mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
v3.9.0
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
#include "allium-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/keccak/keccak-hash-4way.h"
|
||||
#include "algo/skein/skein-hash-4way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
|
||||
typedef struct {
|
||||
@@ -108,7 +108,7 @@ int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
blake256_4way_init( &allium_4way_ctx.blake );
|
||||
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );
|
||||
|
||||
|
||||
@@ -1,22 +0,0 @@
|
||||
#include "allium-gate.h"
|
||||
|
||||
int64_t get_max64_0xFFFFLL() { return 0xFFFFLL; }
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (ALLIUM_4WAY)
|
||||
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium_4way;
|
||||
gate->hash = (void*)&allium_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&init_allium_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium;
|
||||
gate->hash = (void*)&allium_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xFFFFLL;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
#ifndef ALLIUM_GATE_H__
|
||||
#define ALLIUM_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__) && defined(__AES__)
|
||||
#define ALLIUM_4WAY
|
||||
#endif
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(ALLIUM_4WAY)
|
||||
|
||||
void allium_4way_hash( void *state, const void *input );
|
||||
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_4way_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
void allium_hash( void *state, const void *input );
|
||||
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
#include "allium-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#if defined(__AES__)
|
||||
#include "algo/groestl/aes_ni/hash-groestl256.h"
|
||||
#else
|
||||
|
||||
178
algo/lyra2/lyra2-gate.c
Normal file
178
algo/lyra2/lyra2-gate.c
Normal file
@@ -0,0 +1,178 @@
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
|
||||
__thread uint64_t* l2v3_wholeMatrix;
|
||||
|
||||
bool lyra2rev3_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v3_wholeMatrix = _mm_malloc( size, 64 );
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
init_lyra2rev3_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev3_ctx();
|
||||
#endif
|
||||
return l2v3_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev3_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev3_4way;
|
||||
gate->hash = (void*)&lyra2rev3_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev3;
|
||||
gate->hash = (void*)&lyra2rev3_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev3_thread_init;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
__thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool lyra2rev2_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v2_wholeMatrix = _mm_malloc( size, 64 );
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
init_lyra2rev2_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev2_ctx();
|
||||
#endif
|
||||
return l2v2_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
|
||||
gate->hash = (void*)&lyra2rev2_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////
|
||||
|
||||
bool register_lyra2z_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_8way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_8way;
|
||||
gate->hash = (void*)&lyra2z_8way_hash;
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_4way;
|
||||
gate->hash = (void*)&lyra2z_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2z_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z;
|
||||
gate->hash = (void*)&lyra2z_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
||||
////////////////////////
|
||||
|
||||
bool register_lyra2h_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef LYRA2H_4WAY
|
||||
gate->miner_thread_init = (void*)&lyra2h_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h_4way;
|
||||
gate->hash = (void*)&lyra2h_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2h_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h;
|
||||
gate->hash = (void*)&lyra2h_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////////
|
||||
|
||||
int64_t allium_get_max64_0xFFFFLL() { return 0xFFFFLL; }
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (ALLIUM_4WAY)
|
||||
gate->miner_thread_init = (void*)&init_allium_4way_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium_4way;
|
||||
gate->hash = (void*)&allium_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&init_allium_ctx;
|
||||
gate->scanhash = (void*)&scanhash_allium;
|
||||
gate->hash = (void*)&allium_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&allium_get_max64_0xFFFFLL;
|
||||
return true;
|
||||
};
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
bool phi2_has_roots;
|
||||
