm256_srli_epi64( qt[16], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[24] ), qt[ 0] ));
|
||||
_mm256_xor_si256( M[0],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 5 ),
|
||||
_mm256_srli_epi64( qt[16], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[24] ), qt[ 0] ) );
|
||||
dH[ 1] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[1],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 7 ),
|
||||
_mm256_slli_epi64( qt[17], 8 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[25] ), qt[ 1] ));
|
||||
_mm256_xor_si256( M[1],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 7 ),
|
||||
_mm256_slli_epi64( qt[17], 8 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[25] ), qt[ 1] ) );
|
||||
dH[ 2] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[2],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 5 ),
|
||||
_mm256_slli_epi64( qt[18], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[26] ), qt[ 2] ));
|
||||
_mm256_xor_si256( M[2],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 5 ),
|
||||
_mm256_slli_epi64( qt[18], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[26] ), qt[ 2] ) );
|
||||
dH[ 3] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[3],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 1 ),
|
||||
_mm256_slli_epi64( qt[19], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[27] ), qt[ 3] ));
|
||||
_mm256_xor_si256( M[3],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 1 ),
|
||||
_mm256_slli_epi64( qt[19], 5 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[27] ), qt[ 3] ) );
|
||||
dH[ 4] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[4],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 3 ),
|
||||
_mm256_slli_epi64( qt[20], 0 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[28] ), qt[ 4] ));
|
||||
_mm256_xor_si256( M[4],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 3 ),
|
||||
_mm256_slli_epi64( qt[20], 0 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[28] ), qt[ 4] ) );
|
||||
dH[ 5] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[5],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 6 ),
|
||||
_mm256_srli_epi64( qt[21], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[29] ), qt[ 5] ));
|
||||
_mm256_xor_si256( M[5],
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xh, 6 ),
|
||||
_mm256_srli_epi64( qt[21], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[29] ), qt[ 5] ) );
|
||||
dH[ 6] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[6],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 4 ),
|
||||
_mm256_slli_epi64( qt[22], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[30] ), qt[ 6] ));
|
||||
_mm256_xor_si256( M[6],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 4 ),
|
||||
_mm256_slli_epi64( qt[22], 6 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[30] ), qt[ 6] ) );
|
||||
dH[ 7] = _mm256_add_epi64(
|
||||
_mm256_xor_si256( M[7],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 11 ),
|
||||
_mm256_slli_epi64( qt[23], 2 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[31] ), qt[ 7] ));
|
||||
_mm256_xor_si256( M[7],
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xh, 11 ),
|
||||
_mm256_slli_epi64( qt[23], 2 ) ) ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xl, qt[31] ), qt[ 7] ) );
|
||||
dH[ 8] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[4], 9 ),
|
||||
mm256_rol_64( dH[4], 9 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[24] ), M[ 8] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 8 ),
|
||||
_mm256_xor_si256( qt[23], qt[ 8] ) ) );
|
||||
dH[ 9] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[5], 10 ),
|
||||
mm256_rol_64( dH[5], 10 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[25] ), M[ 9] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 6 ),
|
||||
_mm256_xor_si256( qt[16], qt[ 9] ) ) );
|
||||
dH[10] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[6], 11 ),
|
||||
mm256_rol_64( dH[6], 11 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[26] ), M[10] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 6 ),
|
||||
_mm256_xor_si256( qt[17], qt[10] ) ) );
|
||||
dH[11] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[7], 12 ),
|
||||
mm256_rol_64( dH[7], 12 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[27] ), M[11] )),
|
||||
_mm256_xor_si256( _mm256_slli_epi64( xl, 4 ),
|
||||
_mm256_xor_si256( qt[18], qt[11] ) ) );
|
||||
dH[12] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[0], 13 ),
|
||||
mm256_rol_64( dH[0], 13 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[28] ), M[12] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 3 ),
|
||||
_mm256_xor_si256( qt[19], qt[12] ) ) );
|
||||
dH[13] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[1], 14 ),
|
||||
mm256_rol_64( dH[1], 14 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[29] ), M[13] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 4 ),
|
||||
_mm256_xor_si256( qt[20], qt[13] ) ) );
|
||||
dH[14] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[2], 15 ),
|
||||
mm256_rol_64( dH[2], 15 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[30] ), M[14] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 7 ),
|
||||
_mm256_xor_si256( qt[21], qt[14] ) ) );
|
||||
dH[15] = _mm256_add_epi64( _mm256_add_epi64(
|
||||
mm256_rol_64( dH[3], 16 ),
|
||||
mm256_rol_64( dH[3], 16 ),
|
||||
_mm256_xor_si256( _mm256_xor_si256( xh, qt[31] ), M[15] )),
|
||||
_mm256_xor_si256( _mm256_srli_epi64( xl, 2 ),
|
||||
_mm256_xor_si256( qt[22], qt[15] ) ) );
|
||||
|
@@ -531,16 +531,17 @@ static const sph_u32 T512[64][16] = {
|
||||
|
||||
#define INPUT_BIG \
|
||||
do { \
|
||||
const __m256i zero = _mm256_setzero_si256(); \
|
||||
__m256i db = *buf; \
|
||||
const sph_u32 *tp = &T512[0][0]; \
|
||||
m0 = m256_zero; \
|
||||
m1 = m256_zero; \
|
||||
m2 = m256_zero; \
|
||||
m3 = m256_zero; \
|
||||
m4 = m256_zero; \
|
||||
m5 = m256_zero; \
|
||||
m6 = m256_zero; \
|
||||
m7 = m256_zero; \
|
||||
m0 = zero; \
|
||||
m1 = zero; \
|
||||
m2 = zero; \
|
||||
m3 = zero; \
|
||||
m4 = zero; \
|
||||
m5 = zero; \
|
||||
m6 = zero; \
|
||||
m7 = zero; \
|
||||
for ( int u = 0; u < 64; u++ ) \
|
||||
{ \
|
||||
__m256i dm = _mm256_and_si256( db, m256_one_64 ) ; \
|
||||
@@ -913,9 +914,7 @@ void hamsi512_4way( hamsi_4way_big_context *sc, const void *data, size_t len )
|
||||
|
||||
void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
|
||||
{
|
||||
__m256i *out = (__m256i*)dst;
|
||||
__m256i pad[1];
|
||||
size_t u;
|
||||
int ch, cl;
|
||||
|
||||
sph_enc32be( &ch, sc->count_high );
|
||||
@@ -925,8 +924,8 @@ void hamsi512_4way_close( hamsi_4way_big_context *sc, void *dst )
|
||||
0UL, 0x80UL, 0UL, 0x80UL );
|
||||
hamsi_big( sc, sc->buf, 1 );
|
||||
hamsi_big_final( sc, pad );
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
out[u] = mm256_bswap_32( sc->h[u] );
|
||||
|
||||
mm256_block_bswap_32( (__m256i*)dst, sc->h );
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
@@ -83,7 +83,7 @@ void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf)
|
||||
keys[14] = tmp1;
|
||||
}
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
#if defined(__SSE4_2__)
|
||||
//#ifdef __AVX__
|
||||
|
||||
#define AESENC(i,j) \
|
||||
@@ -151,7 +151,7 @@ void AES256CBC(__m128i** data, const __m128i** next, __m128i ExpandedKey[][16],
|
||||
}
|
||||
}
|
||||
|
||||
#else // NO SSE4.2
|
||||
#else // NO AVX
|
||||
|
||||
static inline __m128i AES256Core(__m128i State, const __m128i *ExpandedKey)
|
||||
{
|
||||
|
@@ -166,7 +166,7 @@ bool register_hodl_algo( algo_gate_t* gate )
|
||||
// return false;
|
||||
// }
|
||||
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
|
||||
gate->optimizations = AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->optimizations = AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&hodl_scanhash;
|
||||
gate->get_new_work = (void*)&hodl_get_new_work;
|
||||
gate->longpoll_rpc_call = (void*)&hodl_longpoll_rpc_call;
|
||||
|
@@ -17,7 +17,7 @@ void GenerateGarbageCore( CacheEntry *Garbage, int ThreadID, int ThreadCount,
|
||||
const uint32_t StartChunk = ThreadID * Chunk;
|
||||
const uint32_t EndChunk = StartChunk + Chunk;
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
#if defined(__SSE4_2__)
|
||||
//#ifdef __AVX__
|
||||
uint64_t* TempBufs[ SHA512_PARALLEL_N ] ;
|
||||
uint64_t* desination[ SHA512_PARALLEL_N ];
|
||||
@@ -64,7 +64,7 @@ void Rev256(uint32_t *Dest, const uint32_t *Src)
|
||||
int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done, struct thr_info *mythr )
|
||||
{
|
||||
#ifdef __SSE4_2__
|
||||
#if defined(__SSE4_2__)
|
||||
//#ifdef __AVX__
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -140,7 +140,7 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
|
||||
return(0);
|
||||
|
||||
|
||||
#else // no SSE4.2
|
||||
#else // no AVX
|
||||
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -148,6 +148,7 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
|
||||
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
|
||||
CacheEntry Cache;
|
||||
uint32_t CollisionCount = 0;
|
||||
int threadNumber = mythr->id;
|
||||
|
||||
swab32_array( BlockHdr, pdata, 20 );
|
||||
// Search for pattern in psuedorandom data
|
||||
@@ -205,7 +206,7 @@ int scanhash_hodl_wolf( struct work* work, uint32_t max_nonce,
|
||||
*hashes_done = CollisionCount;
|
||||
return(0);
|
||||
|
||||
#endif // SSE4.2 else
|
||||
#endif // AVX else
|
||||
|
||||
}
|
||||
|
||||
|
@@ -23,6 +23,7 @@ typedef struct
|
||||
__m256i h[8];
|
||||
__m256i w[80];
|
||||
#elif defined(__SSE4_2__)
|
||||
//#elif defined(__AVX__)
|
||||
__m128i h[8];
|
||||
__m128i w[80];
|
||||
#else
|
||||
@@ -32,7 +33,8 @@ typedef struct
|
||||
|
||||
#ifdef __AVX2__
|
||||
#define SHA512_PARALLEL_N 8
|
||||
#elif defined(__SSE$_2__)
|
||||
#elif defined(__SSE4_2__)
|
||||
//#elif defined(__AVX__)
|
||||
#define SHA512_PARALLEL_N 4
|
||||
#else
|
||||
#define SHA512_PARALLEL_N 1 // dummy value
|
||||
|
@@ -1,6 +1,6 @@
|
||||
#ifndef __AVX2__
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
#if defined(__SSE4_2__)
|
||||
//#ifdef __AVX__
|
||||
|
||||
//Dependencies
|
||||
|
@@ -6,7 +6,7 @@
|
||||
|
||||
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf);
|
||||
|
||||
#ifdef __SSE4_2__
|
||||
#if defined(__SSE4_2__)
|
||||
//#ifdef __AVX__
|
||||
|
||||
#define AES_PARALLEL_N 8
|
||||
|
@@ -77,6 +77,24 @@ static const sph_u32 V_INIT[5][8] = {
|
||||
}
|
||||
};
|
||||
|
||||
#if SPH_LUFFA_PARALLEL
|
||||
|
||||
static const sph_u64 RCW010[8] = {
|
||||
SPH_C64(0xb6de10ed303994a6), SPH_C64(0x70f47aaec0e65299),
|
||||
SPH_C64(0x0707a3d46cc33a12), SPH_C64(0x1c1e8f51dc56983e),
|
||||
SPH_C64(0x707a3d451e00108f), SPH_C64(0xaeb285627800423d),
|
||||
SPH_C64(0xbaca15898f5b7882), SPH_C64(0x40a46f3e96e1db12)
|
||||
};
|
||||
|
||||
static const sph_u64 RCW014[8] = {
|
||||
SPH_C64(0x01685f3de0337818), SPH_C64(0x05a17cf4441ba90d),
|
||||
SPH_C64(0xbd09caca7f34d442), SPH_C64(0xf4272b289389217f),
|
||||
SPH_C64(0x144ae5cce5a8bce6), SPH_C64(0xfaa7ae2b5274baf4),
|
||||
SPH_C64(0x2e48f1c126889ba7), SPH_C64(0xb923c7049a226e9d)
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
static const sph_u32 RC00[8] = {
|
||||
SPH_C32(0x303994a6), SPH_C32(0xc0e65299),
|
||||
SPH_C32(0x6cc33a12), SPH_C32(0xdc56983e),
|
||||
@@ -105,20 +123,18 @@ static const sph_u32 RC14[8] = {
|
||||
SPH_C32(0x2e48f1c1), SPH_C32(0xb923c704)
|
||||
};
|
||||
|
||||
#if SPH_LUFFA_PARALLEL
|
||||
|
||||
static const sph_u64 RCW010[8] = {
|
||||
SPH_C64(0xb6de10ed303994a6), SPH_C64(0x70f47aaec0e65299),
|
||||
SPH_C64(0x0707a3d46cc33a12), SPH_C64(0x1c1e8f51dc56983e),
|
||||
SPH_C64(0x707a3d451e00108f), SPH_C64(0xaeb285627800423d),
|
||||
SPH_C64(0xbaca15898f5b7882), SPH_C64(0x40a46f3e96e1db12)
|
||||
static const sph_u32 RC30[8] = {
|
||||
SPH_C32(0xb213afa5), SPH_C32(0xc84ebe95),
|
||||
SPH_C32(0x4e608a22), SPH_C32(0x56d858fe),
|
||||
SPH_C32(0x343b138f), SPH_C32(0xd0ec4e3d),
|
||||
SPH_C32(0x2ceb4882), SPH_C32(0xb3ad2208)
|
||||
};
|
||||
|
||||
static const sph_u64 RCW014[8] = {
|
||||
SPH_C64(0x01685f3de0337818), SPH_C64(0x05a17cf4441ba90d),
|
||||
SPH_C64(0xbd09caca7f34d442), SPH_C64(0xf4272b289389217f),
|
||||
SPH_C64(0x144ae5cce5a8bce6), SPH_C64(0xfaa7ae2b5274baf4),
|
||||
SPH_C64(0x2e48f1c126889ba7), SPH_C64(0xb923c7049a226e9d)
|
||||
static const sph_u32 RC34[8] = {
|
||||
SPH_C32(0xe028c9bf), SPH_C32(0x44756f91),
|
||||
SPH_C32(0x7e8fce32), SPH_C32(0x956548be),
|
||||
SPH_C32(0xfe191be2), SPH_C32(0x3cb226e5),
|
||||
SPH_C32(0x5944a28e), SPH_C32(0xa1c4c355)
|
||||
};
|
||||
|
||||
#endif
|
||||
@@ -137,19 +153,6 @@ static const sph_u32 RC24[8] = {
|
||||
SPH_C32(0x36eda57f), SPH_C32(0x703aace7)
|
||||
};
|
||||
|
||||
static const sph_u32 RC30[8] = {
|
||||
SPH_C32(0xb213afa5), SPH_C32(0xc84ebe95),
|
||||
SPH_C32(0x4e608a22), SPH_C32(0x56d858fe),
|
||||
SPH_C32(0x343b138f), SPH_C32(0xd0ec4e3d),
|
||||
SPH_C32(0x2ceb4882), SPH_C32(0xb3ad2208)
|
||||
};
|
||||
|
||||
static const sph_u32 RC34[8] = {
|
||||
SPH_C32(0xe028c9bf), SPH_C32(0x44756f91),
|
||||
SPH_C32(0x7e8fce32), SPH_C32(0x956548be),
|
||||
SPH_C32(0xfe191be2), SPH_C32(0x3cb226e5),
|
||||
SPH_C32(0x5944a28e), SPH_C32(0xa1c4c355)
|
||||
};
|
||||
|
||||
#if SPH_LUFFA_PARALLEL
|
||||
|
||||
|
@@ -5,7 +5,7 @@
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
#include "lyra2.h"
|
||||
#include "algo/blake/sph_blake.h"
|
||||
//#include "algo/blake/sph_blake.h"
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
|
||||
__thread uint64_t* lyra2h_4way_matrix;
|
||||
|
@@ -50,6 +50,7 @@ void anime_4way_hash( void *state, const void *input )
|
||||
__m256i vh_mask;
|
||||
const uint32_t mask = 8;
|
||||
const __m256i bit3_mask = _mm256_set1_epi64x( 8 );
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
anime_4way_ctx_holder ctx;
|
||||
memcpy( &ctx, &anime_4way_ctx, sizeof(anime_4way_ctx) );
|
||||
|
||||
@@ -59,8 +60,7 @@ void anime_4way_hash( void *state, const void *input )
|
||||
blake512_4way( &ctx.blake, vhash, 64 );
|
||||
blake512_4way_close( &ctx.blake, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
|
||||
@@ -114,8 +114,7 @@ void anime_4way_hash( void *state, const void *input )
|
||||
jh512_4way( &ctx.jh, vhash, 64 );
|
||||
jh512_4way_close( &ctx.jh, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
if ( mm256_anybits1( vh_mask ) )
|
||||
{
|
||||
@@ -139,8 +138,7 @@ void anime_4way_hash( void *state, const void *input )
|
||||
skein512_4way( &ctx.skein, vhash, 64 );
|
||||
skein512_4way_close( &ctx.skein, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
if ( mm256_anybits1( vh_mask ) )
|
||||
{
|
||||
|
@@ -51,6 +51,7 @@ void quark_4way_hash( void *state, const void *input )
|
||||
quark_4way_ctx_holder ctx;
|
||||
const __m256i bit3_mask = _mm256_set1_epi64x( 8 );
|
||||
const uint32_t mask = 8;
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
|
||||
memcpy( &ctx, &quark_4way_ctx, sizeof(quark_4way_ctx) );
|
||||
|
||||
@@ -60,8 +61,7 @@ void quark_4way_hash( void *state, const void *input )
|
||||
bmw512_4way( &ctx.bmw, vhash, 64 );
|
||||
bmw512_4way_close( &ctx.bmw, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
mm256_dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
|
||||
|
||||
@@ -115,8 +115,7 @@ void quark_4way_hash( void *state, const void *input )
|
||||
jh512_4way( &ctx.jh, vhash, 64 );
|
||||
jh512_4way_close( &ctx.jh, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
if ( mm256_anybits1( vh_mask ) )
|
||||
{
|
