mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
v3.8.6
This commit is contained in:
@@ -107,9 +107,10 @@ Supported Algorithms
|
||||
x13sm3 hsr (Hshare)
|
||||
x14 X14
|
||||
x15 X15
|
||||
x16r Ravencoin
|
||||
x16r Ravencoin (RVN)
|
||||
x16s pigeoncoin (PGN)
|
||||
x17
|
||||
xevan Bitsend
|
||||
xevan Bitsend (BSD)
|
||||
yescrypt Globalboost-Y (BSTY)
|
||||
yescryptr8 BitZeny (ZNY)
|
||||
yescryptr16 Yenten (YTN)
|
||||
@@ -119,6 +120,8 @@ Supported Algorithms
|
||||
Errata
|
||||
------
|
||||
|
||||
Neoscrypt crashes on Windows, use legacy version.
|
||||
|
||||
AMD CPUs older than Piledriver, including Athlon x2 and Phenom II x4, are not
|
||||
supported by cpuminer-opt due to an incompatible implementation of SSE2 on
|
||||
these CPUs. Some algos may crash the miner with an invalid instruction.
|
||||
|
@@ -160,6 +160,12 @@ Support for even older x86_64 without AES_NI or SSE2 is not availble.
|
||||
Change Log
|
||||
----------
|
||||
|
||||
v3.8.6
|
||||
|
||||
Fixed argon2 regression in v3.8.5.
|
||||
Added x16s algo for Pigeoncoin.
|
||||
Some code cleanup.
|
||||
|
||||
v3.8.5
|
||||
|
||||
Added argon2d-crds and argon2d-dyn algos.
|
||||
|
@@ -224,6 +224,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
|
||||
case ALGO_X14: register_x14_algo ( gate ); break;
|
||||
case ALGO_X15: register_x15_algo ( gate ); break;
|
||||
case ALGO_X16R: register_x16r_algo ( gate ); break;
|
||||
case ALGO_X16S: register_x16s_algo ( gate ); break;
|
||||
case ALGO_X17: register_x17_algo ( gate ); break;
|
||||
case ALGO_XEVAN: register_xevan_algo ( gate ); break;
|
||||
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
|
||||
|
@@ -295,7 +295,7 @@ void ar2_initial_hash(uint8_t *blockhash, argon2_context *context,
|
||||
store32(&value, ADLEN);
|
||||
my_blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));
|
||||
|
||||
blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
ar2_blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
|
||||
}
|
||||
|
||||
int ar2_initialize(argon2_instance_t *instance, argon2_context *context) {
|
||||
|
@@ -70,7 +70,7 @@ bool register_argon2d_crds_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_argon2d_crds;
|
||||
gate->hash = (void*)&argon2d_crds_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
}
|
||||
|
||||
// Dynamic
|
||||
@@ -138,6 +138,6 @@ bool register_argon2d_dyn_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_argon2d_dyn;
|
||||
gate->hash = (void*)&argon2d_dyn_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
}
|
||||
|
||||
|
@@ -10,7 +10,7 @@ bool register_blake_algo( algo_gate_t* gate )
|
||||
gate->optimizations = AVX2_OPT;
|
||||
gate->get_max64 = (void*)&blake_get_max64;
|
||||
//#if defined (__AVX2__) && defined (FOUR_WAY)
|
||||
// gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
// gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
// gate->scanhash = (void*)&scanhash_blake_8way;
|
||||
// gate->hash = (void*)&blakehash_8way;
|
||||
#if defined(BLAKE_4WAY)
|
||||
|
@@ -20,7 +20,7 @@ bool register_blake2s_algo( algo_gate_t* gate )
|
||||
gate->hash = (void*)&blake2s_hash;
|
||||
#endif
|
||||
gate->get_max64 = (void*)&blake2s_get_max64;
|
||||
gate->optimizations = SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -22,7 +22,7 @@ bool register_vanilla_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_blakecoin;
|
||||
gate->hash = (void*)&blakecoinhash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&blakecoin_get_max64;
|
||||
return true;
|
||||
}
|
||||
|
@@ -83,7 +83,8 @@ void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf)
|
||||
keys[14] = tmp1;
|
||||
}
|
||||
|
||||
#ifdef __AVX__
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