bool phi2_use_roots = false;
|
||||
|
||||
int phi2_get_work_data_size() { return phi2_use_roots ? 144 : 128; }
|
||||
|
||||
void phi2_decode_extra_data( struct work *work )
|
||||
{
|
||||
if ( work->data[0] & ( 1<<30 ) ) phi2_use_roots = true;
|
||||
else for ( int i = 20; i < 36; i++ )
|
||||
{
|
||||
if (work->data[i]) { phi2_use_roots = true; break; }
|
||||
}
|
||||
}
|
||||
|
||||
void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
|
||||
{
|
||||
uchar merkle_tree[64] = { 0 };
|
||||
size_t t;
|
||||
|
||||
algo_gate.gen_merkle_root( merkle_tree, sctx );
|
||||
// Increment extranonce2
|
||||
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
|
||||
// Assemble block header
|
||||
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
|
||||
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
|
||||
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) );
|
||||
for ( t = 0; t < 16; t++ )
|
||||
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
|
||||
}
|
||||
|
||||
|
||||
bool register_phi2_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_phi2_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->get_work_data_size = (void*)&phi2_get_work_data_size;
|
||||
gate->decode_extra_data = (void*)&phi2_decode_extra_data;
|
||||
gate->build_extraheader = (void*)&phi2_build_extraheader;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->scanhash = (void*)&scanhash_phi2;
|
||||
return true;
|
||||
}
|
||||
154
algo/lyra2/lyra2-gate.h
Normal file
154
algo/lyra2/lyra2-gate.h
Normal file
@@ -0,0 +1,154 @@
|
||||
#ifndef LYRA2_GATE_H__
|
||||
#define LYRA2_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV3_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v3_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev3_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV3_4WAY)
|
||||
|
||||
void lyra2rev3_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_lyra2rev3_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2rev3_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev3( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_lyra2rev3_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV2_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV2_4WAY)
|
||||
|
||||
void lyra2rev2_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_lyra2rev2_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input );
|
||||
int scanhash_lyra2rev2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_lyra2rev2_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
#define LYRA2Z_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
// #define LYRA2Z_8WAY
|
||||
#endif
|
||||
|
||||
|
||||
#define LYRA2Z_MATRIX_SIZE BLOCK_LEN_INT64 * 8 * 8 * 8
|
||||
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
|
||||
void lyra2z_8way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool lyra2z_8way_thread_init();
|
||||
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
|
||||
void lyra2z_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool lyra2z_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2z_hash( void *state, const void *input );
|
||||
int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool lyra2z_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
////////////////////
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2H_4WAY
|
||||
#endif
|
||||
|
||||
#define LYRA2H_MATRIX_SIZE BLOCK_LEN_INT64 * 16 * 16 * 8
|
||||
|
||||
#if defined(LYRA2H_4WAY)
|
||||
|
||||
void lyra2h_4way_hash( void *state, const void *input );
|
||||
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool lyra2h_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2h_hash( void *state, const void *input );
|
||||
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool lyra2h_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
//////////////////////////////////
|
||||
|
||||
#if defined(__AVX2__) && defined(__AES__)
|
||||
#define ALLIUM_4WAY
|
||||
#endif
|
||||
|
||||
bool register_allium_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(ALLIUM_4WAY)
|
||||
|
||||
void allium_4way_hash( void *state, const void *input );
|
||||
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_4way_ctx();
|
||||
|
||||
#else
|
||||
|
||||
void allium_hash( void *state, const void *input );
|
||||
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
bool init_allium_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
/////////////////////////////////////////
|
||||
|
||||
bool phi2_has_roots;
|
||||
|
||||
bool register_phi2_algo( algo_gate_t* gate );
|
||||
|
||||
void phi2_hash( void *state, const void *input );
|
||||
int scanhash_phi2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
void init_phi2_ctx();
|
||||
|
||||
#endif // LYRA2_GATE_H__
|
||||
|
||||
|
||||