||||
@@ -141,8 +140,7 @@ void quark_4way_hash( void *state, const void *input )
|
||||
skein512_4way( &ctx.skein, vhash, 64 );
|
||||
skein512_4way_close( &ctx.skein, vhash );
|
||||
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ),
|
||||
m256_zero );
|
||||
vh_mask = _mm256_cmpeq_epi64( _mm256_and_si256( vh[0], bit3_mask ), zero );
|
||||
|
||||
if ( mm256_anybits1( vh_mask ) )
|
||||
{
|
||||
|
@@ -86,8 +86,7 @@ static const sph_u32 K256[64] = {
|
||||
// SHA-256 4 way
|
||||
|
||||
#define SHA2s_MEXP( a, b, c, d ) \
|
||||
_mm_add_epi32( _mm_add_epi32( _mm_add_epi32( \
|
||||
SSG2_1( W[a] ), W[b] ), SSG2_0( W[c] ) ), W[d] );
|
||||
mm128_add4_32( SSG2_1( W[a] ), W[b], SSG2_0( W[c] ), W[d] );
|
||||
|
||||
#define CHs(X, Y, Z) \
|
||||
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
|
||||
@@ -115,9 +114,8 @@ static const sph_u32 K256[64] = {
|
||||
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
|
||||
do { \
|
||||
register __m128i T1, T2; \
|
||||
T1 = _mm_add_epi32( _mm_add_epi32( _mm_add_epi32( \
|
||||
_mm_add_epi32( H, BSG2_1(E) ), CHs(E, F, G) ), \
|
||||
_mm_set1_epi32( K256[( (j)+(i) )] ) ), W[i] ); \
|
||||
T1 = _mm_add_epi32( H, mm128_add4_32( BSG2_1(E), CHs(E, F, G), \
|
||||
_mm_set1_epi32( K256[( (j)+(i) )] ), W[i] ) ); \
|
||||
T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \
|
||||
D = _mm_add_epi32( D, T1 ); \
|
||||
H = _mm_add_epi32( T1, T2 ); \
|
||||
@@ -129,22 +127,8 @@ sha256_4way_round( __m128i *in, __m128i r[8] )
|
||||
register __m128i A, B, C, D, E, F, G, H;
|
||||
__m128i W[16];
|
||||
|
||||
W[ 0] = mm128_bswap_32( in[ 0] );
|
||||
W[ 1] = mm128_bswap_32( in[ 1] );
|
||||
W[ 2] = mm128_bswap_32( in[ 2] );
|
||||
W[ 3] = mm128_bswap_32( in[ 3] );
|
||||
W[ 4] = mm128_bswap_32( in[ 4] );
|
||||
W[ 5] = mm128_bswap_32( in[ 5] );
|
||||
W[ 6] = mm128_bswap_32( in[ 6] );
|
||||
W[ 7] = mm128_bswap_32( in[ 7] );
|
||||
W[ 8] = mm128_bswap_32( in[ 8] );
|
||||
W[ 9] = mm128_bswap_32( in[ 9] );
|
||||
W[10] = mm128_bswap_32( in[10] );
|
||||
W[11] = mm128_bswap_32( in[11] );
|
||||
W[12] = mm128_bswap_32( in[12] );
|
||||
W[13] = mm128_bswap_32( in[13] );
|
||||
W[14] = mm128_bswap_32( in[14] );
|
||||
W[15] = mm128_bswap_32( in[15] );
|
||||
mm128_block_bswap_32( W, in );
|
||||
mm128_block_bswap_32( W+8, in+8 );
|
||||
|
||||
A = r[0];
|
||||
B = r[1];
|
||||
@@ -266,7 +250,7 @@ void sha256_4way( sha256_4way_context *sc, const void *data, size_t len )
|
||||
|
||||
void sha256_4way_close( sha256_4way_context *sc, void *dst )
|
||||
{
|
||||
unsigned ptr, u;
|
||||
unsigned ptr;
|
||||
uint32_t low, high;
|
||||
const int buf_size = 64;
|
||||
const int pad = buf_size - 8;
|
||||
@@ -294,8 +278,7 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
|
||||
mm128_bswap_32( _mm_set1_epi32( low ) );
|
||||
sha256_4way_round( sc->buf, sc->val );
|
||||
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
((__m128i*)dst)[u] = mm128_bswap_32( sc->val[u] );
|
||||
mm128_block_bswap_32( dst, sc->val );
|
||||
}
|
||||
|
||||
#if defined(__AVX2__)
|
||||
@@ -326,15 +309,13 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
|
||||
mm256_ror_32(x, 17), mm256_ror_32(x, 19) ), _mm256_srli_epi32(x, 10) )
|
||||
|
||||
#define SHA2x_MEXP( a, b, c, d ) \
|
||||
_mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \
|
||||
SSG2_1x( W[a] ), W[b] ), SSG2_0x( W[c] ) ), W[d] );
|
||||
mm256_add4_32( SSG2_1x( W[a] ), W[b], SSG2_0x( W[c] ), W[d] );
|
||||
|
||||
#define SHA2s_8WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
|
||||
do { \
|
||||
register __m256i T1, T2; \
|
||||
T1 = _mm256_add_epi32( _mm256_add_epi32( _mm256_add_epi32( \
|
||||
_mm256_add_epi32( H, BSG2_1x(E) ), CHx(E, F, G) ), \
|
||||
_mm256_set1_epi32( K256[( (j)+(i) )] ) ), W[i] ); \
|
||||
T1 = _mm256_add_epi32( H, mm256_add4_32( BSG2_1x(E), CHx(E, F, G), \
|
||||
_mm256_set1_epi32( K256[( (j)+(i) )] ), W[i] ) ); \
|
||||
T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
|
||||
D = _mm256_add_epi32( D, T1 ); \
|
||||
H = _mm256_add_epi32( T1, T2 ); \
|
||||
@@ -346,22 +327,8 @@ sha256_8way_round( __m256i *in, __m256i r[8] )
|
||||
register __m256i A, B, C, D, E, F, G, H;
|
||||
__m256i W[16];
|
||||
|
||||
W[ 0] = mm256_bswap_32( in[ 0] );
|
||||
W[ 1] = mm256_bswap_32( in[ 1] );
|
||||
W[ 2] = mm256_bswap_32( in[ 2] );
|
||||
W[ 3] = mm256_bswap_32( in[ 3] );
|
||||
W[ 4] = mm256_bswap_32( in[ 4] );
|
||||
W[ 5] = mm256_bswap_32( in[ 5] );
|
||||
W[ 6] = mm256_bswap_32( in[ 6] );
|
||||
W[ 7] = mm256_bswap_32( in[ 7] );
|
||||
W[ 8] = mm256_bswap_32( in[ 8] );
|
||||
W[ 9] = mm256_bswap_32( in[ 9] );
|
||||
W[10] = mm256_bswap_32( in[10] );
|
||||
W[11] = mm256_bswap_32( in[11] );
|
||||
W[12] = mm256_bswap_32( in[12] );
|
||||
W[13] = mm256_bswap_32( in[13] );
|
||||
W[14] = mm256_bswap_32( in[14] );
|
||||
W[15] = mm256_bswap_32( in[15] );
|
||||
mm256_block_bswap_32( W , in );
|
||||
mm256_block_bswap_32( W+8, in+8 );
|
||||
|
||||
A = r[0];
|
||||
B = r[1];
|
||||
@@ -484,7 +451,7 @@ void sha256_8way( sha256_8way_context *sc, const void *data, size_t len )
|
||||
|
||||
void sha256_8way_close( sha256_8way_context *sc, void *dst )
|
||||
{
|
||||
unsigned ptr, u;
|
||||
unsigned ptr;
|
||||
uint32_t low, high;
|
||||
const int buf_size = 64;
|
||||
const int pad = buf_size - 8;
|
||||
@@ -513,8 +480,7 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
|
||||
|
||||
sha256_8way_round( sc->buf, sc->val );
|
||||
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
((__m256i*)dst)[u] = mm256_bswap_32( sc->val[u] );
|
||||
mm256_block_bswap_32( dst, sc->val );
|
||||
}
|
||||
|
||||
|
||||
@@ -596,9 +562,8 @@ static const sph_u64 K512[80] = {
|
||||
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
|
||||
do { \
|
||||
register __m256i T1, T2; \
|
||||
T1 = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64( \
|
||||
_mm256_add_epi64( H, BSG5_1(E) ), CH(E, F, G) ), \
|
||||
_mm256_set1_epi64x( K512[i] ) ), W[i] ); \
|
||||
T1 = _mm256_add_epi64( H, mm256_add4_64( BSG5_1(E), CH(E, F, G), \
|
||||
_mm256_set1_epi64x( K512[i] ), W[i] ) ); \
|
||||
T2 = _mm256_add_epi64( BSG5_0(A), MAJ(A, B, C) ); \
|
||||
D = _mm256_add_epi64( D, T1 ); \
|
||||
H = _mm256_add_epi64( T1, T2 ); \
|
||||
@@ -611,11 +576,12 @@ sha512_4way_round( __m256i *in, __m256i r[8] )
|
||||
register __m256i A, B, C, D, E, F, G, H;
|
||||
__m256i W[80];
|
||||
|
||||
for ( i = 0; i < 16; i++ )
|
||||
W[i] = mm256_bswap_64( in[i] );
|
||||
mm256_block_bswap_64( W , in );
|
||||
mm256_block_bswap_64( W+8, in+8 );
|
||||
|
||||
for ( i = 16; i < 80; i++ )
|
||||
W[i] = _mm256_add_epi64( _mm256_add_epi64( _mm256_add_epi64(
|
||||
SSG5_1( W[ i-2 ] ), W[ i-7 ] ), SSG5_0( W[ i-15 ] ) ), W[ i-16 ] );
|
||||
W[i] = mm256_add4_64( SSG5_1( W[ i- 2 ] ), W[ i- 7 ],
|
||||
SSG5_0( W[ i-15 ] ), W[ i-16 ] );
|
||||
|
||||
A = r[0];
|
||||
B = r[1];
|
||||
@@ -689,7 +655,7 @@ void sha512_4way( sha512_4way_context *sc, const void *data, size_t len )
|
||||
|
||||
void sha512_4way_close( sha512_4way_context *sc, void *dst )
|
||||
{
|
||||
unsigned ptr, u;
|
||||
unsigned ptr;
|
||||
const int buf_size = 128;
|
||||
const int pad = buf_size - 16;
|
||||
|
||||
@@ -711,8 +677,7 @@ void sha512_4way_close( sha512_4way_context *sc, void *dst )
|
||||
mm256_bswap_64( _mm256_set1_epi64x( sc->count << 3 ) );
|
||||
sha512_4way_round( sc->buf, sc->val );
|
||||
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
((__m256i*)dst)[u] = mm256_bswap_64( sc->val[u] );
|
||||
mm256_block_bswap_64( dst, sc->val );
|
||||
}
|
||||
|
||||
#endif // __AVX2__
|
||||
|
@@ -20,6 +20,7 @@ static const uint32_t IV512[] =
|
||||
static void
|
||||
c512_2way( shavite512_2way_context *ctx, const void *msg )
|
||||
{
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
__m256i p0, p1, p2, p3, x;
|
||||
__m256i k00, k01, k02, k03, k10, k11, k12, k13;
|
||||
__m256i *m = (__m256i*)msg;
|
||||
@@ -33,24 +34,24 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
|
||||
|
||||
// round
|
||||
k00 = m[0];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k00 ), zero );
|
||||
k01 = m[1];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = m[2];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = m[3];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p0 = _mm256_xor_si256( p0, x );
|
||||
|
||||
k10 = m[4];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k10 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k10 ), zero );
|
||||
k11 = m[5];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
k12 = m[6];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = m[7];
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
|
||||
p2 = _mm256_xor_si256( p2, x );
|
||||
|
||||
@@ -59,129 +60,129 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
|
||||
// round 1, 5, 9
|
||||
|
||||
k00 = _mm256_xor_si256( k13, mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k00 ) ) );
|
||||
mm256_aesenc_2x128( k00, zero ) ) );
|
||||
|
||||
if ( r == 0 )
|
||||
k00 = _mm256_xor_si256( k00, _mm256_set_epi32(
|
||||
~ctx->count3, ctx->count2, ctx->count1, ctx->count0,
|
||||
~ctx->count3, ctx->count2, ctx->count1, ctx->count0 ) );
|
||||
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
|
||||
k01 = _mm256_xor_si256( k00,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k01 ) ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k01, zero ) ) );
|
||||
|
||||
if ( r == 1 )
|
||||
k01 = _mm256_xor_si256( k01, _mm256_set_epi32(
|
||||
~ctx->count0, ctx->count1, ctx->count2, ctx->count3,
|
||||
~ctx->count0, ctx->count1, ctx->count2, ctx->count3 ) );
|
||||
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = _mm256_xor_si256( k01,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k02 ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k02, zero ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = _mm256_xor_si256( k02,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k03 ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k03, zero ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p3 = _mm256_xor_si256( p3, x );
|
||||
|
||||
k10 = _mm256_xor_si256( k03,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k10 ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k10, zero ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
|
||||
k11 = _mm256_xor_si256( k10,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k11 ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k11, zero ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
k12 = _mm256_xor_si256( k11,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k12 ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k12, zero ) ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = _mm256_xor_si256( k12,
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k13 ) ) );
|
||||
mm256_ror1x32_128( mm256_aesenc_2x128( k13, zero ) ) );
|
||||
|
||||
if ( r == 2 )
|
||||
k13 = _mm256_xor_si256( k13, _mm256_set_epi32(
|
||||
~ctx->count1, ctx->count0, ctx->count3, ctx->count2,
|
||||
~ctx->count1, ctx->count0, ctx->count3, ctx->count2 ) );
|
||||
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
p1 = _mm256_xor_si256( p1, x );
|
||||
|
||||
// round 2, 6, 10
|
||||
|
||||
k00 = _mm256_xor_si256( k00, mm256_ror2x256hi_1x32( k12, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k00 ), zero );
|
||||
k01 = _mm256_xor_si256( k01, mm256_ror2x256hi_1x32( k13, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = _mm256_xor_si256( k02, mm256_ror2x256hi_1x32( k00, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = _mm256_xor_si256( k03, mm256_ror2x256hi_1x32( k01, k02 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p2 = _mm256_xor_si256( p2, x );
|
||||
|
||||
k10 = _mm256_xor_si256( k10, mm256_ror2x256hi_1x32( k02, k03 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k10 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k10 ), zero );
|
||||
k11 = _mm256_xor_si256( k11, mm256_ror2x256hi_1x32( k03, k10 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
k12 = _mm256_xor_si256( k12, mm256_ror2x256hi_1x32( k10, k11 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = _mm256_xor_si256( k13, mm256_ror2x256hi_1x32( k11, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
|
||||
p0 = _mm256_xor_si256( p0, x );
|
||||
|
||||
// round 3, 7, 11
|
||||
|
||||
k00 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k00 ) ), k13 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k00 ) );
|
||||
mm256_aesenc_2x128( k00, zero ) ), k13 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k00 ), zero );
|
||||
k01 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k01 ) ), k00 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
mm256_aesenc_2x128( k01, zero ) ), k00 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k02 ) ), k01 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
mm256_aesenc_2x128( k02, zero ) ), k01 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k03 ) ), k02 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
mm256_aesenc_2x128( k03, zero ) ), k02 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p1 = _mm256_xor_si256( p1, x );
|
||||
|
||||
k10 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k10 ) ), k03 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k10 ) );
|
||||
mm256_aesenc_2x128( k10, zero ) ), k03 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k10 ), zero );
|
||||
k11 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k11 ) ), k10 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
mm256_aesenc_2x128( k11, zero ) ), k10 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
k12 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k12 ) ), k11 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
mm256_aesenc_2x128( k12, zero ) ), k11 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k13 ) ), k12 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
mm256_aesenc_2x128( k13, zero ) ), k12 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
|
||||
p3 = _mm256_xor_si256( p3, x );
|
||||
|
||||
// round 4, 8, 12
|
||||
|
||||
k00 = _mm256_xor_si256( k00, mm256_ror2x256hi_1x32( k12, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p1, k00 ), zero );
|
||||
k01 = _mm256_xor_si256( k01, mm256_ror2x256hi_1x32( k13, k00 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = _mm256_xor_si256( k02, mm256_ror2x256hi_1x32( k00, k01 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = _mm256_xor_si256( k03, mm256_ror2x256hi_1x32( k01, k02 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p0 = _mm256_xor_si256( p0, x );
|
||||
|
||||
k10 = _mm256_xor_si256( k10, mm256_ror2x256hi_1x32( k02, k03 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k10 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p3, k10 ), zero );
|
||||
k11 = _mm256_xor_si256( k11, mm256_ror2x256hi_1x32( k03, k10 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
k12 = _mm256_xor_si256( k12, mm256_ror2x256hi_1x32( k10, k11 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = _mm256_xor_si256( k13, mm256_ror2x256hi_1x32( k11, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
|
||||
p2 = _mm256_xor_si256( p2, x );
|
||||
|
||||
@@ -190,36 +191,36 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
|
||||
// round 13
|
||||
|
||||
k00 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k00 ) ), k13 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ) );
|
||||
mm256_aesenc_2x128( k00, zero ) ), k13 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
|
||||