|
||||
#define AESENC(i,j) \
|
||||
State[j] = _mm_aesenc_si128(State[j], ExpandedKey[j][i]);
|
||||
|
@@ -199,7 +199,7 @@ bool register_hodl_algo( algo_gate_t* gate )
|
||||
// return false;
|
||||
// }
|
||||
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
|
||||
gate->optimizations = AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&hodl_scanhash;
|
||||
gate->get_new_work = (void*)&hodl_get_new_work;
|
||||
gate->longpoll_rpc_call = (void*)&hodl_longpoll_rpc_call;
|
||||
|
@@ -17,7 +17,8 @@ void GenerateGarbageCore( CacheEntry *Garbage, int ThreadID, int ThreadCount,
|
||||
const uint32_t StartChunk = ThreadID * Chunk;
|
||||
const uint32_t EndChunk = StartChunk + Chunk;
|
||||
|
||||
#ifdef __AVX__
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
uint64_t* TempBufs[ SHA512_PARALLEL_N ] ;
|
||||
uint64_t* desination[ SHA512_PARALLEL_N ];
|
||||
|
||||
@@ -63,7 +64,8 @@ void Rev256(uint32_t *Dest, const uint32_t *Src)
|
||||
int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifdef __AVX__
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
|
||||
|
@@ -1,5 +1,6 @@
|
||||
#ifndef __AVX2__
|
||||
#ifdef __AVX__
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
|
||||
//Dependencies
|
||||
#include <string.h>
|
||||
|
@@ -6,7 +6,8 @@
|
||||
|
||||
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf);
|
||||
|
||||
#ifdef __AVX__
|
||||
#ifdef __SSE4_2__
|
||||
//#ifdef __AVX__
|
||||
|
||||
#define AES_PARALLEL_N 8
|
||||
#define BLOCK_COUNT 256
|
||||
|
@@ -13,7 +13,7 @@ bool register_allium_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_allium;
|
||||
gate->hash = (void*)&allium_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xFFFFLL;
|
||||
return true;
|
||||
|
@@ -17,7 +17,7 @@ bool register_lyra2h_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_lyra2h;
|
||||
gate->hash = (void*)&lyra2h_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2h_set_target;
|
||||
return true;
|
||||
|
@@ -132,7 +132,7 @@ void lyra2re_set_target ( struct work* work, double job_diff )
|
||||
bool register_lyra2re_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_lyra2re_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&scanhash_lyra2re;
|
||||
gate->hash = (void*)&lyra2re_hash;
|
||||
gate->get_max64 = (void*)&lyra2re_get_max64;
|
||||
|
@@ -31,7 +31,7 @@ bool register_lyra2rev2_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_lyra2rev2;
|
||||
gate->hash = (void*)&lyra2rev2_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2rev2_thread_init;
|
||||
gate->set_target = (void*)&lyra2rev2_set_target;
|
||||
return true;
|
||||
|
@@ -21,7 +21,7 @@ bool register_lyra2z_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_lyra2z;
|
||||
gate->hash = (void*)&lyra2z_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
gate->set_target = (void*)&lyra2z_set_target;
|
||||
return true;
|
||||
|
@@ -69,7 +69,7 @@ bool lyra2z330_thread_init()
|
||||
|
||||
bool register_lyra2z330_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE42_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init = (void*)&lyra2z330_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_lyra2z330;
|
||||
gate->hash = (void*)&lyra2z330_hash;
|
||||
|
@@ -375,7 +375,7 @@ out:
|
||||
|
||||
bool register_m7m_algo( algo_gate_t *gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = SHA_OPT;
|
||||
init_m7m_ctx();
|
||||
gate->scanhash = (void*)scanhash_m7m_hash;
|
||||
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
|
||||
|
@@ -11,7 +11,7 @@ bool register_deep_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_deep;
|
||||
gate->hash = (void*)&deep_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -11,7 +11,7 @@ bool register_qubit_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_qubit;