@@ -211,6 +211,186 @@ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
int LYRA2REV3( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
|
||||
const uint64_t timeCost, const uint64_t nRows,
|
||||
const uint64_t nCols )
|
||||
{
|
||||
//====================== Basic variables ============================//
|
||||
uint64_t _ALIGN(256) state[16];
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
int64_t i; //auxiliary iteration counter
|
||||
int64_t v64; // 64bit var for memcpy
|
||||
uint64_t instance = 0;
|
||||
//====================================================================/
|
||||
|
||||
//=== Initializing the Memory Matrix and pointers to it =============//
|
||||
//Tries to allocate enough space for the whole memory matrix
|
||||
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
const int64_t BLOCK_LEN = BLOCK_LEN_BLAKE2_SAFE_INT64;
|
||||
/*
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
|
||||
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
// for Lyra2REv2, nCols = 4, v1 was using 8
|
||||
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
|
||||
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
|
||||
*/
|
||||
|
||||
uint64_t *ptrWord = wholeMatrix;
|
||||
|
||||
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
|
||||
|
||||
//=== Getting the password + salt + basil padded with 10*1 ==========//
|
||||
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
|
||||
//but this ensures that the password copied locally will be overwritten as soon as possible
|
||||
|
||||
//First, we clean enough blocks for the password, salt, basil and padding
|
||||
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
|
||||
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
|
||||
|
||||
byte *ptrByte = (byte*) wholeMatrix;
|
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen);
|
||||
ptrByte += pwdlen;
|
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen);
|
||||
ptrByte += saltlen;
|
||||
|
||||
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
|
||||
- (saltlen + pwdlen) );
|
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = pwdlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = saltlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = timeCost;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nRows;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nCols;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
|
||||
// from here on it's all simd acces to state and matrix
|
||||
// define vector pointers and adjust sizes and pointer offsets
|
||||
|
||||
//================= Initializing the Sponge State ====================//
|
||||
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
|
||||
|
||||
initState( state );
|
||||
|
||||
//========================= Setup Phase =============================//
|
||||
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
|
||||
|
||||
ptrWord = wholeMatrix;
|
||||
for (i = 0; i < nBlocksInput; i++)
|
||||
{
|
||||
absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil)
|
||||
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
|
||||
}
|
||||
//Initializes M[0] and M[1]
|
||||
reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
|
||||
|
||||
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
|
||||
nCols);
|
||||
|
||||
do
|
||||
{
|
||||
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
|
||||
|
||||
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
|
||||
//updates the value of row* (deterministically picked during Setup))
|
||||
rowa = (rowa + step) & (window - 1);
|
||||
//update prev: it now points to the last row ever computed
|
||||
|
||||
prev = row;
|
||||
//updates row: goes to the next row to be computed
|
||||
row++;
|
||||
|
||||
//Checks if all rows in the window where visited.
|
||||
if (rowa == 0)
|
||||
{
|
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
gap = -gap; //inverts the modifier to the step
|
||||
}
|
||||
|
||||
} while (row < nRows);
|
||||
|
||||
//===================== Wandering Phase =============================//
|
||||
row = 0; //Resets the visitation to the first row of the memory matrix
|
||||
for (tau = 1; tau <= timeCost; tau++)
|
||||
{
|
||||
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
|
||||
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
|
||||
// step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
|
||||
do
|
||||
{
|
||||
//Selects a pseudorandom index row*
|
||||
//-----------------------------------------------
|
||||
instance = state[instance & 0xF];
|
||||
rowa = state[instance & 0xF] & (unsigned int)(nRows-1);
|
||||
// rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
|
||||
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//-------------------------------------------
|
||||
|
||||