k01 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k01 ) ), k00 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ) );
|
||||
mm256_aesenc_2x128( k01, zero ) ), k00 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
|
||||
k02 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k02 ) ), k01 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ) );
|
||||
mm256_aesenc_2x128( k02, zero ) ), k01 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
|
||||
k03 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k03 ) ), k02 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ) );
|
||||
mm256_aesenc_2x128( k03, zero ) ), k02 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
|
||||
|
||||
p3 = _mm256_xor_si256( p3, x );
|
||||
|
||||
k10 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k10 ) ), k03 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ) );
|
||||
mm256_aesenc_2x128( k10, zero ) ), k03 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
|
||||
k11 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k11 ) ), k10 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ) );
|
||||
mm256_aesenc_2x128( k11, zero ) ), k10 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
|
||||
|
||||
k12 = mm256_ror1x32_128( mm256_aesenc_2x128( k12 ) );
|
||||
k12 = mm256_ror1x32_128( mm256_aesenc_2x128( k12, zero ) );
|
||||
k12 = _mm256_xor_si256( k12, _mm256_xor_si256( k11, _mm256_set_epi32(
|
||||
~ctx->count2, ctx->count3, ctx->count0, ctx->count1,
|
||||
~ctx->count2, ctx->count3, ctx->count0, ctx->count1 ) ) );
|
||||
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ) );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
|
||||
k13 = _mm256_xor_si256( mm256_ror1x32_128(
|
||||
mm256_aesenc_2x128( k13 ) ), k12 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ) );
|
||||
mm256_aesenc_2x128( k13, zero ) ), k12 );
|
||||
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
|
||||
|
||||
p1 = _mm256_xor_si256( p1, x );
|
||||
|
||||
|
@@ -87,6 +87,7 @@ static const sph_u32 IV512[] = {
|
||||
static void
|
||||
c512( sph_shavite_big_context *sc, const void *msg )
|
||||
{
|
||||
const __m128i zero = _mm_setzero_si128();
|
||||
__m128i p0, p1, p2, p3, x;
|
||||
__m128i k00, k01, k02, k03, k10, k11, k12, k13;
|
||||
__m128i *m = (__m128i*)msg;
|
||||
@@ -101,38 +102,38 @@ c512( sph_shavite_big_context *sc, const void *msg )
|
||||
// round
|
||||
k00 = m[0];
|
||||
x = _mm_xor_si128( p1, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = m[1];
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = m[2];
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = m[3];
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p0 = _mm_xor_si128( p0, x );
|
||||
|
||||
k10 = m[4];
|
||||
x = _mm_xor_si128( p3, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = m[5];
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = m[6];
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = m[7];
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p2 = _mm_xor_si128( p2, x );
|
||||
|
||||
for ( r = 0; r < 3; r ++ )
|
||||
{
|
||||
// round 1, 5, 9
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, m128_zero ) );
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
|
||||
k00 = _mm_xor_si128( k00, k13 );
|
||||
|
||||
if ( r == 0 )
|
||||
@@ -140,8 +141,8 @@ c512( sph_shavite_big_context *sc, const void *msg )
|
||||
~sc->count3, sc->count2, sc->count1, sc->count0 ) );
|
||||
|
||||
x = _mm_xor_si128( p0, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
|
||||
k01 = _mm_xor_si128( k01, k00 );
|
||||
|
||||
if ( r == 1 )
|
||||
@@ -149,32 +150,32 @@ c512( sph_shavite_big_context *sc, const void *msg )
|
||||
~sc->count0, sc->count1, sc->count2, sc->count3 ) );
|
||||
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
|
||||
k02 = _mm_xor_si128( k02, k01 );
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
|
||||
k03 = _mm_xor_si128( k03, k02 );
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p3 = _mm_xor_si128( p3, x );
|
||||
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, m128_zero ) );
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
|
||||
k10 = _mm_xor_si128( k10, k03 );
|
||||
|
||||
x = _mm_xor_si128( p2, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
|
||||
k11 = _mm_xor_si128( k11, k10 );
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
|
||||
k12 = _mm_xor_si128( k12, k11 );
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
|
||||
k13 = _mm_xor_si128( k13, k12 );
|
||||
|
||||
if ( r == 2 )
|
||||
@@ -182,78 +183,78 @@ c512( sph_shavite_big_context *sc, const void *msg )
|
||||
~sc->count1, sc->count0, sc->count3, sc->count2 ) );
|
||||
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
p1 = _mm_xor_si128( p1, x );
|
||||
|
||||
// round 2, 6, 10
|
||||
|
||||
k00 = _mm_xor_si128( k00, mm128_ror256hi_1x32( k12, k13 ) );
|
||||
x = _mm_xor_si128( p3, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = _mm_xor_si128( k01, mm128_ror256hi_1x32( k13, k00 ) );
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = _mm_xor_si128( k02, mm128_ror256hi_1x32( k00, k01 ) );
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = _mm_xor_si128( k03, mm128_ror256hi_1x32( k01, k02 ) );
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p2 = _mm_xor_si128( p2, x );
|
||||
|
||||
k10 = _mm_xor_si128( k10, mm128_ror256hi_1x32( k02, k03 ) );
|
||||
x = _mm_xor_si128( p1, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = _mm_xor_si128( k11, mm128_ror256hi_1x32( k03, k10 ) );
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = _mm_xor_si128( k12, mm128_ror256hi_1x32( k10, k11 ) );
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = _mm_xor_si128( k13, mm128_ror256hi_1x32( k11, k12 ) );
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p0 = _mm_xor_si128( p0, x );
|
||||
|
||||
// round 3, 7, 11
|
||||
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, m128_zero ) );
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
|
||||
k00 = _mm_xor_si128( k00, k13 );
|
||||
x = _mm_xor_si128( p2, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
|
||||
k01 = _mm_xor_si128( k01, k00 );
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
|
||||
k02 = _mm_xor_si128( k02, k01 );
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
|
||||
k03 = _mm_xor_si128( k03, k02 );
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p1 = _mm_xor_si128( p1, x );
|
||||
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, m128_zero ) );
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
|
||||
k10 = _mm_xor_si128( k10, k03 );
|
||||
x = _mm_xor_si128( p0, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
|
||||
k11 = _mm_xor_si128( k11, k10 );
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
|
||||
k12 = _mm_xor_si128( k12, k11 );
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
|
||||
k13 = _mm_xor_si128( k13, k12 );
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p3 = _mm_xor_si128( p3, x );
|
||||
|
||||
@@ -261,73 +262,73 @@ c512( sph_shavite_big_context *sc, const void *msg )
|
||||
|
||||
k00 = _mm_xor_si128( k00, mm128_ror256hi_1x32( k12, k13 ) );
|
||||
x = _mm_xor_si128( p1, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = _mm_xor_si128( k01, mm128_ror256hi_1x32( k13, k00 ) );
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = _mm_xor_si128( k02, mm128_ror256hi_1x32( k00, k01 ) );
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = _mm_xor_si128( k03, mm128_ror256hi_1x32( k01, k02 ) );
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p0 = _mm_xor_si128( p0, x );
|
||||
|
||||
k10 = _mm_xor_si128( k10, mm128_ror256hi_1x32( k02, k03 ) );
|
||||
x = _mm_xor_si128( p3, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = _mm_xor_si128( k11, mm128_ror256hi_1x32( k03, k10 ) );
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = _mm_xor_si128( k12, mm128_ror256hi_1x32( k10, k11 ) );
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = _mm_xor_si128( k13, mm128_ror256hi_1x32( k11, k12 ) );
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p2 = _mm_xor_si128( p2, x );
|
||||
}
|
||||
|
||||
// round 13
|
||||
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, m128_zero ) );
|
||||
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
|
||||
k00 = _mm_xor_si128( k00, k13 );
|
||||
x = _mm_xor_si128( p0, k00 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
|
||||
k01 = _mm_xor_si128( k01, k00 );
|
||||
x = _mm_xor_si128( x, k01 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
|
||||
k02 = _mm_xor_si128( k02, k01 );
|
||||
x = _mm_xor_si128( x, k02 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
|
||||
k03 = _mm_xor_si128( k03, k02 );
|
||||
x = _mm_xor_si128( x, k03 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p3 = _mm_xor_si128( p3, x );
|
||||
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, m128_zero ) );
|
||||
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
|
||||
k10 = _mm_xor_si128( k10, k03 );
|
||||
x = _mm_xor_si128( p2, k10 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
|
||||
k11 = _mm_xor_si128( k11, k10 );
|
||||
x = _mm_xor_si128( x, k11 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
|
||||
k12 = _mm_xor_si128( k12, _mm_xor_si128( k11, _mm_set_epi32(
|
||||
~sc->count2, sc->count3, sc->count0, sc->count1 ) ) );
|
||||
x = _mm_xor_si128( x, k12 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, m128_zero ) );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
|
||||
k13 = _mm_xor_si128( k13, k12 );
|
||||
x = _mm_xor_si128( x, k13 );
|
||||
x = _mm_aesenc_si128( x, m128_zero );
|
||||
x = _mm_aesenc_si128( x, zero );
|
||||
|
||||
p1 = _mm_xor_si128( p1, x );
|
||||
|
||||
|
@@ -342,6 +342,7 @@ void fft128_2way( void *a )
|
||||
|
||||
void fft128_2way_msg( uint16_t *a, const uint8_t *x, int final )
|
||||
{
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
static const m256_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1, }};
|
||||
static const m256_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1, }};
|
||||
|
||||
@@ -352,10 +353,10 @@ void fft128_2way_msg( uint16_t *a, const uint8_t *x, int final )
|
||||
#define UNPACK( i ) \
|
||||
do { \
|
||||
__m256i t = X[i]; \
|
||||
A[2*i] = _mm256_unpacklo_epi8( t, m256_zero ); \
|
||||
A[2*i] = _mm256_unpacklo_epi8( t, zero ); \
|
||||
A[2*i+8] = _mm256_mullo_epi16( A[2*i], FFT128_Twiddle[2*i].v256 ); \
|
||||
A[2*i+8] = REDUCE(A[2*i+8]); \
|
||||
A[2*i+1] = _mm256_unpackhi_epi8( t, m256_zero ); \
|
||||
A[2*i+1] = _mm256_unpackhi_epi8( t, zero ); \
|
||||
A[2*i+9] = _mm256_mullo_epi16(A[2*i+1], FFT128_Twiddle[2*i+1].v256 ); \
|
||||
A[2*i+9] = REDUCE(A[2*i+9]); \
|
||||
} while(0)
|
||||
@@ -365,10 +366,10 @@ do { \
|
||||
do { \
|
||||
__m256i t = X[i]; \
|
||||
__m256i tmp; \
|
||||
A[2*i] = _mm256_unpacklo_epi8( t, m256_zero ); \
|
||||
A[2*i] = _mm256_unpacklo_epi8( t, zero ); \
|
||||
A[2*i+8] = _mm256_mullo_epi16( A[ 2*i ], FFT128_Twiddle[ 2*i ].v256 ); \
|
||||
A[2*i+8] = REDUCE( A[ 2*i+8 ] ); \
|
||||
tmp = _mm256_unpackhi_epi8( t, m256_zero ); \
|
||||
tmp = _mm256_unpackhi_epi8( t, zero ); \
|
||||
A[2*i+1] = _mm256_add_epi16( tmp, tw ); \
|
||||
A[2*i+9] = _mm256_mullo_epi16( _mm256_sub_epi16( tmp, tw ), \
|
||||
FFT128_Twiddle[ 2*i+1 ].v256 );\
|
||||
@@ -392,6 +393,7 @@ do { \
|
||||
|
||||
void fft256_2way_msg( uint16_t *a, const uint8_t *x, int final )
|
||||
{
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
static const m256_v16 Tweak = {{ 0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,1, }};
|
||||
static const m256_v16 FinalTweak = {{ 0,0,0,0,0,1,0,1, 0,0,0,0,0,1,0,1, }};
|
||||
|
||||
@@ -402,11 +404,11 @@ void fft256_2way_msg( uint16_t *a, const uint8_t *x, int final )
|
||||
#define UNPACK( i ) \
|
||||
do { \
|
||||
__m256i t = X[i]; \
|
||||
A[ 2*i ] = _mm256_unpacklo_epi8( t, m256_zero ); \
|
||||
A[ 2*i ] = _mm256_unpacklo_epi8( t, zero ); \
|
||||
A[ 2*i + 16 ] = _mm256_mullo_epi16( A[ 2*i ], \
|
||||
FFT256_Twiddle[ 2*i ].v256 ); \
|
||||
A[ 2*i + 16 ] = REDUCE( A[ 2*i + 16 ] ); \
|
||||
A[ 2*i + 1 ] = _mm256_unpackhi_epi8( t, m256_zero ); \
|
||||
A[ 2*i + 1 ] = _mm256_unpackhi_epi8( t, zero ); \
|
||||
A[ 2*i + 17 ] = _mm256_mullo_epi16( A[ 2*i + 1 ], \
|
||||
FFT256_Twiddle[ 2*i + 1 ].v256 ); \
|
||||
A[ 2*i + 17 ] = REDUCE( A[ 2*i + 17 ] ); \
|
||||
@@ -417,11 +419,11 @@ do { \
|
||||
do { \
|
||||
__m256i t = X[i]; \
|
||||
__m256i tmp; \
|
||||
A[ 2*i ] = _mm256_unpacklo_epi8( t, m256_zero ); \
|
||||
A[ 2*i ] = _mm256_unpacklo_epi8( t, zero ); \
|
||||
A[ 2*i + 16 ] = _mm256_mullo_epi16( A[ 2*i ], \
|
||||
FFT256_Twiddle[ 2*i ].v256 ); \
|
||||
A[ 2*i + 16 ] = REDUCE( A[ 2*i + 16 ] ); \
|
||||
tmp = _mm256_unpackhi_epi8( t, m256_zero ); \
|
||||
tmp = _mm256_unpackhi_epi8( t, zero ); \
|
||||
A[ 2*i + 1 ] = _mm256_add_epi16( tmp, tw ); \
|
||||
A[ 2*i + 17 ] = _mm256_mullo_epi16( _mm256_sub_epi16( tmp, tw ), \
|
||||
FFT256_Twiddle[ 2*i + 1 ].v256 ); \
|
||||
@@ -446,6 +448,8 @@ do { \
|
||||
fft128_2way( a+256 );
|
||||
}
|
||||
|
||||
#define c1_16( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
|
||||
|
||||
void rounds512_2way( uint32_t *state, const uint8_t *msg, uint16_t *fft )
|
||||
{
|
||||
register __m256i S0l, S1l, S2l, S3l;
|
||||
@@ -453,7 +457,8 @@ void rounds512_2way( uint32_t *state, const uint8_t *msg, uint16_t *fft )
|
||||
__m256i *S = (__m256i*) state;
|
||||
__m256i *M = (__m256i*) msg;
|
||||
__m256i *W = (__m256i*) fft;
|
||||
static const m256_v16 code[] = { mm256_const1_16(185), mm256_const1_16(233) };
|
||||
static const m256_v16 code[] = { c1_16(185), c1_16(233) };
|
||||
|
||||
|
||||
S0l = _mm256_xor_si256( S[0], M[0] );
|
||||
S0h = _mm256_xor_si256( S[1], M[1] );
|
||||
|
20
configure
vendored
20
configure
vendored
@@ -1,6 +1,6 @@
|
||||
#! /bin/sh
|
||||
# Guess values for system-dependent variables and create Makefiles.
|
||||
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.9.5.2.
|
||||
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.9.5.3.
|
||||
#
|
||||
#
|
||||
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
|
||||
@@ -577,8 +577,8 @@ MAKEFLAGS=
|
||||
# Identity of this package.
|
||||
PACKAGE_NAME='cpuminer-opt'
|
||||
PACKAGE_TARNAME='cpuminer-opt'
|
||||
PACKAGE_VERSION='3.9.5.2'
|
||||
PACKAGE_STRING='cpuminer-opt 3.9.5.2'
|
||||
PACKAGE_VERSION='3.9.5.3'
|
||||
PACKAGE_STRING='cpuminer-opt 3.9.5.3'
|
||||
PACKAGE_BUGREPORT=''
|
||||
PACKAGE_URL=''
|
||||
|
||||
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
|
||||
# Omit some internal or obsolete options to make the list less imposing.
|
||||
# This message is too long to be a string in the A/UX 3.1 sh.
|
||||
cat <<_ACEOF
|
||||
\`configure' configures cpuminer-opt 3.9.5.2 to adapt to many kinds of systems.
|
||||
\`configure' configures cpuminer-opt 3.9.5.3 to adapt to many kinds of systems.
|
||||
|
||||
Usage: $0 [OPTION]... [VAR=VALUE]...
|
||||
|
||||
@@ -1404,7 +1404,7 @@ fi
|
||||
|
||||
if test -n "$ac_init_help"; then
|
||||
case $ac_init_help in
|
||||
short | recursive ) echo "Configuration of cpuminer-opt 3.9.5.2:";;
|
||||
short | recursive ) echo "Configuration of cpuminer-opt 3.9.5.3:";;
|
||||
esac
|
||||
cat <<\_ACEOF
|
||||
|
||||
@@ -1509,7 +1509,7 @@ fi
|
||||
test -n "$ac_init_help" && exit $ac_status
|
||||
if $ac_init_version; then
|
||||
cat <<\_ACEOF
|
||||
cpuminer-opt configure 3.9.5.2
|
||||
cpuminer-opt configure 3.9.5.3
|
||||
generated by GNU Autoconf 2.69
|
||||
|
||||
Copyright (C) 2012 Free Software Foundation, Inc.
|
||||
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
|
||||
This file contains any messages produced by compilers while
|
||||
running configure, to aid debugging if configure makes a mistake.
|
||||
|
||||
It was created by cpuminer-opt $as_me 3.9.5.2, which was
|
||||
It was created by cpuminer-opt $as_me 3.9.5.3, which was
|
||||
generated by GNU Autoconf 2.69. Invocation command line was
|
||||
|
||||
$ $0 $@
|
||||
@@ -2993,7 +2993,7 @@ fi
|
||||
|
||||
# Define the identity of the package.
|
||||
PACKAGE='cpuminer-opt'
|
||||
VERSION='3.9.5.2'
|
||||
VERSION='3.9.5.3'
|
||||
|
||||
|
||||
cat >>confdefs.h <<_ACEOF
|
||||
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
|
||||
# report actual input values of CONFIG_FILES etc. instead of their
|
||||
# values after options handling.
|
||||
ac_log="
|
||||
This file was extended by cpuminer-opt $as_me 3.9.5.2, which was
|
||||
This file was extended by cpuminer-opt $as_me 3.9.5.3, which was
|
||||
generated by GNU Autoconf 2.69. Invocation command line was
|
||||
|
||||
CONFIG_FILES = $CONFIG_FILES
|
||||
@@ -6756,7 +6756,7 @@ _ACEOF
|
||||
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
|
||||
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
|
||||
ac_cs_version="\\
|
||||
cpuminer-opt config.status 3.9.5.2
|
||||
cpuminer-opt config.status 3.9.5.3
|
||||
configured by $0, generated by GNU Autoconf 2.69,
|
||||
with options \\"\$ac_cs_config\\"
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
AC_INIT([cpuminer-opt], [3.9.5.2])
|
||||
AC_INIT([cpuminer-opt], [3.9.5.3])
|
||||
|
||||
AC_PREREQ([2.59c])
|
||||
AC_CANONICAL_SYSTEM
|
||||
|
133
cpu-miner.c
133
cpu-miner.c
@@ -848,7 +848,8 @@ static double shash_sum = 0.;
|
||||
static double bhash_sum = 0.;
|
||||
static double time_sum = 0.;
|
||||
static double latency_sum = 0.;
|
||||
static uint64_t submits_sum = 0;
|
||||
static uint64_t submit_sum = 0;
|
||||
static uint64_t reject_sum = 0;
|
||||
|
||||
struct share_stats_t
|
||||
{
|
||||
@@ -943,7 +944,8 @@ static int share_result( int result, struct work *null_work,
|
||||
shash_sum += share_hash;
|
||||
bhash_sum += block_hash;
|
||||
time_sum += share_time;
|
||||
submits_sum ++;
|
||||
submit_sum ++;
|
||||
reject_sum += (uint64_t)!result;
|
||||
latency_sum += latency;
|
||||
|
||||
pthread_mutex_unlock( &stats_lock );
|
||||
@@ -2118,30 +2120,49 @@ static void *miner_thread( void *userdata )
|
||||
double hash = shash_sum; shash_sum = 0.;
|
||||
double bhash = bhash_sum; bhash_sum = 0.;
|
||||
double time = time_sum; time_sum = 0.;
|
||||
uint64_t submits = submits_sum; submits_sum = 0;
|
||||
uint64_t submits = submit_sum; submit_sum = 0;
|
||||
uint64_t rejects = reject_sum; reject_sum = 0;
|
||||
uint64_t latency = latency_sum; latency_sum = 0;
|
||||
memcpy( &five_min_start, &time_now, sizeof time_now );
|
||||
|
||||
pthread_mutex_unlock( &stats_lock );
|
||||
|
||||
double ghrate = global_hashrate;
|
||||
double shrate = time == 0. ? 0. : hash / time;
|
||||
double scaled_shrate = shrate;
|
||||
double avg_share = bhash == 0. ? 0. : hash / bhash * 100.;
|
||||
double ghrate = global_hashrate;
|
||||
double scaled_ghrate = ghrate;
|
||||
double shrate = time == 0. ? 0. : hash / time;
|
||||
double scaled_shrate = shrate;
|
||||
double avg_share = bhash == 0. ? 0. : hash / bhash * 100.;
|
||||
uint64_t avg_latency = 0;
|
||||
double latency_pc = 0.;
|
||||
double rejects_pc = 0.;
|
||||
double submit_rate = 0.;
|
||||
char shr[32];
|
||||
char shr_units[4] = {0};
|
||||
char ghr[32];
|
||||
char ghr_units[4] = {0};
|
||||
int temp = cpu_temp(0);
|
||||
char timestr[32];
|
||||
char tempstr[32];
|
||||
|
||||
latency = submits ? latency / submits : 0;
|
||||
if ( submits )
|
||||
avg_latency = latency / submits;
|
||||
|
||||
if ( time != 0. )
|
||||
{
|
||||
submit_rate = (double)submits*60. / time;
|
||||
rejects_pc = (double)rejects / (time*10.);
|
||||
latency_pc = (double)latency / ( time*10.);
|
||||
}
|
||||
|
||||
scale_hash_for_display( &scaled_shrate, shr_units );
|
||||
scale_hash_for_display( &scaled_ghrate, ghr_units );
|
||||
sprintf( ghr, "%.2f %sH/s", scaled_ghrate, ghr_units );
|
||||
|
||||
if ( use_colors )
|
||||
{
|
||||
if ( shrate > (32.*ghrate) )
|
||||
if ( shrate > (128.*ghrate) )
|
||||
sprintf( shr, "%s%.2f %sH/s%s", CL_MAG, scaled_shrate,
|
||||
shr_units, CL_WHT );
|
||||
else if ( shrate > (8.*ghrate) )
|
||||
else if ( shrate > (16.*ghrate) )
|
||||
sprintf( shr, "%s%.2f %sH/s%s", CL_GRN, scaled_shrate,
|
||||
shr_units, CL_WHT );
|
||||
else if ( shrate > 2.0*ghrate )
|
||||
@@ -2153,53 +2174,99 @@ static void *miner_thread( void *userdata )
|
||||
sprintf( shr, "%s%.2f %sH/s%s", CL_YLW, scaled_shrate,
|
||||
shr_units, CL_WHT );
|
||||
|
||||
if ( temp >= 80 ) sprintf( timestr, "%s%d C%s",
|
||||
if ( temp >= 80 ) sprintf( tempstr, "%s%d C%s",
|
||||
CL_RED, temp, CL_WHT );
|
||||
else if (temp >=70 ) sprintf( timestr, "%s%d C%s",
|
||||
else if (temp >=70 ) sprintf( tempstr, "%s%d C%s",
|
||||
CL_YLW, temp, CL_WHT );
|
||||
else sprintf( timestr, "%d C", temp );
|
||||
else sprintf( tempstr, "%d C", temp );
|
||||
}
|
||||
else
|
||||
{
|
||||
sprintf( shr, "%.2f %sH/s", scaled_shrate, shr_units );
|
||||
sprintf( timestr, "%d C", temp );
|
||||
sprintf( tempstr, "%d C", temp );
|
||||
}
|
||||
|
||||
|
||||
applog(LOG_NOTICE,"Submitted %d shares in %dm%02ds.",
|
||||
(uint64_t)submits, et.tv_sec / 60, et.tv_sec % 60 );
|
||||
applog(LOG_NOTICE,"%d rejects (%.2f%%), %.5f%% block share.",
|
||||
rejects, rejects_pc, avg_share );
|
||||
applog(LOG_NOTICE,"Avg hashrate: Miner %s, Share %s.", ghr, shr );
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
applog(LOG_NOTICE,"Shares/min: %.2f, latency %d ms (%.2f%%).",
|
||||
submit_rate, avg_latency, latency_pc );
|
||||
|
||||
#else
|
||||
applog(LOG_NOTICE,"Shares/min: %.2f, latency %d ms (%.2f%%), temp: %s.",
|
||||
submit_rate, avg_latency, latency_pc, tempstr );
|
||||
#endif
|
||||
|
||||
/*
|
||||
applog(LOG_NOTICE,"Submitted %d shares in %dm%02ds, %.5f%% block share.",
|
||||
(uint64_t)submits, et.tv_sec / 60, et.tv_sec % 60, avg_share );
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
applog(LOG_NOTICE,"Share hashrate %s, latency %d ms.",
|
||||
shr, latency );
|
||||
applog(LOG_NOTICE,"Share hashrate %s, latency %d ms (%.2f%%).",
|
||||
shr, avg_latency, latency_pc );
|
||||
#else
|
||||
applog(LOG_NOTICE,"Share hashrate %s, latency %d ms, temp %s.",
|
||||
shr, latency, timestr );
|
||||
applog(LOG_NOTICE,"Share hashrate %s, latency %d ms (%.2f%%), temp %s.",
|
||||
shr, avg_latency, latency_pc, tempstr );
|
||||
#endif
|
||||
*/
|
||||
applog(LOG_INFO,"- - - - - - - - - - - - - - - - - - - - - - - - - - -");
|
||||
}
|
||||
|
||||
// display hashrate
|
||||
if ( opt_hash_meter )
|
||||
if ( !opt_quiet )
|
||||
{
|
||||
char hc[16];
|
||||
char hr[16];
|
||||
char hc_units[2] = {0,0};
|
||||
char hr_units[2] = {0,0};
|
||||
double hashcount = thr_hashcount[thr_id];
|
||||
double hashrate = thr_hashrates[thr_id];
|
||||
if ( hashcount )
|
||||
double hashcount;
|
||||
double hashrate;
|
||||
if ( opt_hash_meter )
|
||||
{
|
||||
scale_hash_for_display( &hashcount, hc_units );
|
||||
scale_hash_for_display( &hashrate, hr_units );
|
||||
if ( hc_units[0] )
|
||||
sprintf( hc, "%.2f", hashcount );
|
||||
else // no fractions of a hash
|
||||
sprintf( hc, "%.0f", hashcount );
|
||||
sprintf( hr, "%.2f", hashrate );
|
||||
applog( LOG_INFO, "CPU #%d: %s %sH, %s %sH/s",
|
||||
thr_id, hc, hc_units, hr, hr_units );
|
||||
hashcount = thr_hashcount[thr_id];
|
||||
hashrate = thr_hashrates[thr_id];
|
||||
if ( hashcount != 0. )
|
||||
{
|
||||
scale_hash_for_display( &hashcount, hc_units );
|
||||
scale_hash_for_display( &hashrate, hr_units );
|
||||
if ( hc_units[0] )
|
||||
sprintf( hc, "%.2f", hashcount );
|
||||
else // no fractions of a hash
|
||||
sprintf( hc, "%.0f", hashcount );
|
||||
sprintf( hr, "%.2f", hashrate );
|
||||
applog( LOG_INFO, "CPU #%d: %s %sH, %s %sH/s",
|
||||
thr_id, hc, hc_units, hr, hr_units );
|
||||
}
|
||||
}
|
||||
if ( thr_id == 0 )
|
||||
{
|
||||
hashcount = 0.;
|
||||
hashrate = 0.;
|
||||
for ( i = 0; i < opt_n_threads; i++ )
|
||||
{
|
||||
hashrate += thr_hashrates[i];
|
||||
hashcount += thr_hashcount[i];
|
||||
}
|
||||
if ( hashcount != 0. )
|
||||
{
|
||||
scale_hash_for_display( &hashcount, hc_units );
|
||||
scale_hash_for_display( &hashrate, hr_units );
|
||||
if ( hc_units[0] )
|
||||
sprintf( hc, "%.2f", hashcount );
|
||||
else // no fractions of a hash
|
||||
sprintf( hc, "%.0f", hashcount );
|
||||
sprintf( hr, "%.2f", hashrate );
|
||||
applog( LOG_NOTICE, "Miner perf: %s %sH, %s %sH/s.",
|
||||
hc, hc_units, hr, hr_units );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Display benchmark total
|
||||
// Update hashrate for API if no shares accepted yet.
|
||||
if ( ( opt_benchmark || !accepted_share_count )
|
||||
@@ -2212,7 +2279,7 @@ static void *miner_thread( void *userdata )
|
||||
hashrate += thr_hashrates[i];
|
||||
hashcount += thr_hashcount[i];
|
||||
}
|
||||
if ( hashcount )
|
||||
if ( hashcount != 0. )
|
||||
{
|
||||
global_hashcount = hashcount;
|
||||
global_hashrate = hashrate;
|
||||
|
10
simd-utils.h
10
simd-utils.h
@@ -174,32 +174,32 @@
|
||||
#if defined(__MMX__)
|
||||
|
||||
// 64 bit vectors
|
||||
#include "simd-utils/simd-mmx.h"
|
||||
#include "simd-utils/simd-64.h"
|
||||
#include "simd-utils/intrlv-mmx.h"
|
||||
|
||||
#if defined(__SSE2__)
|
||||
|
||||
// 128 bit vectors
|
||||
#include "simd-utils/simd-sse2.h"
|
||||
#include "simd-utils/simd-128.h"
|
||||
#include "simd-utils/intrlv-sse2.h"
|
||||
|
||||
#if defined(__AVX__)
|
||||
|
||||
// 256 bit vector basics
|
||||
#include "simd-utils/simd-avx.h"
|
||||
#include "simd-utils/simd-256.h"
|
||||
#include "simd-utils/intrlv-avx.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// 256 bit everything else
|
||||
#include "simd-utils/simd-avx2.h"
|
||||
//#include "simd-utils/simd-avx2.h"
|
||||
#include "simd-utils/intrlv-avx2.h"
|
||||
|
||||
// Skylake-X has all these
|
||||
#if defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
|
||||
|
||||
// 512 bit vectors
|
||||
#include "simd-utils/simd-avx512.h"
|
||||
#include "simd-utils/simd-512.h"
|
||||
#include "simd-utils/intrlv-avx512.h"
|
||||
|
||||
#endif // MMX
|
||||
|
@@ -1,6 +1,50 @@
|
||||
#if !defined(INTRLV_AVX_H__)
|
||||
#define INTRLV_AVX_H__ 1
|
||||
|
||||
// philosophical discussion
|
||||
//
|
||||
// transitions:
|
||||
//
|
||||
// int32 <-> int64
|
||||
// uint64_t = (uint64_t)int32_lo | ( (uint64_t)int32_hi << 32 )
|
||||
// Efficient transition and post processing, 32 bit granularity is lost.
|
||||
//
|
||||
// int32 <-> m64
|
||||
// More complex, 32 bit granularity maintained, limited number of mmx regs.
|
||||
// int32 <-> int64 <-> m64 might be more efficient.
|
||||
//
|
||||
// int32 <-> m128
|
||||
// Expensive, current implementation.
|
||||
//
|
||||
// int32 <-> m256
|
||||
// Very expensive multi stage, current implementation.
|
||||
//
|
||||
// int64/m64 <-> m128
|
||||
// Efficient, agnostic to native element size. Common.
|
||||
//
|
||||
// m128 <-> m256
|
||||
// Expensive for a single instruction, unavoidable. Common.
|
||||
//
|
||||
// Multi stage options
|
||||
//
|
||||
// int32 <-> int64 -> m128
|
||||
// More efficient than insert32, granularity maintained. Common.
|
||||
//
|
||||
// int64 <-> m128 -> m256
|
||||
// Unavoidable, reasonably efficient. Common
|
||||
//
|
||||
// int32 <-> int64 -> m128 -> m256
|
||||
// Seems inevitable, most efficient despite number of stages. Common.
|
||||
//
|
||||
// Implementation plan.
|
||||
//
|
||||
// 1. Complete m128 <-> m256
|
||||
// 2. Implement int64 <-> m128
|
||||
// 3. Combine int64 <-> m128 <-> m256
|
||||
// 4. Implement int32 <-> int64 <-> m128
|
||||
// 5. Combine int32 <-> int64 <-> m128 <-> m256
|
||||
//
|
||||
|
||||
#if defined(__AVX__)
|
||||
|
||||
// Convenient short cuts for local use only
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#if !defined(SIMD_SSE2_H__)
|
||||
#define SIMD_SSE2_H__ 1
|
||||
#if !defined(SIMD_128_H__)
|
||||
#define SIMD_128_H__ 1
|
||||
|
||||
#if defined(__SSE2__)
|
||||
|
||||
@@ -15,69 +15,148 @@
|
||||
//
|
||||
// 128 bit operations are enhanced with uint128 which adds 128 bit integer
|
||||
// support for arithmetic and other operations. Casting to uint128_t is not
|
||||
// free, it requires a move from mmx to gpr but is often the only way or
|
||||
// the more efficient way for certain operations.
|
||||
|
||||
// Compile time constant initializers are type agnostic and can have
|
||||
// a pointer handle of almost any type. All arguments must be scalar constants.
|
||||
// up to 64 bits. These iniitializers should only be used at compile time
|
||||
// to initialize vector arrays. All data reside in memory.
|
||||
// efficient but is sometimes the only way for certain operations.
|
||||
//
|
||||
// Constants are an issue with simd. Simply put, immediate constants don't
|
||||
// exist. All simd constants either reside in memory or a register.
|
||||
// The distibction is made below with c128 being memory resident defined
|
||||
// at compile time and m128 being register defined at run time.
|
||||
//
|
||||
// All run time constants must be generated using their components elements
|
||||
// incurring significant overhead. The more elements the more overhead
|
||||
// both in instructions and in GP register usage. Whenever possible use
|
||||
// 64 bit constant elements regardless of the actual element size.
|
||||
//
|
||||
// Due to the cost of generating constants they should not be regenerated
|
||||
// in the same function. Instead, define a local const.