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
|
||||
reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
//update prev: it now points to the last row ever computed
|
||||
prev = row;
|
||||
|
||||
//updates row: goes to the next row to be computed
|
||||
//----------------------------------------------------
|
||||
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
|
||||
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
|
||||
//----------------------------------------------------
|
||||
|
||||
} while (row != 0);
|
||||
}
|
||||
|
||||
//===================== Wrap-up Phase ===============================//
|
||||
//Absorbs the last block of the memory matrix
|
||||
absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]);
|
||||
//Squeezes the key
|
||||
squeeze(state, K, (unsigned int) kLen);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
|
||||
const uint64_t timeCost, const uint64_t nRows,
|
||||
|
||||
@@ -50,6 +50,10 @@ int LYRA2REV2( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
||||
int LYRA2REV3( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
||||
int LYRA2Z( uint64_t*, void *K, uint64_t kLen, const void *pwd,
|
||||
uint64_t pwdlen, const void *salt, uint64_t saltlen,
|
||||
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
#ifdef LYRA2H_4WAY
|
||||
|
||||
@@ -36,7 +36,7 @@ void lyra2h_4way_hash( void *state, const void *input )
|
||||
blake256_4way( &ctx_blake, input + (64*4), 16 );
|
||||
blake256_4way_close( &ctx_blake, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2Z( lyra2h_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 16, 16, 16 );
|
||||
LYRA2Z( lyra2h_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 16, 16, 16 );
|
||||
@@ -70,7 +70,7 @@ int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
for ( int i=0; i < 20; i++ )
|
||||
be32enc( &edata[i], pdata[i] );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
lyra2h_4way_midstate( vdata );
|
||||
|
||||
|
||||
@@ -1,25 +0,0 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
void lyra2h_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2h_algo( algo_gate_t* gate )
|
||||
{
|
||||
#ifdef LYRA2H_4WAY
|
||||
gate->miner_thread_init = (void*)&lyra2h_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h_4way;
|
||||
gate->hash = (void*)&lyra2h_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2h_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2h;
|
||||
gate->hash = (void*)&lyra2h_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2h_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
@@ -1,32 +0,0 @@
|
||||
#ifndef LYRA2H_GATE_H__
|
||||
#define LYRA2H_GATE_H__
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2H_4WAY
|
||||
#endif
|
||||
|
||||
#define LYRA2H_MATRIX_SIZE BLOCK_LEN_INT64 * 16 * 16 * 8
|
||||
|
||||
#if defined(LYRA2H_4WAY)
|
||||
|
||||
void lyra2h_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2h_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2h_4way_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
void lyra2h_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2h( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2h_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#include "lyra2h-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (__AVX2__)
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/keccak/keccak-hash-4way.h"
|
||||
#include "algo/skein/skein-hash-4way.h"
|
||||
#include "algo/bmw/bmw-hash-4way.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
|
||||
typedef struct {
|
||||
blake256_4way_context blake;
|
||||
@@ -74,11 +74,11 @@ void lyra2rev2_4way_hash( void *state, const void *input )
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
|
||||
|
||||
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
bmw256_4way( &ctx.bmw, vhash, 32 );
|
||||
bmw256_4way_close( &ctx.bmw, vhash );
|
||||
|
||||
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
@@ -101,7 +101,7 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
blake256_4way_init( &l2v2_4way_ctx.blake );
|
||||
blake256_4way( &l2v2_4way_ctx.blake, vdata, 64 );
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
|
||||
__thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
void lyra2rev2_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool lyra2rev2_thread_init()
|
||||
{
|
||||
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
|
||||
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
|
||||
|
||||
int i = (int64_t)ROW_LEN_BYTES * 4; // nRows;
|
||||
l2v2_wholeMatrix = _mm_malloc( i, 64 );
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
init_lyra2rev2_4way_ctx();;
|
||||
#else
|
||||
init_lyra2rev2_ctx();
|
||||
#endif
|
||||
return l2v2_wholeMatrix;
|
||||
}
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (LYRA2REV2_4WAY)