|
||||
//
|
||||
// Some constant values can be generated using shortcuts. Zero for example
|
||||
// is as simple as XORing any register with itself, and is implemented
|
||||
// in the setzero instrinsic. These shortcuts must be implemented is asm
|
||||
// due to doing things the compiler would complain about. Another single
|
||||
// instruction constant is -1, defined below. Others may be added as the need
|
||||
// arises. Even single instruction constants are less efficient than local
|
||||
// register variables so the advice above stands.
|
||||
//
|
||||
// One common use for simd constants is as a control index for some simd
|
||||
// instructions like blend and shuffle. The utilities below do not take this
|
||||
// into account. Those that generate a simd constant should not be used
|
||||
// repeatedly. It may be better for the application to reimplement the
|
||||
// utility to better suit its usage.
|
||||
//
|
||||
// These are of limited use, it is often simpler to use uint64_t arrays
|
||||
// and cast as required.
|
||||
|
||||
#define mm128_const_64( x1, x0 ) {{ x1, x0 }}
|
||||
#define mm128_const1_64( x ) {{ x, x }}
|
||||
|
||||
#define mm128_const_32( x3, x2, x1, x0 ) {{ x3, x2, x1, x0 }}
|
||||
#define mm128_const1_32( x ) {{ x,x,x,x }}
|
||||
|
||||
#define mm128_const_16( x7, x6, x5, x4, x3, x2, x1, x0 ) \
|
||||
{{ x7, x6, x5, x4, x3, x2, x1, x0 }}
|
||||
#define mm128_const1_16( x ) {{ x,x,x,x, x,x,x,x }}
|
||||
|
||||
#define mm128_const_8( x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 ) \
|
||||
{{ x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 }}
|
||||
#define mm128_const1_8( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
|
||||
|
||||
// Compile time constants, use only for compile time initializing.
|
||||
#define c128_zero mm128_const1_64( 0ULL )
|
||||
#define c128_one_128 mm128_const_64( 0ULL, 1ULL )
|
||||
#define c128_one_64 mm128_const1_64( 1ULL )
|
||||
#define c128_one_32 mm128_const1_32( 1UL )
|
||||
#define c128_one_16 mm128_const1_16( 1U )
|
||||
#define c128_one_8 mm128_const1_8( 1U )
|
||||
#define c128_neg1 mm128_const1_64( 0xFFFFFFFFFFFFFFFFULL )
|
||||
#define c128_neg1_64 mm128_const1_64( 0xFFFFFFFFFFFFFFFFULL )
|
||||
#define c128_neg1_32 mm128_const1_32( 0xFFFFFFFFUL )
|
||||
#define c128_neg1_16 mm128_const1_32( 0xFFFFU )
|
||||
#define c128_neg1_8 mm128_const1_32( 0xFFU )
|
||||
|
||||
//
|
||||
// Pseudo constants.
|
||||
//
|
||||
// These can't be used for compile time initialization.
|
||||
// These should be used for all simple vectors.
|
||||
//
|
||||
// _mm_setzero_si128 uses pxor instruction, it's unclear what _mm_set_epi does.
|
||||
// Clearly it's faster than reading a memory resident constant. Assume set
|
||||
// is also faster.
|
||||
// If a pseudo constant is used often in a function it may be preferable
|
||||
// to define a register variable to represent that constant.
|
||||
// register __m128i zero = mm_setzero_si128().
|
||||
// This reduces any references to a move instruction.
|
||||
// Repeated usage of any simd pseudo-constant should use a locally defined
|
||||
// const rather than recomputing it for every reference.
|
||||
|
||||
#define m128_zero _mm_setzero_si128()
|
||||
|
||||
#define m128_one_128 _mm_set_epi64x( 0ULL, 1ULL )
|
||||
#define m128_one_64 _mm_set1_epi64x( 1ULL )
|
||||
#define m128_one_32 _mm_set1_epi32( 1UL )
|
||||
#define m128_one_16 _mm_set1_epi16( 1U )
|
||||
#define m128_one_8 _mm_set1_epi8( 1U )
|
||||
// As suggested by Intel...
|
||||
// Arg passing for simd registers is assumed to be first output arg,
|
||||
// then input args, then locals. This is probably wrong, gcc likely picks
|
||||
// whichever register is currently holding the variable, or whichever
|
||||
// register is available to hold it. Nevertheless, all args are specified
|
||||
// by their arg number and local variables use registers starting at
|
||||
// last arg + 1, by type.
|
||||
// Output args don't need to be listed as clobbered.
|
||||
|
||||
#define m128_neg1 _mm_set1_epi64x( 0xFFFFFFFFFFFFFFFFULL )
|
||||
|
||||
static inline __m128i m128_one_64_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pxor %0, %0\n\t"
|
||||
"pcmpeqd %%xmm1, %%xmm1\n\t"
|
||||
"psubq %%xmm1, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "xmm1" );
|
||||
return a;
|
||||
}
|
||||
#define m128_one_64 m128_one_64_fn()
|
||||
|
||||
static inline __m128i m128_one_32_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pxor %0, %0\n\t"
|
||||
"pcmpeqd %%xmm1, %%xmm1\n\t"
|
||||
"psubd %%xmm1, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "xmm1" );
|
||||
return a;
|
||||
}
|
||||
#define m128_one_32 m128_one_32_fn()
|
||||
|
||||
static inline __m128i m128_one_16_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pxor %0, %0\n\t"
|
||||
"pcmpeqd %%xmm1, %%xmm1\n\t"
|
||||
"psubw %%xmm1, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "xmm1" );
|
||||
return a;
|
||||
}
|
||||
#define m128_one_16 m128_one_16_fn()
|
||||
|
||||
static inline __m128i m128_one_8_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pxor %0, %0\n\t"
|
||||
"pcmpeqd %%xmm1, %%xmm1\n\t"
|
||||
"psubb %%xmm1, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "xmm1" );
|
||||
return a;
|
||||
}
|
||||
#define m128_one_8 m128_one_8_fn()
|
||||
|
||||
static inline __m128i m128_neg1_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pcmpeqd %0, %0\n\t"
|
||||
:"=x"(a) );
|
||||
return a;
|
||||
}
|
||||
#define m128_neg1 m128_neg1_fn()
|
||||
|
||||
#if defined(__SSE41__)
|
||||
|
||||
static inline __m128i m128_one_128_fn()
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pinsrq $0, $1, %0\n\t"
|
||||
"pinsrq $1, $0, %0\n\t"
|
||||
:"=x"(a) );
|
||||
return a;
|
||||
}
|
||||
#define m128_one_128 m128_one_128_fn()
|
||||
|
||||
// alternative to _mm_set_epi64x, doesn't use mem,
|
||||
// cost = 2 pinsrt, estimate 4 clocks.
|
||||
static inline __m128i m128_const_64( uint64_t hi, uint64_t lo )
|
||||
{
|
||||
__m128i a;
|
||||
asm( "pinsrq $0, %2, %0\n\t"
|
||||
"pinsrq $1, %1, %0\n\t"
|
||||
:"=x"(a)
|
||||
:"r"(hi),"r"(lo) );
|
||||
return a;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define m128_one_128 _mm_set_epi64x( 0ULL, 1ULL )
|
||||
|
||||
#define m128_const_64 _mm_set_epi64x
|
||||
|
||||
#endif
|
||||
|
||||
//
|
||||
// Basic operations without equivalent SIMD intrinsic
|
||||
@@ -90,9 +169,21 @@
|
||||
#define mm128_negate_32( v ) _mm_sub_epi32( m128_zero, v )
|
||||
#define mm128_negate_16( v ) _mm_sub_epi16( m128_zero, v )
|
||||
|
||||
// Use uint128_t for most arithmetic, bit shift, comparison operations
|
||||
// spanning all 128 bits. Some extractions are also more efficient
|
||||
// casting __m128i as uint128_t and usingstandard operators.
|
||||
// Add 4 values, fewer dependencies than sequential addition.
|
||||
#define mm128_add4_64( a, b, c, d ) \
|
||||
_mm_add_epi64( _mm_add_epi64( a, b ), _mm_add_epi64( c, d ) )
|
||||
|
||||
#define mm128_add4_32( a, b, c, d ) \
|
||||
_mm_add_epi32( _mm_add_epi32( a, b ), _mm_add_epi32( c, d ) )
|
||||
|
||||
#define mm128_add4_16( a, b, c, d ) \
|
||||
_mm_add_epi16( _mm_add_epi16( a, b ), _mm_add_epi16( c, d ) )
|
||||
|
||||
#define mm128_add4_8( a, b, c, d ) \
|
||||
_mm_add_epi8( _mm_add_epi8( a, b ), _mm_add_epi8( c, d ) )
|
||||
|
||||
#define mm128_xor4( a, b, c, d ) \
|
||||
_mm_xor_si128( _mm_xor_si128( a, b ), _mm_xor_si128( c, d ) )
|
||||
|
||||
// This isn't cheap, not suitable for bulk usage.
|
||||
#define mm128_extr_4x32( a0, a1, a2, a3, src ) \
|
||||
@@ -105,6 +196,16 @@ do { \
|
||||
|
||||
// Horizontal vector testing
|
||||
|
||||
#if defined(__SSE41__)
|
||||
|
||||
#define mm128_allbits0( a ) _mm_testz_si128( a, a )
|
||||
#define mm128_allbits1( a ) _mm_testc_si128( a, m128_neg1 )
|
||||
#define mm128_allbitsne( a ) _mm_testnzc_si128( a, m128_neg1 )
|
||||
#define mm128_anybits0 mm128_allbitsne
|
||||
#define mm128_anybits1 mm128_allbitsne
|
||||
|
||||
#else // SSE2
|
||||
|
||||
// Bit-wise test of entire vector, useful to test results of cmp.
|
||||
#define mm128_anybits0( a ) (uint128_t)(a)
|
||||
#define mm128_anybits1( a ) (((uint128_t)(a))+1)
|
||||
@@ -112,6 +213,8 @@ do { \
|
||||
#define mm128_allbits0( a ) ( !mm128_anybits1(a) )
|
||||
#define mm128_allbits1( a ) ( !mm128_anybits0(a) )
|
||||
|
||||
#endif // SSE41 else SSE2
|
||||
|
||||
//
|
||||
// Vector pointer cast
|
||||
|
||||
@@ -139,6 +242,7 @@ do { \
|
||||
|
||||
#else
|
||||
|
||||
// Doesn't work with register variables.
|
||||
#define mm128_extr_64(a,n) (((uint64_t*)&a)[n])
|
||||
#define mm128_extr_32(a,n) (((uint32_t*)&a)[n])
|
||||
|
||||
@@ -209,7 +313,7 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
// Bit rotations
|
||||
|
||||
// AVX512 has implemented bit rotation for 128 bit vectors with
|
||||
// 64 and 32 bit elements. Not really useful.
|
||||
// 64 and 32 bit elements.
|
||||
|
||||
//
|
||||
// Rotate each element of v by c bits
|
||||
@@ -233,13 +337,16 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
_mm_or_si128( _mm_slli_epi16( v, c ), _mm_srli_epi16( v, 16-(c) ) )
|
||||
|
||||
//
|
||||
// Rotate elements accross all lanes
|
||||
// Rotate vector elements accross all lanes
|
||||
|
||||
#define mm128_swap_64( v ) _mm_shuffle_epi32( v, 0x4e )
|
||||
|
||||
#define mm128_ror_1x32( v ) _mm_shuffle_epi32( v, 0x39 )
|
||||
#define mm128_rol_1x32( v ) _mm_shuffle_epi32( v, 0x93 )
|
||||
|
||||
#if defined (__SSE3__)
|
||||
// no SSE2 implementation, no current users
|
||||
|
||||
#define mm128_ror_1x16( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 1, 0,15,14,13,12,11,10 \
|
||||
9, 8, 7, 6, 5, 4, 3, 2 ) )
|
||||
@@ -252,6 +359,7 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
#define mm128_rol_1x8( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 14,13,12,11,10, 9, 8, 7, \
|
||||
6, 5, 4, 3, 2, 1, 0,15 ) )
|
||||
#endif // SSE3
|
||||
|
||||
// Rotate 16 byte (128 bit) vector by c bytes.
|
||||
// Less efficient using shift but more versatile. Use only for odd number
|
||||
@@ -262,17 +370,6 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
#define mm128_brol( v, c ) \
|
||||
_mm_or_si128( _mm_slli_si128( v, c ), _mm_srli_si128( v, 16-(c) ) )
|
||||
|
||||
// Invert vector: {3,2,1,0} -> {0,1,2,3}
|
||||
#define mm128_invert_32( v ) _mm_shuffle_epi32( a, 0x1b )
|
||||
|
||||
#define mm128_invert_16( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 1, 0, 3, 2, 5, 4, 7, 6, \
|
||||
9, 8, 11,10, 13,12, 15,14 ) )
|
||||
|
||||
#define mm128_invert_8( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 0, 1, 2, 3, 4, 5, 6, 7, \
|
||||
8, 9,10,11,12,13,14,15 ) )
|
||||
|
||||
//
|
||||
// Rotate elements within lanes.
|
||||
|
||||
@@ -283,7 +380,6 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
#define mm128_rol16_64( v ) _mm_shuffle_epi8( v, \
|
||||
_mm_set_epi8( 13,12,11,10, 9, 8,15,14, 5, 4, 3, 2, 1, 0, 7, 6 )
|
||||
|
||||
|
||||
#define mm128_swap16_32( v ) _mm_shuffle_epi8( v, \
|
||||
_mm_set_epi8( 13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2 )
|
||||
|
||||
@@ -293,17 +389,45 @@ static inline void memcpy_128( __m128i *dst, const __m128i *src, int n )
|
||||
#if defined(__SSSE3__)
|
||||
|
||||
#define mm128_bswap_64( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 8, 9,10,11,12,13,14,15, \
|
||||
0, 1, 2, 3, 4, 5, 6, 7 ) )
|
||||
_mm_shuffle_epi8( v, m128_const64( 0x08090a0b0c0d0e0f, \
|
||||
0x0001020304050607 ) )
|
||||
|
||||
#define mm128_bswap_32( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 12,13,14,15, 8, 9,10,11, \
|
||||
4, 5, 6, 7, 0, 1, 2, 3 ) )
|
||||
_mm_shuffle_epi8( v, m128_const_64( 0x0c0d0e0f08090a0b, \
|
||||
0x0405060700010203 ) )
|
||||
|
||||
#define mm128_bswap_16( v ) \
|
||||
_mm_shuffle_epi8( v, _mm_set_epi8( 14,15, 12,13, 10,11, 8, 9, \
|
||||
6, 7, 4, 5, 2, 3, 0, 1 ) )
|
||||
|
||||
// 8 byte qword * 8 qwords * 2 lanes = 128 bytes
|
||||
#define mm128_block_bswap_64( d, s ) do \
|
||||
{ \
|
||||
__m128i ctl = m128_const_64( 0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
|
||||
casti_m128i( d, 0 ) = _mm_shuffle_epi8( casti_m128i( s, 0 ), ctl ); \
|
||||
casti_m128i( d, 1 ) = _mm_shuffle_epi8( casti_m128i( s, 1 ), ctl ); \
|
||||
casti_m128i( d, 2 ) = _mm_shuffle_epi8( casti_m128i( s, 2 ), ctl ); \
|
||||
casti_m128i( d, 3 ) = _mm_shuffle_epi8( casti_m128i( s, 3 ), ctl ); \
|
||||
casti_m128i( d, 4 ) = _mm_shuffle_epi8( casti_m128i( s, 4 ), ctl ); \
|
||||
casti_m128i( d, 5 ) = _mm_shuffle_epi8( casti_m128i( s, 5 ), ctl ); \
|
||||
casti_m128i( d, 6 ) = _mm_shuffle_epi8( casti_m128i( s, 6 ), ctl ); \
|
||||
casti_m128i( d, 7 ) = _mm_shuffle_epi8( casti_m128i( s, 7 ), ctl ); \
|
||||
} while(0)
|
||||
|
||||
// 4 byte dword * 8 dwords * 4 lanes = 128 bytes
|
||||
#define mm128_block_bswap_32( d, s ) do \
|
||||
{ \
|
||||
__m128i ctl = m128_const_64( 0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
|
||||
casti_m128i( d, 0 ) = _mm_shuffle_epi8( casti_m128i( s, 0 ), ctl ); \
|
||||
casti_m128i( d, 1 ) = _mm_shuffle_epi8( casti_m128i( s, 1 ), ctl ); \
|
||||
casti_m128i( d, 2 ) = _mm_shuffle_epi8( casti_m128i( s, 2 ), ctl ); \
|
||||
casti_m128i( d, 3 ) = _mm_shuffle_epi8( casti_m128i( s, 3 ), ctl ); \
|
||||
casti_m128i( d, 4 ) = _mm_shuffle_epi8( casti_m128i( s, 4 ), ctl ); \
|
||||
casti_m128i( d, 5 ) = _mm_shuffle_epi8( casti_m128i( s, 5 ), ctl ); \
|
||||
casti_m128i( d, 6 ) = _mm_shuffle_epi8( casti_m128i( s, 6 ), ctl ); \
|
||||
casti_m128i( d, 7 ) = _mm_shuffle_epi8( casti_m128i( s, 7 ), ctl ); \
|
||||
} while(0)
|
||||
|
||||
#else // SSE2
|
||||
|
||||
// Use inline function instead of macro due to multiple statements.