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2_4way;
|
||||
gate->hash = (void*)&lyra2rev2_4way_hash;
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
||||
@@ -1,35 +0,0 @@
|
||||
#ifndef LYRA2REV2_GATE_H__
|
||||
#define LYRA2REV2_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
#include "lyra2.h"
|
||||
|
||||
#if defined(__AVX2__)
|
||||
#define LYRA2REV2_4WAY
|
||||
#endif
|
||||
|
||||
extern __thread uint64_t* l2v2_wholeMatrix;
|
||||
|
||||
bool register_lyra2rev2_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(LYRA2REV2_4WAY)
|
||||
|
||||
void lyra2rev2_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool init_lyra2rev2_4way_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
void lyra2rev2_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2rev2( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool init_lyra2rev2_ctx();
|
||||
|
||||
#endif
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
#include "lyra2rev2-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/keccak/sph_keccak.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
#include "algo/cubehash/sse2/cubehash_sse2.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
//#include "lyra2.h"
|
||||
|
||||
typedef struct {
|
||||
|
||||
110
algo/lyra2/lyra2rev3-4way.c
Normal file
110
algo/lyra2/lyra2rev3-4way.c
Normal file
@@ -0,0 +1,110 @@
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
|
||||
#if defined (LYRA2REV3_4WAY)
|
||||
|
||||
#include "algo/blake/blake-hash-4way.h"
|
||||
#include "algo/bmw/bmw-hash-4way.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
|
||||
typedef struct {
|
||||
blake256_4way_context blake;
|
||||
cubehashParam cube;
|
||||
bmw256_4way_context bmw;
|
||||
} lyra2v3_4way_ctx_holder;
|
||||
|
||||
static lyra2v3_4way_ctx_holder l2v3_4way_ctx;
|
||||
|
||||
bool init_lyra2rev3_4way_ctx()
|
||||
{
|
||||
blake256_4way_init( &l2v3_4way_ctx.blake );
|
||||
cubehashInit( &l2v3_4way_ctx.cube, 256, 16, 32 );
|
||||
bmw256_4way_init( &l2v3_4way_ctx.bmw );
|
||||
return true;
|
||||
}
|
||||
|
||||
void lyra2rev3_4way_hash( void *state, const void *input )
|
||||
{
|
||||
uint32_t vhash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t hash0[8] __attribute__ ((aligned (64)));
|
||||
uint32_t hash1[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash2[8] __attribute__ ((aligned (32)));
|
||||
uint32_t hash3[8] __attribute__ ((aligned (32)));
|
||||
lyra2v3_4way_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &l2v3_4way_ctx, sizeof(l2v3_4way_ctx) );
|
||||
|
||||
blake256_4way( &ctx.blake, input, 80 );
|
||||
blake256_4way_close( &ctx.blake, vhash );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
|
||||
cubehashReinit( &ctx.cube );
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash2, 32, hash2, 32, hash2, 32, 1, 4, 4 );
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash3, 32, hash3, 32, hash3, 32, 1, 4, 4 );
|
||||
|
||||
mm128_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
|
||||
bmw256_4way( &ctx.bmw, vhash, 32 );
|
||||
bmw256_4way_close( &ctx.bmw, vhash );
|
||||
|
||||
mm128_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev3_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
uint32_t hash[8*4] __attribute__ ((aligned (64)));
|
||||
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
|
||||
uint32_t edata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t *nonces = work->nonces;
|
||||
int num_found = 0;
|
||||
uint32_t *noncep = vdata + 76; // 19*4
|
||||
|
||||
if ( opt_benchmark )
|
||||
( (uint32_t*)ptarget )[7] = 0x0000ff;
|
||||
|
||||
swab32_array( edata, pdata, 20 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
do {
|
||||
be32enc( noncep, n );
|
||||
be32enc( noncep+1, n+1 );
|
||||
be32enc( noncep+2, n+2 );
|
||||
be32enc( noncep+3, n+3 );
|
||||
|
||||
lyra2rev3_4way_hash( hash, vdata );
|
||||
pdata[19] = n;
|
||||
|
||||
for ( int i = 0; i < 4; i++ )
|
||||
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget ) )
|
||||
{
|
||||
pdata[19] = n+i;
|
||||
nonces[ num_found++ ] = n+i;
|
||||
work_set_target_ratio( work, hash+(i<<3) );
|
||||
}
|
||||
n += 4;
|
||||
} while ( (num_found == 0) && (n < max_nonce-4)
|
||||
&& !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return num_found;
|
||||
}
|
||||
|
||||
#endif
|
||||
102
algo/lyra2/lyra2rev3.c
Normal file
102
algo/lyra2/lyra2rev3.c
Normal file
@@ -0,0 +1,102 @@
|
||||
#include "lyra2-gate.h"
|
||||
#include <memory.h>
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "algo/cubehash/sph_cubehash.h"
|
||||
#include "algo/bmw/sph_bmw.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
//#include "lyra2.h"
|
||||
|
||||
typedef struct {
|
||||
cubehashParam cube;
|
||||
// cubehashParam cube2;
|
||||
sph_blake256_context blake;