|
||||
@@ -326,16 +450,41 @@ static inline __m128i mm128_bswap_16( __m128i v )
|
||||
return _mm_or_si128( _mm_slli_epi16( v, 8 ), _mm_srli_epi16( v, 8 ) );
|
||||
}
|
||||
|
||||
static inline void mm128_block_bswap_64( __m128i *d, __m128i *s )
|
||||
{
|
||||
d[0] = mm128_bswap_32( s[0] );
|
||||
d[1] = mm128_bswap_32( s[1] );
|
||||
d[2] = mm128_bswap_32( s[2] );
|
||||
d[3] = mm128_bswap_32( s[3] );
|
||||
d[4] = mm128_bswap_32( s[4] );
|
||||
d[5] = mm128_bswap_32( s[5] );
|
||||
d[6] = mm128_bswap_32( s[6] );
|
||||
d[7] = mm128_bswap_32( s[7] );
|
||||
}
|
||||
|
||||
static inline void mm128_block_bswap_32( __m128i *d, __m128i *s )
|
||||
{
|
||||
d[0] = mm128_bswap_32( s[0] );
|
||||
d[1] = mm128_bswap_32( s[1] );
|
||||
d[2] = mm128_bswap_32( s[2] );
|
||||
d[3] = mm128_bswap_32( s[3] );
|
||||
d[4] = mm128_bswap_32( s[4] );
|
||||
d[5] = mm128_bswap_32( s[5] );
|
||||
d[6] = mm128_bswap_32( s[6] );
|
||||
d[7] = mm128_bswap_32( s[7] );
|
||||
}
|
||||
|
||||
#endif // SSSE3 else SSE2
|
||||
|
||||
//
|
||||
// Rotate in place concatenated 128 bit vectors as one 256 bit vector.
|
||||
|
||||
// Swap 128 bit vectorse.
|
||||
|
||||
#define mm128_swap128_256(v1, v2) \
|
||||
v1 = _mm_xor_si128(v1, v2); \
|
||||
v2 = _mm_xor_si128(v1, v2); \
|
||||
v1 = _mm_xor_si128(v1, v2);
|
||||
#define mm128_swap128_256( v1, v2 ) \
|
||||
v1 = _mm_xor_si128( v1, v2 ); \
|
||||
v2 = _mm_xor_si128( v1, v2 ); \
|
||||
v1 = _mm_xor_si128( v1, v2 );
|
||||
|
||||
// Concatenate v1 & v2 and rotate as one 256 bit vector.
|
||||
#if defined(__SSE4_1__)
|
||||
@@ -457,4 +606,4 @@ do { \
|
||||
#endif // SSE4.1 else SSE2
|
||||
|
||||
#endif // __SSE2__
|
||||
#endif // SIMD_SSE2_H__
|
||||
#endif // SIMD_128_H__
|
@@ -1,44 +1,134 @@
|
||||
#if !defined(SIMD_AVX2_H__)
|
||||
#define SIMD_AVX2_H__ 1
|
||||
#if !defined(SIMD_256_H__)
|
||||
#define SIMD_256_H__ 1
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#if defined(__AVX__)
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// AVX2 256 bit vectors
|
||||
//
|
||||
// AVX2 is required for integer support of 256 bit vectors.
|
||||
// Basic support for 256 bit vectors is available with AVX but integer
|
||||
// support requires AVX2.
|
||||
// Some 256 bit vector utilities require AVX512 or have more efficient
|
||||
// AVX512 implementations. They will be selected automatically but their use
|
||||
// is limited because 256 bit vectors are less likely to be used when 512
|
||||
// is available.
|
||||
|
||||
// Vector type overlays used by compile time vector constants.
|
||||
// Constants of these types reside in memory.
|
||||
|
||||
|
||||
//
|
||||
// Basic operations without SIMD equivalent
|
||||
// Pseudo constants.
|
||||
// These can't be used for compile time initialization but are preferable
|
||||
// for simple constant vectors at run time. For repeated use define a local
|
||||
// constant to avoid multiple calls to the same macro.
|
||||
|
||||
// Bitwise not ( ~x )
|
||||
#define mm256_not( x ) _mm256_xor_si256( (x), m256_neg1 ) \
|
||||
#define m256_zero _mm256_setzero_si256()
|
||||
|
||||
// Unary negation of each element ( -a )
|
||||
#define mm256_negate_64( a ) _mm256_sub_epi64( m256_zero, a )
|
||||
#define mm256_negate_32( a ) _mm256_sub_epi32( m256_zero, a )
|
||||
#define mm256_negate_16( a ) _mm256_sub_epi16( m256_zero, a )
|
||||
#define m256_one_256 \
|
||||
_mm256_insertf128_si256( _mm256_castsi128_si256( m128_one_128 ), \
|
||||
m128_zero, 1 )
|
||||
|
||||
/***************************
|
||||
*
|
||||
* extracti128 (AVX2) vs extractf128 (AVX)???
|
||||
|
||||
|
||||
#define m256_one_128 \
|
||||
_mm256_insertf128_si256( _mm256_castsi128_si256( m128_one_128 ), \
|
||||
m128_one_128, 1 )
|
||||
|
||||
// set instructions load memory resident constants, this avoids mem.
|
||||
// cost 4 pinsert + 1 vinsert, estimate 7 clocks.
|
||||
#define m256_const_64( i3, i2, i1, i0 ) \
|
||||
_mm256_insertf128_si256( _mm256_castsi128_si256( m128_const_64( i1, i0 ) ), \
|
||||
m128_const_64( i3, i2 ), 1 )
|
||||
#define m256_const1_64( i ) m256_const_64( i, i, i, i )
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
// These look like a lot of overhead but the compiler optimizes nicely
|
||||
// and puts the asm inline in the calling function. Usage is like any
|
||||
// variable expression.
|
||||
// __m256i foo = m256_one_64;
|
||||
|
||||
static inline __m256i m256_one_64_fn()
|
||||
{
|
||||
__m256i a;
|
||||
asm( "vpxor %0, %0, %0\n\t"
|
||||
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
|
||||
"vpsubq %%ymm1, %0, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "ymm1" );
|
||||
return a;
|
||||
}
|
||||
#define m256_one_64 m256_one_64_fn()
|
||||
|
||||
static inline __m256i m256_one_32_fn()
|
||||
{
|
||||
__m256i a;
|
||||
asm( "vpxor %0, %0, %0\n\t"
|
||||
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
|
||||
"vpsubd %%ymm1, %0, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "ymm1" );
|
||||
return a;
|
||||
}
|
||||
#define m256_one_32 m256_one_32_fn()
|
||||
|
||||
static inline __m256i m256_one_16_fn()
|
||||
{
|
||||
__m256i a;
|
||||
asm( "vpxor %0, %0, %0\n\t"
|
||||
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
|
||||
"vpsubw %%ymm1, %0, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "ymm1" );
|
||||
return a;
|
||||
}
|
||||
#define m256_one_16 m256_one_16_fn()
|
||||
|
||||
static inline __m256i m256_one_8_fn()
|
||||
{
|
||||
__m256i a;
|
||||
asm( "vpxor %0, %0, %0\n\t"
|
||||
"vpcmpeqd %%ymm1, %%ymm1, %%ymm1\n\t"
|
||||
"vpsubb %%ymm1, %0, %0\n\t"
|
||||
:"=x"(a)
|
||||
:
|
||||
: "ymm1" );
|
||||
return a;
|
||||
}
|
||||
#define m256_one_8 m256_one_8_fn()
|
||||
|
||||
static inline __m256i m256_neg1_fn()
|
||||
{
|
||||
__m256i a;
|
||||
asm( "vpcmpeqq %0, %0, %0\n\t"
|
||||
:"=x"(a) );
|
||||
return a;
|
||||
}
|
||||
#define m256_neg1 m256_neg1_fn()
|
||||
|
||||
#else // AVX
|
||||
|
||||
#define m256_one_64 _mm256_set1_epi64x( 1ULL )
|
||||
#define m256_one_32 _mm256_set1_epi64x( 0x0000000100000001ULL )
|
||||
#define m256_one_16 _mm256_set1_epi64x( 0x0001000100010001ULL )
|
||||
#define m256_one_8 _mm256_set1_epi64x( 0x0101010101010101ULL )
|
||||
|
||||
// AVX doesn't have inserti128 but insertf128 will do.
|
||||
// Ideally this can be done with 2 instructions and no temporary variables.
|
||||
static inline __m256i m256_neg1_fn()
|
||||
{
|
||||
__m128i a = m128_neg1;
|
||||
return _mm256_insertf128_si256( _mm256_castsi128_si256( a ), a, 1 );
|
||||
}
|
||||
#define m256_neg1 m256_neg1_fn()
|
||||
//#define m256_neg1 _mm256_set1_epi64x( 0xFFFFFFFFFFFFFFFFULL )
|
||||
|
||||
#endif // AVX2 else AVX
|
||||
//
|
||||
// Vector size conversion.
|
||||
//
|
||||
// Allows operations on either or both halves of a 256 bit vector serially.
|
||||
// Handy for parallel AES.
|
||||
// Caveats:
|
||||
// Caveats when writing:
|
||||
// _mm256_castsi256_si128 is free and without side effects.
|
||||
// _mm256_castsi128_si256 is also free but leaves the high half
|
||||
// undefined. That's ok if the hi half will be subseqnently assigned.
|
||||
@@ -78,14 +168,22 @@ do { \
|
||||
// Insert b into specified half of a leaving other half of a unchanged.
|
||||
#define mm256_ins_lo128_256( a, b ) _mm256_inserti128_si256( a, b, 0 )
|
||||
#define mm256_ins_hi128_256( a, b ) _mm256_inserti128_si256( a, b, 1 )
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
// concatenate two 128 bit vectors into one 256 bit vector: { hi, lo }
|
||||
#define mm256_concat_128( hi, lo ) \
|
||||
mm256_ins_hi128_256( _mm256_castsi128_si256( lo ), hi )
|
||||
|
||||
// Horizontal vector testing
|
||||
#if defined(__AVX2__)
|
||||
|
||||
#define mm256_allbits0( a ) _mm256_testz_si256( a, a )
|
||||
#define mm256_allbits1( a ) _mm256_testc_si256( a, m256_neg1 )
|
||||
#define mm256_allbitsne( a ) _mm256_testnzc_si256( a, m256_neg1 )
|
||||
#define mm256_anybits0 mm256_allbitsne
|
||||
#define mm256_anybits1 mm256_allbitsne
|
||||
|
||||
#else // AVX
|
||||
|
||||
// Bit-wise test of entire vector, useful to test results of cmp.
|
||||
#define mm256_anybits0( a ) \
|
||||
@@ -99,35 +197,20 @@ do { \
|
||||
#define mm256_allbits0_256( a ) ( !mm256_anybits1(a) )
|
||||
#define mm256_allbits1_256( a ) ( !mm256_anybits0(a) )
|
||||
|
||||
#endif // AVX2 else AVX
|
||||
|
||||
// Parallel AES, for when x is expected to be in a 256 bit register.
|
||||
#define mm256_aesenc_2x128( x ) \
|
||||
mm256_concat_128( \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), m128_zero ), \
|
||||
_mm_aesenc_si128( mm128_extr_lo128_256( x ), m128_zero ) )
|
||||
// Use same 128 bit key.
|
||||
#define mm256_aesenc_2x128( x, k ) \
|
||||
mm256_concat_128( _mm_aesenc_si128( mm128_extr_hi128_256( x ), k ), \
|
||||
_mm_aesenc_si128( mm128_extr_lo128_256( x ), k ) )
|
||||
|
||||
#define mm256_aesenckey_2x128( x, k ) \
|
||||
mm256_concat_128( \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), \
|
||||
mm128_extr_lo128_256( k ) ), \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), \
|
||||
mm128_extr_lo128_256( k ) ) )
|
||||
|
||||
#define mm256_paesenc_2x128( y, x ) do \
|
||||
#define mm256_paesenc_2x128( y, x, k ) do \
|
||||
{ \
|
||||
__m256i *X = (__m256i*)x; \
|
||||
__m256i *Y = (__m256i*)y; \
|
||||
y[0] = _mm_aesenc_si128( x[0], m128_zero ); \
|
||||
y[1] = _mm_aesenc_si128( x[1], m128_zero ); \
|
||||
} while(0);
|
||||
|
||||
// With pointers.
|
||||
#define mm256_paesenckey_2x128( y, x, k ) do \
|
||||
{ \
|
||||
__m256i *X = (__m256i*)x; \
|
||||
__m256i *Y = (__m256i*)y; \
|
||||
__m256i *K = (__m256i*)ky; \
|
||||
y[0] = _mm_aesenc_si128( x[0], K[0] ); \
|
||||
y[1] = _mm_aesenc_si128( x[1], K[1] ); \
|
||||
__m128i *X = (__m128i*)x; \
|
||||
__m128i *Y = (__m128i*)y; \
|
||||
Y[0] = _mm_aesenc_si128( X[0], k ); \
|
||||
Y[1] = _mm_aesenc_si128( X[1], k ); \
|
||||
} while(0);
|
||||
|
||||
//
|
||||
@@ -201,7 +284,41 @@ static inline void memset_256( __m256i *dst, const __m256i a, int n )
|
||||
static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
|
||||
|
||||
*************************************/
|
||||
///////////////////////////////
|
||||
//
|
||||
// AVX2 needed from now on.
|
||||
//
|
||||
|
||||
#if defined(__AVX2__)
|
||||
|
||||
//
|
||||
// Basic operations without SIMD equivalent
|
||||
|
||||
// Bitwise not ( ~x )
|
||||
#define mm256_not( x ) _mm256_xor_si256( (x), m256_neg1 ) \
|
||||
|
||||
// Unary negation of each element ( -a )
|
||||
#define mm256_negate_64( a ) _mm256_sub_epi64( m256_zero, a )
|
||||
#define mm256_negate_32( a ) _mm256_sub_epi32( m256_zero, a )
|
||||
#define mm256_negate_16( a ) _mm256_sub_epi16( m256_zero, a )
|
||||
|
||||
|
||||
// Add 4 values, fewer dependencies than sequential addition.
|
||||
|
||||
#define mm256_add4_64( a, b, c, d ) \
|
||||
_mm256_add_epi64( _mm256_add_epi64( a, b ), _mm256_add_epi64( c, d ) )
|
||||
|
||||
#define mm256_add4_32( a, b, c, d ) \
|
||||
_mm256_add_epi32( _mm256_add_epi32( a, b ), _mm256_add_epi32( c, d ) )
|
||||
|
||||
#define mm256_add4_16( a, b, c, d ) \
|
||||
_mm256_add_epi16( _mm256_add_epi16( a, b ), _mm256_add_epi16( c, d ) )
|
||||
|
||||
#define mm256_add4_8( a, b, c, d ) \
|
||||
_mm256_add_epi8( _mm256_add_epi8( a, b ), _mm256_add_epi8( c, d ) )
|
||||
|
||||
#define mm256_xor4( a, b, c, d ) \
|
||||
_mm256_xor_si256( _mm256_xor_si256( a, b ), _mm256_xor_si256( c, d ) )
|
||||
|
||||
//
|
||||
// Bit rotations.
|
||||
@@ -241,24 +358,27 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
// index vector c
|
||||
#define mm256_rorv_64( v, c ) \
|
||||
_mm256_or_si256( \
|
||||
_mm256_srlv_epi64( v, _mm256_set1_epi64x( c ) ), \
|
||||
_mm256_sllv_epi64( v, _mm256_set1_epi64x( 64-(c) ) ) )
|
||||
_mm256_srlv_epi64( v, c ), \
|
||||
_mm256_sllv_epi64( v, _mm256_sub_epi64( \
|
||||
_mm256_set1_epi64x( 64 ), c ) ) )
|
||||
|
||||
#define mm256_rolv_64( v, c ) \
|
||||
_mm256_or_si256( \
|
||||
_mm256_sllv_epi64( v, _mm256_set1_epi64x( c ) ), \
|
||||
_mm256_srlv_epi64( v, _mm256_set1_epi64x( 64-(c) ) ) )
|
||||
|
||||
_mm256_sllv_epi64( v, c ), \
|
||||
_mm256_srlv_epi64( v, _mm256_sub_epi64( \
|
||||
_mm256_set1_epi64x( 64 ), c ) ) )
|
||||
|
||||
#define mm256_rorv_32( v, c ) \
|
||||
_mm256_or_si256( \
|
||||
_mm256_srlv_epi32( v, _mm256_set1_epi32( c ) ), \
|
||||
_mm256_sllv_epi32( v, _mm256_set1_epi32( 32-(c) ) ) )
|
||||
_mm256_srlv_epi32( v, c ), \
|
||||
_mm256_sllv_epi32( v, _mm256_sub_epi32( \
|
||||
_mm256_set1_epi32( 32 ), c ) ) )
|
||||
|
||||
#define mm256_rolv_32( v, c ) \
|
||||
_mm256_or_si256( \
|
||||
_mm256_sllv_epi32( v, _mm256_set1_epi32( c ) ), \
|
||||
_mm256_srlv_epi32( v, _mm256_set1_epi32( 32-(c) ) ) )
|
||||
_mm256_sllv_epi32( v, c ), \
|
||||
_mm256_srlv_epi32( v, _mm256_sub_epi32( \
|
||||
_mm256_set1_epi32( 32 ), c ) ) )
|
||||
|
||||
// AVX512 can do 16 bit elements.
|
||||
|
||||
@@ -275,17 +395,28 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
#define mm256_ror_1x64( v ) _mm256_permute4x64_epi64( v, 0x39 )
|
||||
#define mm256_rol_1x64( v ) _mm256_permute4x64_epi64( v, 0x93 )
|
||||
|
||||
// Rotate 256 bit vector by one 32 bit element.
|
||||
// A little faster with avx512
|
||||
// Rotate 256 bit vector by one 32 bit element. Use 64 bit set, it's faster.