|
||||
sph_bmw256_context bmw;
|
||||
|
||||
} lyra2v3_ctx_holder;
|
||||
|
||||
static lyra2v3_ctx_holder lyra2v3_ctx;
|
||||
static __thread sph_blake256_context l2v3_blake_mid;
|
||||
|
||||
bool init_lyra2rev3_ctx()
|
||||
{
|
||||
cubehashInit( &lyra2v3_ctx.cube, 256, 16, 32 );
|
||||
// cubehashInit( &lyra2v3_ctx.cube2, 256, 16, 32 );
|
||||
sph_blake256_init( &lyra2v3_ctx.blake );
|
||||
sph_bmw256_init( &lyra2v3_ctx.bmw );
|
||||
return true;
|
||||
}
|
||||
|
||||
void l2v3_blake256_midstate( const void* input )
|
||||
{
|
||||
memcpy( &l2v3_blake_mid, &lyra2v3_ctx.blake, sizeof l2v3_blake_mid );
|
||||
sph_blake256( &l2v3_blake_mid, input, 64 );
|
||||
}
|
||||
|
||||
void lyra2rev3_hash( void *state, const void *input )
|
||||
{
|
||||
lyra2v3_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &lyra2v3_ctx, sizeof(lyra2v3_ctx) );
|
||||
uint8_t hash[128] __attribute__ ((aligned (64)));
|
||||
#define hashA hash
|
||||
#define hashB hash+64
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
memcpy( &ctx.blake, &l2v3_blake_mid, sizeof l2v3_blake_mid );
|
||||
sph_blake256( &ctx.blake, (uint8_t*)input + midlen, tail );
|
||||
sph_blake256_close( &ctx.blake, hash );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 4, 4 );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*) hashA,
|
||||
(const byte*) hash, 32 );
|
||||
|
||||
LYRA2REV3( l2v3_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 4, 4 );
|
||||
|
||||
sph_bmw256( &ctx.bmw, hash, 32 );
|
||||
sph_bmw256_close( &ctx.bmw, hash );
|
||||
|
||||
memcpy( state, hash, 32 );
|
||||
}
|
||||
|
||||
int scanhash_lyra2rev3(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t endiandata[20] __attribute__ ((aligned (64)));
|
||||
uint32_t hash[8] __attribute__((aligned(64)));
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t nonce = first_nonce;
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
||||
swab32_array( endiandata, pdata, 20 );
|
||||
|
||||
l2v3_blake256_midstate( endiandata );
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], nonce);
|
||||
lyra2rev3_hash(hash, endiandata);
|
||||
|
||||
if (hash[7] <= Htarg )
|
||||
{
|
||||
if( fulltest(hash, ptarget) )
|
||||
{
|
||||
pdata[19] = nonce;
|
||||
work_set_target_ratio( work, hash );
|
||||
*hashes_done = pdata[19] - first_nonce;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
nonce++;
|
||||
|
||||
} while (nonce < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
pdata[19] = nonce;
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
|
||||
#ifdef LYRA2Z_4WAY
|
||||
|
||||
@@ -36,7 +36,7 @@ void lyra2z_4way_hash( void *state, const void *input )
|
||||
blake256_4way( &ctx_blake, input + (64*4), 16 );
|
||||
blake256_4way_close( &ctx_blake, vhash );
|
||||
|
||||
mm_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
mm128_deinterleave_4x32( hash0, hash1, hash2, hash3, vhash, 256 );
|
||||
|
||||
LYRA2Z( lyra2z_4way_matrix, hash0, 32, hash0, 32, hash0, 32, 8, 8, 8 );
|
||||
LYRA2Z( lyra2z_4way_matrix, hash1, 32, hash1, 32, hash1, 32, 8, 8, 8 );
|
||||
@@ -70,7 +70,7 @@ int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
for ( int i=0; i < 20; i++ )
|
||||
be32enc( &edata[i], pdata[i] );
|
||||
|
||||
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
mm128_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
|
||||
|
||||
lyra2z_4way_midstate( vdata );
|
||||
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
void lyra2z_set_target( struct work* work, double job_diff )
|
||||
{
|
||||
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
|
||||
}
|
||||
|
||||
bool register_lyra2z_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_8way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_8way;
|
||||
gate->hash = (void*)&lyra2z_8way_hash;
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
gate->miner_thread_init = (void*)&lyra2z_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z_4way;
|
||||
gate->hash = (void*)&lyra2z_4way_hash;
|
||||
#else
|
||||
gate->miner_thread_init = (void*)&lyra2z_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z;
|
||||
gate->hash = (void*)&lyra2z_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2z_set_target;
|
||||
return true;
|
||||
};
|
||||
|
||||
@@ -1,46 +0,0 @@
|
||||
#ifndef LYRA2Z_GATE_H__
|
||||
#define LYRA2Z_GATE_H__ 1
|
||||
|
||||
#include "algo-gate-api.h"
|
||||
#include <stdint.h>
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
#define LYRA2Z_4WAY
|
||||
#endif
|
||||
#if defined(__AVX2__)
|
||||
// #define LYRA2Z_8WAY
|
||||
#endif
|
||||
|
||||
|
||||
#define LYRA2Z_MATRIX_SIZE BLOCK_LEN_INT64 * 8 * 8 * 8
|
||||
|
||||
#if defined(LYRA2Z_8WAY)
|
||||
|
||||
void lyra2z_8way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z_8way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_8way_thread_init();
|
||||
|
||||
#elif defined(LYRA2Z_4WAY)
|
||||
|
||||
void lyra2z_4way_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_4way_thread_init();
|
||||
|
||||
#else
|
||||
|
||||
void lyra2z_hash( void *state, const void *input );
|
||||
|
||||
int scanhash_lyra2z( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
bool lyra2z_thread_init();
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
@@ -1,6 +1,6 @@
|
||||
#include <memory.h>
|
||||
#include <mm_malloc.h>
|
||||
#include "lyra2z-gate.h"
|
||||
#include "lyra2-gate.h"
|
||||
#include "lyra2.h"
|
||||
#include "algo/blake/sph_blake.h"
|
||||
#include "avxdefs.h"
|
||||
|
||||
133
algo/lyra2/phi2.c
Normal file
133
algo/lyra2/phi2.c
Normal file
@@ -0,0 +1,133 @@
|
||||
/**
|
||||
* Phi-2 algo Implementation
|
||||
*/
|
||||
|
||||
#include "lyra2-gate.h"
|
||||
#include "algo/skein/sph_skein.h"
|
||||
#include "algo/jh/sph_jh.h"
|
||||
#include "algo/gost/sph_gost.h"
|
||||
#include "algo/cubehash/cubehash_sse2.h"
|
||||
#ifdef __AES__
|
||||
#include "algo/echo/aes_ni/hash_api.h"
|
||||
#else
|
||||
#include "algo/echo/sph_echo.h"
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
cubehashParam cube;
|
||||
sph_jh512_context jh;
|
||||
#if defined(__AES__)
|
||||
hashState_echo echo1;
|
||||
hashState_echo echo2;
|
||||
#else
|
||||
sph_echo512_context echo1;
|
||||
sph_echo512_context echo2;
|
||||
#endif
|
||||
sph_gost512_context gost;
|
||||
sph_skein512_context skein;
|
||||
} phi2_ctx_holder;
|
||||
|
||||
phi2_ctx_holder phi2_ctx;
|
||||
|
||||
void init_phi2_ctx()
|
||||
{
|
||||
cubehashInit( &phi2_ctx.cube, 512, 16, 32 );
|
||||
sph_jh512_init(&phi2_ctx.jh);
|
||||
#if defined(__AES__)
|
||||
init_echo( &phi2_ctx.echo1, 512 );
|
||||
init_echo( &phi2_ctx.echo2, 512 );
|
||||
#else
|
||||
sph_echo512_init(&phi2_ctx.echo1);
|
||||
sph_echo512_init(&phi2_ctx.echo2);
|
||||
#endif
|
||||
sph_gost512_init(&phi2_ctx.gost);
|
||||
sph_skein512_init(&phi2_ctx.skein);
|
||||
};
|
||||
|
||||
void phi2_hash(void *state, const void *input)
|
||||
{
|
||||
unsigned char _ALIGN(128) hash[64];
|
||||
unsigned char _ALIGN(128) hashA[64];
|
||||
unsigned char _ALIGN(128) hashB[64];
|
||||
|
||||
phi2_ctx_holder ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &phi2_ctx, sizeof(phi2_ctx) );
|
||||
|
||||
cubehashUpdateDigest( &ctx.cube, (byte*)hashB, (const byte*)input,
|
||||
phi2_has_roots ? 144 : 80 );
|
||||
|
||||
LYRA2RE( &hashA[ 0], 32, &hashB[ 0], 32, &hashB[ 0], 32, 1, 8, 8 );
|
||||
LYRA2RE( &hashA[32], 32, &hashB[32], 32, &hashB[32], 32, 1, 8, 8 );
|
||||
|
||||
sph_jh512( &ctx.jh, (const void*)hashA, 64 );
|
||||
sph_jh512_close( &ctx.jh, (void*)hash );
|
||||
|
||||
if ( hash[0] & 1 )
|
||||
{
|
||||
sph_gost512( &ctx.gost, (const void*)hash, 64 );
|
||||
sph_gost512_close( &ctx.gost, (void*)hash );
|
||||
}
|
||||
else
|
||||
{
|
||||
#if defined(__AES__)
|
||||
update_final_echo ( &ctx.echo1, (BitSequence *)hash,
|
||||
(const BitSequence *)hash, 512 );
|
||||
update_final_echo ( &ctx.echo2, (BitSequence *)hash,
|
||||
(const BitSequence *)hash, 512 );
|
||||
#else
|
||||
sph_echo512( &ctx.echo1, (const void*)hash, 64 );
|
||||
sph_echo512_close( &ctx.echo1, (void*)hash );
|
||||
|
||||
sph_echo512( &ctx.echo2, (const void*)hash, 64 );
|
||||
sph_echo512_close( &ctx.echo2, (void*)hash );
|
||||
#endif
|
||||
}
|
||||
|
||||
sph_skein512( &ctx.skein, (const void*)hash, 64 );
|
||||
sph_skein512_close( &ctx.skein, (void*)hash );
|
||||
|
||||
for (int i=0; i<4; i++)
|
||||
((uint64_t*)hash)[i] ^= ((uint64_t*)hash)[i+4];
|
||||
|
||||
memcpy(state, hash, 32);
|
||||
}
|
||||
|
||||
int scanhash_phi2(int thr_id, struct work *work, uint32_t max_nonce, uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t _ALIGN(128) hash[8];
|
||||
uint32_t _ALIGN(128) endiandata[36];
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
uint32_t n = first_nonce;
|
||||
|
||||
if(opt_benchmark){
|
||||
ptarget[7] = 0x00ff;
|
||||
}
|
||||
|
||||
phi2_has_roots = false;
|
||||
for (int i=0; i < 36; i++) {
|
||||
be32enc(&endiandata[i], pdata[i]);
|
||||
if (i >= 20 && pdata[i]) phi2_has_roots = true;
|
||||
}
|
||||
|
||||
do {
|
||||
be32enc(&endiandata[19], n);
|
||||
phi2_hash(hash, endiandata);
|
||||
|
||||
if (hash[7] < Htarg && fulltest(hash, ptarget)) {
|
||||
work_set_target_ratio(work, hash);
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return 1;
|
||||
}
|
||||
n++;
|
||||
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
pdata[19] = n;
|
||||
return 0;
|
||||
}
|
||||
@@ -48,6 +48,10 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
return ( w >> c ) | ( w << ( 64 - c ) );
|
||||
}
|
||||
|
||||
// serial data is only 32 bytes so AVX2 is the limit for that dimension.