|
||||
#define mm256_ror_1x32( v ) \
|
||||
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 0,7,6,5, 4,3,2,1 ) )
|
||||
_mm256_permutevar8x32_epi32( v, \
|
||||
m256_const_64( 0x0000000000000007, 0x0000000600000005, \
|
||||
0x0000000400000003, 0x0000000200000001 )
|
||||
|
||||
#define mm256_rol_1x32( v ) \
|
||||
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 6,5,4,3, 2,1,0,7 ) )
|
||||
_mm256_permutevar8x32_epi32( v, \
|
||||
m256_const_64( 0x0000000600000005, 0x0000000400000003, \
|
||||
0x0000000200000001, 0x0000000000000007 )
|
||||
|
||||
// Rotate 256 bit vector by three 32 bit elements (96 bits).
|
||||
#define mm256_ror_3x32( v ) \
|
||||
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 2,1,0,7, 6,5,4,3 ) )
|
||||
_mm256_permutevar8x32_epi32( v, \
|
||||
m256_const_64( 0x0000000200000001, 0x0000000000000007, \
|
||||
0x0000000600000005, 0x0000000400000003 )
|
||||
|
||||
#define mm256_rol_3x32( v ) \
|
||||
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 4,3,2,1, 0,7,6,5 ) )
|
||||
_mm256_permutevar8x32_epi32( v, \
|
||||
m256_const_64( 0x0000000400000003, 0x0000000200000001, \
|
||||
0x0000000000000007, 0x0000000600000005 )
|
||||
|
||||
// AVX512 can do 16 & 8 bit elements.
|
||||
#if defined(__AVX512VL__)
|
||||
@@ -293,7 +424,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
// Rotate 256 bit vector by one 16 bit element.
|
||||
#define mm256_ror_1x16( v ) \
|
||||
_mm256_permutexvar_epi16( _mm256_set_epi16( \
|
||||
0,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
|
||||
0,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
|
||||
|
||||
#define mm256_rol_1x16( v ) \
|
||||
_mm256_permutexvar_epi16( _mm256_set_epi16( \
|
||||
@@ -303,7 +434,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
#define mm256_ror_1x8( v ) \
|
||||
_mm256_permutexvar_epi8( _mm256_set_epi8( \
|
||||
0,31,30,29,28,27,26,25, 24,23,22,21,20,19,18,17, \
|
||||
16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
|
||||
16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ), v )
|
||||
|
||||
#define mm256_rol_1x8( v ) \
|
||||
_mm256_permutexvar_epi8( _mm256_set_epi8( \
|
||||
@@ -312,14 +443,6 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
|
||||
#endif // AVX512
|
||||
|
||||
// Invert vector: {3,2,1,0} -> {0,1,2,3}
|
||||
#define mm256_invert_64( v ) _mm256_permute4x64_epi64( a, 0x1b )
|
||||
|
||||
#define mm256_invert_32( v ) \
|
||||
_mm256_permutevar8x32_epi32( v, _mm256_set_epi32( 0,1,2,3,4,5,6,7 ) )
|
||||
|
||||
// AVX512 can do 16 & 8 bit elements.
|
||||
|
||||
//
|
||||
// Rotate elements within lanes of 256 bit vector.
|
||||
|
||||
@@ -332,15 +455,23 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
|
||||
// Rotate each 128 bit lane by one 16 bit element.
|
||||
#define mm256_rol1x16_128( v ) \
|
||||
_mm256_shuffle_epi8( 13,12,11,10, 9,8,7,6, 5,4,3,2, 1,0,15,14 )
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi16( 6,5,4,3,2,1,0,7, \
|
||||
6,5,4,3,2,1,0,7 ) )
|
||||
#define mm256_ror1x16_128( v ) \
|
||||
_mm256_shuffle_epi8( 1,0,15,14, 13,12,11,10, 9,8,7,6, 5,4,3,2 )
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi16( 0,7,6,5,4,3,2,1, \
|
||||
0,7,6,5,4,3,2,1 ) )
|
||||
|
||||
// Rotate each 128 bit lane by one byte
|
||||
#define mm256_rol1x8_128( v ) \
|
||||
_mm256_shuffle_epi8( 14, 13,12,11, 10,9,8,7, 6,5,4,3, 2,1,0,15 )
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi8(14,13,12,11,10, 9, 8, 7, \
|
||||
6, 5, 4, 3, 2, 1, 0,15, \
|
||||
14,13,12,11,10, 9, 8, 7, \
|
||||
6, 5, 4, 3, 2, 1, 0,15 ) )
|
||||
#define mm256_ror1x8_128( v ) \
|
||||
_mm256_shuffle_epi8( 0,15,14,13, 12,11,10,9, 8,7,6,5, 4,3,2,1 )
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi8( 0,15,14,13,12,11,10, 9, \
|
||||
8, 7, 6, 5, 4, 3, 2, 1, \
|
||||
0,15,14,13,12,11,10, 9, \
|
||||
8, 7, 6, 5, 4, 3, 2, 1 ) )
|
||||
|
||||
// Rotate each 128 bit lane by c bytes.
|
||||
#define mm256_bror_128( v, c ) \
|
||||
@@ -354,28 +485,27 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
#define mm256_swap32_64( v ) _mm256_shuffle_epi32( v, 0xb1 )
|
||||
|
||||
#define mm256_ror16_64( v ) \
|
||||
_mm256_shuffle_epi8( 9, 8,15,14,13,12,11,10, 1, 0, 7, 6, 5, 4, 3, 2 );
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi16( 4,7,6,5,0,3,2,1, \
|
||||
4,7,6,5,0,3,2,1 ) )
|
||||
#define mm256_rol16_64( v ) \
|
||||
_mm256_shuffle_epi8( 13,12,11,10, 9, 8,15,14, 5, 4, 3, 2, 1, 0, 7, 6 );
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi16( 6,5,4,7,2,1,0,3, \
|
||||
6,5,4,7,2,1,0,3 ) )
|
||||
|
||||
|
||||
// Swap 16 bit elements in each 32 bit lane
|
||||
#define mm256_swap16_32( v ) _mm256_shuffle_epi8( v, \
|
||||
_mm_set_epi8( 13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2 )
|
||||
#define mm256_swap16_32( v ) \
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi16( 6,7,4,5,2,3,0,1, \
|
||||
6,7,4,5,2,3,0,1 ) )
|
||||
|
||||
//
|
||||
// Swap bytes in vector elements, endian bswap.
|
||||
#define mm256_bswap_64( v ) \
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi8( 8, 9,10,11,12,13,14,15, \
|
||||
0, 1, 2, 3, 4, 5, 6, 7, \
|
||||
8, 9,10,11,12,13,14,15, \
|
||||
0, 1, 2, 3, 4, 5, 6, 7 ) )
|
||||
_mm256_shuffle_epi8( v, m256_const_64( 0x08090a0b0c0d0e0f, \
|
||||
0x0001020304050607, 0x08090a0b0c0d0e0f, 0x0001020304050607 ) )
|
||||
|
||||
#define mm256_bswap_32( v ) \
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi8( 12,13,14,15, 8, 9,10,11, \
|
||||
4, 5, 6, 7, 0, 1, 2, 3, \
|
||||
12,13,14,15, 8, 9,10,11, \
|
||||
4, 5, 6, 7, 0, 1, 2, 3 ) )
|
||||
_mm256_shuffle_epi8( v, m256_const_64( 0x0c0d0e0f08090a0b, \
|
||||
0x0405060700010203, 0x0c0d0e0f08090a0b, 0x0405060700010203 ) )
|
||||
|
||||
#define mm256_bswap_16( v ) \
|
||||
_mm256_shuffle_epi8( v, _mm256_set_epi8( 14,15, 12,13, 10,11, 8, 9, \
|
||||
@@ -383,6 +513,36 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
14,15, 12,13, 10,11, 8, 9, \
|
||||
6, 7, 4, 5, 2, 3, 0, 1 ) )
|
||||
|
||||
// 8 byte qword * 8 qwords * 4 lanes = 256 bytes
|
||||
#define mm256_block_bswap_64( d, s ) do \
|
||||
{ \
|
||||
__m256i ctl = m256_const_64( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
|
||||
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
|
||||
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
||||
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
||||
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
||||
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
||||
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
||||
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
||||
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
||||
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
||||
} while(0)
|
||||
|
||||
// 4 byte dword * 8 dwords * 8 lanes = 256 bytes
|
||||
#define mm256_block_bswap_32( d, s ) do \
|
||||
{ \
|
||||
__m256i ctl = m256_const_64( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
|
||||
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
|
||||
casti_m256i( d, 0 ) = _mm256_shuffle_epi8( casti_m256i( s, 0 ), ctl ); \
|
||||
casti_m256i( d, 1 ) = _mm256_shuffle_epi8( casti_m256i( s, 1 ), ctl ); \
|
||||
casti_m256i( d, 2 ) = _mm256_shuffle_epi8( casti_m256i( s, 2 ), ctl ); \
|
||||
casti_m256i( d, 3 ) = _mm256_shuffle_epi8( casti_m256i( s, 3 ), ctl ); \
|
||||
casti_m256i( d, 4 ) = _mm256_shuffle_epi8( casti_m256i( s, 4 ), ctl ); \
|
||||
casti_m256i( d, 5 ) = _mm256_shuffle_epi8( casti_m256i( s, 5 ), ctl ); \
|
||||
casti_m256i( d, 6 ) = _mm256_shuffle_epi8( casti_m256i( s, 6 ), ctl ); \
|
||||
casti_m256i( d, 7 ) = _mm256_shuffle_epi8( casti_m256i( s, 7 ), ctl ); \
|
||||
} while(0)
|
||||
|
||||
//
|
||||
// Rotate two concatenated 256 bit vectors as one 512 bit vector by specified
|
||||
// number of elements. Rotate is done in place, source arguments are
|
||||
@@ -466,5 +626,6 @@ do { \
|
||||
} while(0)
|
||||
|
||||
#endif // __AVX2__
|
||||
#endif // SIMD_AVX2_H__
|
||||
#endif // __AVX__
|
||||
#endif // SIMD_256_H__
|
||||
|
@@ -1,5 +1,5 @@
|
||||
#if !defined(SIMD_AVX512_H__)
|
||||
#define SIMD_AVX512_H__ 1
|
||||
#if !defined(SIMD_512_H__)
|
||||
#define SIMD_512_H__ 1
|
||||
|
||||
#if defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
|
||||
|
||||
@@ -246,28 +246,22 @@
|
||||
//
|
||||
// Rotate elements in 512 bit vector.
|
||||
|
||||
#define mm512_swap_256( v ) \
|
||||
_mm512_permutexvar_epi64( v, _mm512_set_epi64( 3,2,1,0, 7,6,5,4 ) )
|
||||
#define mm512_swap_256( v ) _mm512_alignr_epi64( v, v, 4 )
|
||||
|
||||
#define mm512_ror_1x128( v ) \
|
||||
_mm512_permutexvar_epi64( v, _mm512_set_epi64( 1,0, 7,6, 5,4, 3,2 ) )
|
||||
#define mm512_ror_1x128( v ) _mm512_alignr_epi64( v, v, 2 )
|
||||
#define mm512_rol_1x128( v ) _mm512_alignr_epi64( v, v, 6 )
|
||||
|
||||
#define mm512_rol_1x128( v ) \
|
||||
_mm512_permutexvar_epi64( v, _mm512_set_epi64( 5,4, 3,2, 1,0, 7,6 ) )
|
||||
#define mm512_ror_1x64( v ) _mm512_alignr_epi64( v, v, 1 )
|
||||
#define mm512_rol_1x64( v ) _mm512_alignr_epi64( v, v, 7 )
|
||||
|
||||
#define mm512_ror_1x64( v ) \
|
||||
_mm512_permutexvar_epi64( v, _mm512_set_epi64( 0,7,6,5,4,3,2,1 ) )
|
||||
#define mm512_ror_1x32( v ) _mm512_alignr_epi32( v, v, 1 )
|
||||
#define mm512_rol_1x32( v ) _mm512_alignr_epi32( v, v, 15 )
|
||||
|
||||
#define mm512_rol_1x64( v ) \
|
||||
_mm512_permutexvar_epi64( v, _mm512_set_epi64( 6,5,4,3,2,1,0,7 ) )
|
||||
// Generic for odd rotations
|
||||
#define mm512_ror_x64( v, n ) _mm512_alignr_epi64( v, v, n )
|
||||
|
||||
#define mm512_ror_1x32( v ) \
|
||||
_mm512_permutexvar_epi32( v, _mm512_set_epi32( \
|
||||
0,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ) )
|
||||
#define mm512_ror_x32( v, n ) _mm512_alignr_epi32( v, v, n )
|
||||
|
||||
#define mm512_rol_1x32( v ) \
|
||||
_mm512_permutexvar_epi32( v, _mm512_set_epi32( \
|
||||
14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15 ) )
|
||||
|
||||
// Although documented to exist in AVX512F the _mm512_set_epi8 &
|
||||
// _mm512_set_epi16 intrinsics fail to compile. Seems usefull to have
|
||||
@@ -282,7 +276,7 @@
|
||||
0X00080007, 0X00060005, 0X00040003, 0X00020001 ) )
|
||||
|
||||
#define mm512_rol_1x16( v ) \
|
||||
_mm512_permutexvar_epi16( v, _mm512_set_epi16( \
|
||||
_mm512_permutexvar_epi16( v, _mm512_set_epi32( \
|
||||
0x001E001D, 0x001C001B, 0x001A0019, 0x00180017, \
|
||||
0X00160015, 0X00140013, 0X00120011, 0x0010000F, \
|
||||
0X000E000D, 0X000C000B, 0X000A0009, 0X00080007, \
|
||||
@@ -290,14 +284,14 @@
|
||||
|
||||
|
||||
#define mm512_ror_1x8( v ) \
|
||||
_mm512_permutexvar_epi8( v, _mm512_set_epi8( \
|
||||
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
|
||||
0x003F3E3D, 0x3C3B3A39, 0x38373635, 0x34333231, \
|
||||
0x302F2E2D, 0x2C2B2A29, 0x28272625, 0x24232221, \
|
||||
0x201F1E1D, 0x1C1B1A19. 0x18171615, 0x14131211, \
|
||||
0x100F0E0D, 0x0C0B0A09, 0x08070605, 0x04030201 ) )
|
||||
|
||||
#define mm512_rol_1x8( v ) \
|
||||
_mm512_permutexvar_epi8( v, _mm512_set_epi8( \
|
||||
_mm512_permutexvar_epi8( v, _mm512_set_epi32( \
|
||||
0x3E3D3C3B, 0x3A393837, 0x36353433, 0x3231302F. \
|
||||
0x2E2D2C2B, 0x2A292827, 0x26252423, 0x2221201F, \
|
||||
0x1E1D1C1B, 0x1A191817, 0x16151413, 0x1211100F, \
|
||||
@@ -601,4 +595,4 @@ do { \
|
||||
} while(0)
|
||||
|
||||
#endif // AVX512
|
||||
#endif // SIMD_AVX512_H__
|
||||
#endif // SIMD_512_H__
|
@@ -1,5 +1,5 @@
|
||||
#if !defined(SIMD_MMX_H__)
|
||||
#define SIMD_MMX_H__ 1
|
||||
#if !defined(SIMD_64_H__)
|
||||
#define SIMD_64_H__ 1
|
||||
|
||||
#if defined(__MMX__)
|
||||
|
||||
@@ -13,21 +13,20 @@
|
||||
|
||||
|
||||
// Pseudo constants
|
||||
/*
|
||||
#define m64_zero _mm_setzero_si64()
|
||||
#define m64_one_64 _mm_set_pi32( 0UL, 1UL )
|
||||
#define m64_one_32 _mm_set1_pi32( 1UL )
|
||||
#define m64_one_16 _mm_set1_pi16( 1U )
|
||||
#define m64_one_8 _mm_set1_pi8( 1U );
|
||||
#define m64_neg1 _mm_set1_pi32( 0xFFFFFFFFUL )
|
||||
/* cast also works, which is better?
|
||||
*/
|
||||
#define m64_zero ( (__m64)0ULL )
|
||||
#define m64_one_64 ( (__m64)1ULL )
|
||||
#define m64_one_32 ( (__m64)0x0000000100000001ULL )
|
||||
#define m64_one_16 ( (__m64)0x0001000100010001ULL )
|
||||
#define m64_one_8 ( (__m64)0x0101010101010101ULL )
|
||||
#define m64_neg1 ( (__m64)0xFFFFFFFFFFFFFFFFULL )
|
||||
*/
|
||||
|
||||
|
||||
#define casti_m64(p,i) (((__m64*)(p))[(i)])
|
||||
|
||||
@@ -42,6 +41,14 @@
|
||||
#define mm64_negate_8( v ) _mm_sub_pi8( m64_zero, (__m64)v )
|
||||
|
||||
// Rotate bits in packed elements of 64 bit vector
|
||||
#define mm64_rol_64( a, n ) \
|
||||
_mm_or_si64( _mm_slli_si64( (__m64)(a), n ), \
|
||||
_mm_srli_si64( (__m64)(a), 64-(n) ) )
|
||||
|
||||
#define mm64_ror_64( a, n ) \
|
||||
_mm_or_si64( _mm_srli_si64( (__m64)(a), n ), \
|
||||
_mm_slli_si64( (__m64)(a), 64-(n) ) )
|
||||
|
||||
#define mm64_rol_32( a, n ) \
|
||||
_mm_or_si64( _mm_slli_pi32( (__m64)(a), n ), \
|
||||
_mm_srli_pi32( (__m64)(a), 32-(n) ) )
|
||||
@@ -78,22 +85,20 @@
|
||||
// Endian byte swap packed elements
|
||||
// A vectorized version of the u64 bswap, use when data already in MMX reg.
|
||||
#define mm64_bswap_64( v ) \
|
||||
_mm_shuffle_pi8( (__m64)v, _mm_set_pi8( 0,1,2,3,4,5,6,7 ) )
|
||||
_mm_shuffle_pi8( (__m64)v, (__m64)0x0001020304050607 )
|
||||
|
||||
#define mm64_bswap_32( v ) \
|
||||
_mm_shuffle_pi8( (__m64)v, _mm_set_pi8( 4,5,6,7, 0,1,2,3 ) )
|
||||
_mm_shuffle_pi8( (__m64)v, (__m64)0x0405060700010203 )
|
||||
|
||||
/*
|
||||
#define mm64_bswap_16( v ) \
|
||||
_mm_shuffle_pi8( (__m64)v, _mm_set_pi8( 6,7, 4,5, 2,3, 0,1 ) );
|
||||
*/
|
||||
_mm_shuffle_pi8( (__m64)v, (__m64)0x0607040502030001 );
|
||||
|
||||
#else
|
||||
|
||||
#define mm64_bswap_64( v ) \
|
||||
(__m64)__builtin_bswap64( (uint64_t)v )
|
||||
|
||||
// This exists only for compatibility with CPUs without SSSE3. MMX doesn't
|
||||
// These exist only for compatibility with CPUs without SSSE3. MMX doesn't
|
||||
// have extract 32 instruction so pointers are needed to access elements.
|
||||
// It' more efficient for the caller to use scalar variables and call
|
||||
// bswap_32 directly.
|
||||
@@ -101,20 +106,11 @@
|
||||
_mm_set_pi32( __builtin_bswap32( ((uint32_t*)&v)[1] ), \
|
||||
__builtin_bswap32( ((uint32_t*)&v)[0] ) )
|
||||
|
||||
#endif
|
||||
|
||||
// Invert vector: {3,2,1,0} -> {0,1,2,3}
|
||||
// Invert_64 is the same as bswap64
|
||||
// Invert_32 is the same as swap32
|
||||
|
||||
#define mm64_invert_16( v ) _mm_shuffle_pi16( (__m64)v, 0x1b )
|
||||
|
||||
#if defined(__SSSE3__)
|
||||
|
||||
// An SSE2 or MMX version of this would be monstrous, shifting, masking and
|
||||
// oring each byte individually.
|
||||
#define mm64_invert_8( v ) \
|
||||
_mm_shuffle_pi8( (__m64)v, _mm_set_pi8( 0,1,2,3,4,5,6,7 ) );
|
||||
#define mm64_bswap_16( v ) \
|
||||
_mm_set_pi16( __builtin_bswap16( ((uint16_t*)&v)[3] ), \
|
||||
__builtin_bswap16( ((uint16_t*)&v)[2] ), \
|
||||
__builtin_bswap16( ((uint16_t*)&v)[1] ), \
|
||||
__builtin_bswap16( ((uint16_t*)&v)[0] ) )
|
||||
|
||||
#endif
|
||||
|
||||
@@ -131,5 +127,5 @@ static inline void memset_m64( __m64 *dst, const __m64 a, int n )
|
||||
|
||||
#endif // MMX
|
||||
|
||||
#endif // SIMD_MMX_H__
|
||||
#endif // SIMD_64_H__
|
||||
|
@@ -1,243 +0,0 @@
|
||||
#if !defined(SIMD_AVX_H__)
|
||||
#define SIMD_AVX_H__ 1
|
||||
|
||||
#if defined(__AVX__)
|
||||
|
||||
/////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// AVX 256 bit vectors
|
||||
//
|
||||
// Basic support for 256 bit vectors. Most of the good stuff needs AVX2.
|
||||
|
||||
// Compile time vector constants and initializers.
|
||||
//
|
||||
// The following macro constants and functions should only be used
|
||||
// for compile time initialization of constant and variable vector
|
||||
// arrays. These constants use memory, use _mm256_set at run time to
|
||||
// avoid using memory.
|
||||
|
||||
#define mm256_const_64( x3, x2, x1, x0 ) {{ x3, x2, x1, x0 }}
|
||||
#define mm256_const1_64( x ) {{ x,x,x,x }}
|
||||
|
||||
#define mm256_const_32( x7, x6, x5, x4, x3, x2, x1, x0 ) \
|
||||
{{ x7, x6, x5, x4, x3, x2, x1, x0 }}
|
||||
#define mm256_const1_32( x ) {{ x,x,x,x, x,x,x,x }}
|
||||
|
||||
#define mm256_const_16( x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 ) \
|
||||
{{ x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 }}
|
||||
#define mm256_const1_16( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
|
||||
|
||||
#define mm256_const_8( x31, x30, x29, x28, x27, x26, x25, x24, \
|
||||
x23, x22, x21, x20, x19, x18, x17, x16, \
|
||||
x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 ) \
|
||||
{{ x31, x30, x29, x28, x27, x26, x25, x24, \
|
||||
x23, x22, x21, x20, x19, x18, x17, x16, \
|
||||
x15, x14, x13, x12, x11, x10, x09, x08, \
|
||||
x07, x06, x05, x04, x03, x02, x01, x00 }}
|
||||
#define mm256_const1_8( x ) {{ x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x, \
|
||||
x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x }}
|
||||
|
||||
// Predefined compile time constant vectors.
|
||||
// Use Pseudo constants at run time for all simple constant vectors.
|
||||
#define c256_zero mm256_const1_64( 0ULL )
|
||||
#define c256_one_256 mm256_const_64( 0ULL, 0ULL, 0ULL, 1ULL )
|
||||
#define c256_one_128 mm256_const_64( 0ULL, 1ULL, 0ULL, 1ULL )
|
||||
#define c256_one_64 mm256_const1_64( 1ULL )
|
||||
#define c256_one_32 mm256_const1_32( 1UL )
|
||||
#define c256_one_16 mm256_const1_16( 1U )
|
||||
#define c256_one_8 mm256_const1_8( 1U )
|
||||
#define c256_neg1 mm256_const1_64( 0xFFFFFFFFFFFFFFFFULL )
|
||||
#define c256_neg1_64 mm256_const1_64( 0xFFFFFFFFFFFFFFFFULL )
|
||||
#define c256_neg1_32 mm256_const1_32( 0xFFFFFFFFUL )
|
||||
#define c256_neg1_16 mm256_const1_16( 0xFFFFU )
|
||||
#define c256_neg1_8 mm256_const1_8( 0xFFU )
|
||||
|
||||
//
|
||||
// Pseudo constants.
|
||||
// These can't be used for compile time initialization but are preferable
|
||||
// for simple constant vectors at run time.
|
||||
|
||||
#define m256_zero _mm256_setzero_si256()
|
||||
#define m256_one_256 _mm256_set_epi64x( 0ULL, 0ULL, 0ULL, 1ULL )
|
||||
#define m256_one_128 _mm256_set_epi64x( 0ULL, 1ULL, 0ULL, 1ULL )
|
||||
#define m256_one_64 _mm256_set1_epi64x( 1ULL )
|
||||
#define m256_one_32 _mm256_set1_epi32( 1UL )
|
||||
#define m256_one_16 _mm256_set1_epi16( 1U )
|
||||
#define m256_one_8 _mm256_set1_epi8( 1U )
|
||||
#define m256_neg1 _mm256_set1_epi64x( 0xFFFFFFFFFFFFFFFFULL )
|
||||
|
||||
//
|
||||
// Vector size conversion.
|
||||
//
|
||||
// Allows operations on either or both halves of a 256 bit vector serially.
|
||||
// Handy for parallel AES.
|
||||
// Caveats:
|
||||
// _mm256_castsi256_si128 is free and without side effects.
|
||||
// _mm256_castsi128_si256 is also free but leaves the high half
|
||||
// undefined. That's ok if the hi half will be subseqnently assigned.
|
||||
// If assigning both, do lo first, If assigning only 1, use
|
||||
// _mm256_inserti128_si256.
|
||||
//
|
||||
// What to do about extractf128 (AVX) and extracti128 (AVX2)?
|
||||
#define mm128_extr_lo128_256( a ) _mm256_castsi256_si128( a )
|
||||
#define mm128_extr_hi128_256( a ) _mm256_extractf128_si256( a, 1 )
|
||||
|
||||
// Extract 4 u64 from 256 bit vector.
|
||||
#define mm256_extr_4x64( a0, a1, a2, a3, src ) \
|
||||
do { \
|
||||
__m128i hi = _mm256_extractf128_si256( src, 1 ); \
|
||||
a0 = _mm_extract_epi64( _mm256_castsi256_si128( src ), 0 ); \
|
||||
a1 = _mm_extract_epi64( _mm256_castsi256_si128( src ), 1 ); \
|
||||
a2 = _mm_extract_epi64( hi, 0 ); \
|
||||
a3 = _mm_extract_epi64( hi, 1 ); \
|
||||
} while(0)
|
||||
|
||||
#define mm256_extr_8x32( a0, a1, a2, a3, a4, a5, a6, a7, src ) \
|
||||
do { \
|
||||
__m128i hi = _mm256_extractf128_si256( src, 1 ); \
|
||||
a0 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 0 ); \
|
||||
a1 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 1 ); \
|
||||
a2 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 2 ); \
|
||||
a3 = _mm_extract_epi32( _mm256_castsi256_si128( src ), 3 ); \
|
||||
a4 = _mm_extract_epi32( hi, 0 ); \
|
||||
a5 = _mm_extract_epi32( hi, 1 ); \
|
||||
a6 = _mm_extract_epi32( hi, 2 ); \
|
||||
a7 = _mm_extract_epi32( hi, 3 ); \
|
||||
} while(0)
|
||||
|
||||
// input __m128i, returns __m256i
|
||||
// To build a 256 bit vector from 2 128 bit vectors lo must be done first.
|
||||
// lo alone leaves hi undefined, hi alone leaves lo unchanged.
|
||||
// Both cost one clock while preserving the other half..
|
||||
// Insert b into specified half of a leaving other half of a unchanged.
|
||||
#define mm256_ins_lo128_256( a, b ) _mm256_insertf128_si256( a, b, 0 )
|
||||
#define mm256_ins_hi128_256( a, b ) _mm256_insertf128_si256( a, b, 1 )
|
||||
|
||||
// concatenate two 128 bit vectors into one 256 bit vector: { hi, lo }
|
||||
#define mm256_concat_128( hi, lo ) \
|
||||
mm256_ins_hi128_256( _mm256_castsi128_si256( lo ), hi )
|
||||
|
||||
// Horizontal vector testing
|
||||
|
||||
// Needs int128 support
|
||||
// Bit-wise test of entire vector, useful to test results of cmp.
|
||||
#define mm256_anybits0( a ) \
|
||||
( (uint128_t)mm128_extr_hi128_256( a ) \
|
||||
| (uint128_t)mm128_extr_lo128_256( a ) )
|
||||
|
||||
#define mm256_anybits1( a ) \
|
||||
( ( (uint128_t)mm128_extr_hi128_256( a ) + 1 ) \
|
||||
| ( (uint128_t)mm128_extr_lo128_256( a ) + 1 ) )
|
||||
|
||||
#define mm256_allbits0_256( a ) ( !mm256_anybits1(a) )
|
||||
#define mm256_allbits1_256( a ) ( !mm256_anybits0(a) )
|
||||
|
||||
// Parallel AES, for when x is expected to be in a 256 bit register.
|
||||
#define mm256_aesenc_2x128( x ) \
|
||||
mm256_concat_128( \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), m128_zero ), \
|
||||
_mm_aesenc_si128( mm128_extr_lo128_256( x ), m128_zero ) )
|
||||
|
||||
#define mm256_aesenckey_2x128( x, k ) \
|
||||
mm256_concat_128( \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), \
|
||||
mm128_extr_lo128_256( k ) ), \
|
||||
_mm_aesenc_si128( mm128_extr_hi128_256( x ), \
|
||||
mm128_extr_lo128_256( k ) ) )
|
||||
|
||||
#define mm256_paesenc_2x128( y, x ) do \
|
||||
{ \
|
||||
__m256i *X = (__m256i*)x; \
|
||||
__m256i *Y = (__m256i*)y; \
|
||||
y[0] = _mm_aesenc_si128( x[0], m128_zero ); \
|
||||
y[1] = _mm_aesenc_si128( x[1], m128_zero ); \
|
||||
} while(0);
|
||||
|
||||
// With pointers.
|
||||
#define mm256_paesenckey_2x128( y, x, k ) do \
|
||||
{ \
|
||||
__m256i *X = (__m256i*)x; \
|
||||
__m256i *Y = (__m256i*)y; \
|
||||
__m256i *K = (__m256i*)ky; \
|
||||
y[0] = _mm_aesenc_si128( x[0], K[0] ); \
|
||||
y[1] = _mm_aesenc_si128( x[1], K[1] ); \
|
||||
} while(0);
|
||||
|
||||
//
|
||||
// Pointer casting
|
||||
|
||||
// p = any aligned pointer
|
||||
// returns p as pointer to vector type, not very useful
|
||||
#define castp_m256i(p) ((__m256i*)(p))
|
||||
|
||||
// p = any aligned pointer
|
||||
// returns *p, watch your pointer arithmetic
|
||||
#define cast_m256i(p) (*((__m256i*)(p)))
|
||||
|
||||
// p = any aligned pointer, i = scaled array index
|
||||
// returns value p[i]
|
||||
#define casti_m256i(p,i) (((__m256i*)(p))[(i)])
|
||||
|
||||
// p = any aligned pointer, o = scaled offset
|
||||
// returns pointer p+o
|
||||
#define casto_m256i(p,o) (((__m256i*)(p))+(o))
|
||||
|
||||
|
||||
// Gather scatter
|
||||
|
||||
#define mm256_gather_64( d, s0, s1, s2, s3 ) \
|
||||
((uint64_t*)(d))[0] = (uint64_t)(s0); \
|
||||
((uint64_t*)(d))[1] = (uint64_t)(s1); \
|
||||
((uint64_t*)(d))[2] = (uint64_t)(s2); \
|
||||
((uint64_t*)(d))[3] = (uint64_t)(s3);
|
||||
|
||||
#define mm256_gather_32( d, s0, s1, s2, s3, s4, s5, s6, s7 ) \
|
||||
((uint32_t*)(d))[0] = (uint32_t)(s0); \
|
||||
((uint32_t*)(d))[1] = (uint32_t)(s1); \
|
||||
((uint32_t*)(d))[2] = (uint32_t)(s2); \
|
||||
((uint32_t*)(d))[3] = (uint32_t)(s3); \
|
||||
((uint32_t*)(d))[4] = (uint32_t)(s4); \
|
||||
((uint32_t*)(d))[5] = (uint32_t)(s5); \
|
||||
((uint32_t*)(d))[6] = (uint32_t)(s6); \
|
||||
((uint32_t*)(d))[7] = (uint32_t)(s7);
|
||||
|
||||
|
||||
// Scatter data from contiguous memory.
|
||||
// All arguments are pointers
|
||||
#define mm256_scatter_64( d0, d1, d2, d3, s ) \
|
||||
*((uint64_t*)(d0)) = ((uint64_t*)(s))[0]; \
|
||||
*((uint64_t*)(d1)) = ((uint64_t*)(s))[1]; \
|
||||
*((uint64_t*)(d2)) = ((uint64_t*)(s))[2]; \
|
||||
*((uint64_t*)(d3)) = ((uint64_t*)(s))[3];
|
||||
|
||||
#define mm256_scatter_32( d0, d1, d2, d3, d4, d5, d6, d7, s ) \
|
||||
*((uint32_t*)(d0)) = ((uint32_t*)(s))[0]; \
|
||||
*((uint32_t*)(d1)) = ((uint32_t*)(s))[1]; \
|
||||
*((uint32_t*)(d2)) = ((uint32_t*)(s))[2]; \
|
||||
*((uint32_t*)(d3)) = ((uint32_t*)(s))[3]; \
|
||||
*((uint32_t*)(d4)) = ((uint32_t*)(s))[4]; \
|
||||
*((uint32_t*)(d5)) = ((uint32_t*)(s))[5]; \
|
||||
*((uint32_t*)(d6)) = ((uint32_t*)(s))[6]; \
|
||||
*((uint32_t*)(d7)) = ((uint32_t*)(s))[7];
|
||||
|
||||
|
||||
//
|
||||
// Memory functions
|
||||
// n = number of 256 bit (32 byte) vectors
|
||||
|
||||
static inline void memset_zero_256( __m256i *dst, int n )
|
||||
{ for ( int i = 0; i < n; i++ ) dst[i] = m256_zero; }
|
||||
|
||||
static inline void memset_256( __m256i *dst, const __m256i a, int n )
|
||||
{ for ( int i = 0; i < n; i++ ) dst[i] = a; }
|
||||
|
||||
static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
{ for ( int i = 0; i < n; i ++ ) dst[i] = src[i]; }
|
||||
|
||||
|
||||
#endif // __AVX__
|
||||
#endif // SIMD_AVX_H__
|
||||
|
@@ -62,10 +62,16 @@ static inline void memset_64( uint64_t *dst, const uint64_t a, int n )
|
||||
//
|
||||
// 128 bit integers
|
||||
//
|
||||
// 128 bit integers are inneficient and not a shortcut for __m128i.
|
||||
|
||||
// No real need or use.
|
||||
//#define u128_neg1 ((uint128_t)(-1))
|
||||
|
||||
// usefull for making constants.
|
||||
#define mk_uint128( hi, lo ) \
|
||||
( ( (uint128_t)(hi) << 64 ) | ( (uint128_t)(lo) ) )
|
||||
|
||||
|
||||
// Extracting the low bits is a trivial cast.
|
||||
// These specialized functions are optimized while providing a
|
||||
// consistent interface.
|
||||
|
Reference in New Issue
Block a user