|
||||
// However, 2 way parallel looks trivial to code for AVX512 except for
|
||||
// a data dependency with rowa.
|
||||
|
||||
#if defined __AVX2__
|
||||
// only available with avx2
|
||||
|
||||
@@ -65,13 +69,13 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
|
||||
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
G_4X64( s0, s1, s2, s3 ); \
|
||||
s1 = mm256_ror256_1x64( s1); \
|
||||
s1 = mm256_ror_1x64( s1); \
|
||||
s2 = mm256_swap_128( s2 ); \
|
||||
s3 = mm256_rol256_1x64( s3 ); \
|
||||
s3 = mm256_rol_1x64( s3 ); \
|
||||
G_4X64( s0, s1, s2, s3 ); \
|
||||
s1 = mm256_rol256_1x64( s1 ); \
|
||||
s1 = mm256_rol_1x64( s1 ); \
|
||||
s2 = mm256_swap_128( s2 ); \
|
||||
s3 = mm256_ror256_1x64( s3 );
|
||||
s3 = mm256_ror_1x64( s3 );
|
||||
|
||||
#define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \
|
||||
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
|
||||
@@ -93,25 +97,25 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
|
||||
// returns void, all args updated
|
||||
#define G_2X64(a,b,c,d) \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_ror_64( _mm_xor_si128( d, a), 32 ); \
|
||||
d = mm128_ror_64( _mm_xor_si128( d, a), 32 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_ror_64( _mm_xor_si128( b, c ), 24 ); \
|
||||
b = mm128_ror_64( _mm_xor_si128( b, c ), 24 ); \
|
||||
a = _mm_add_epi64( a, b ); \
|
||||
d = mm_ror_64( _mm_xor_si128( d, a ), 16 ); \
|
||||
d = mm128_ror_64( _mm_xor_si128( d, a ), 16 ); \
|
||||
c = _mm_add_epi64( c, d ); \
|
||||
b = mm_ror_64( _mm_xor_si128( b, c ), 63 );
|
||||
b = mm128_ror_64( _mm_xor_si128( b, c ), 63 );
|
||||
|
||||
#define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
G_2X64( s0, s2, s4, s6 ); \
|
||||
G_2X64( s1, s3, s5, s7 ); \
|
||||
mm_ror256_1x64( s2, s3 ); \
|
||||
mm_swap_128( s4, s5 ); \
|
||||
mm_rol256_1x64( s6, s7 ); \
|
||||
mm128_ror256_1x64( s2, s3 ); \
|
||||
mm128_swap256_128( s4, s5 ); \
|
||||
mm128_rol256_1x64( s6, s7 ); \
|
||||
G_2X64( s0, s2, s4, s6 ); \
|
||||
G_2X64( s1, s3, s5, s7 ); \
|
||||
mm_rol256_1x64( s2, s3 ); \
|
||||
mm_swap_128( s4, s5 ); \
|
||||
mm_ror256_1x64( s6, s7 );
|
||||
mm128_rol256_1x64( s2, s3 ); \
|
||||
mm128_swap256_128( s4, s5 ); \
|
||||
mm128_ror256_1x64( s6, s7 );
|
||||
|
||||
#define LYRA_12_ROUNDS_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
|
||||
|
||||
Reference in New Issue
Block a user