|
||||
gate->hash = (void*)&qubit_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -110,7 +110,7 @@ int64_t lbry_get_max64() { return 0x1ffffLL; }
|
||||
|
||||
bool register_lbry_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = AVX2_OPT | SHA_OPT;
|
||||
#if defined (LBRY_8WAY)
|
||||
gate->scanhash = (void*)&scanhash_lbry_8way;
|
||||
gate->hash = (void*)&lbry_8way_hash;
|
||||
|
@@ -778,7 +778,7 @@ bool scrypt_miner_thread_init( int thr_id )
|
||||
|
||||
bool register_scrypt_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
gate->miner_thread_init =(void*)&scrypt_miner_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_scrypt;
|
||||
// gate->hash = (void*)&scrypt_1024_1_1_256_24way;
|
||||
|
@@ -373,9 +373,6 @@ sha256_8way_round( __m256i *in, __m256i r[8] )
|
||||
H = r[7];
|
||||
|
||||
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
|
||||
|
||||
//printf("sha256 8 step: D= %08lx H= %08lx\n",*(uint32_t*)&D,*(uint32_t*)&H);
|
||||
|
||||
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
|
||||
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
|
||||
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
|
||||
@@ -392,8 +389,6 @@ sha256_8way_round( __m256i *in, __m256i r[8] )
|
||||
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
|
||||
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
|
||||
|
||||
//printf("sha256 8 step: A= %08lx B= %08lx\n",*(uint32_t*)&A,*(uint32_t*)&B);
|
||||
|
||||
for ( int j = 16; j < 64; j += 16 )
|
||||
{
|
||||
W[ 0] = SHA2x_MEXP( 14, 9, 1, 0 );
|
||||
@@ -460,17 +455,7 @@ void sha256_8way( sha256_8way_context *sc, const void *data, size_t len )
|
||||
__m256i *vdata = (__m256i*)data;
|
||||
size_t ptr;
|
||||
const int buf_size = 64;
|
||||
/*
|
||||
printf("sha256 8 update1: len= %d\n", len);
|
||||
uint32_t* d = (uint32_t*)data;
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[128],d[136],d[144],d[152]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[160],d[168],d[176],d[184]);
|
||||
printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[192],d[200],d[208],d[216]);
|
||||
*/
|
||||
|
||||
ptr = (unsigned)sc->count_low & (buf_size - 1U);
|
||||
while ( len > 0 )
|
||||
{
|
||||
@@ -486,24 +471,7 @@ printf("sha256 8 in: %08lx %08lx %08lx %08lx\n",d[192],d[200],d[208],d[216]);
|
||||
len -= clen;
|
||||
if ( ptr == buf_size )
|
||||
{
|
||||
/*
|
||||
printf("sha256 8 update2: compress\n");
|
||||
d = (uint32_t*)sc->buf;
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]);
|
||||
d= (uint32_t*)sc->val;
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
*/
|
||||
sha256_8way_round( sc->buf, sc->val );
|
||||
/*
|
||||
printf("sha256 8 update3\n");
|
||||
d= (uint32_t*)sc->val;
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
*/
|
||||
ptr = 0;
|
||||
}
|
||||
clow = sc->count_low;
|
||||
@@ -522,32 +490,13 @@ void sha256_8way_close( sha256_8way_context *sc, void *dst )
|
||||
const int pad = buf_size - 8;
|
||||
|
||||
ptr = (unsigned)sc->count_low & (buf_size - 1U);
|
||||
/*
|
||||
printf("sha256 8 close1: ptr= %d\n", ptr);
|
||||
uint32_t* d = (uint32_t*)sc->buf;
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]);
|
||||
*/
|
||||
|
||||
sc->buf[ ptr>>2 ] = _mm256_set1_epi32( 0x80 );
|
||||
ptr += 4;
|
||||
|
||||
if ( ptr > pad )
|
||||
{
|
||||
memset_zero_256( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
|
||||
|
||||
//printf("sha256 8 close2: compress\n");
|
||||
//uint32_t* d = (uint32_t*)sc->buf;
|
||||
//printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
|
||||
|
||||
sha256_8way_round( sc->buf, sc->val );
|
||||
|
||||
//d= (uint32_t*)sc->val;
|
||||
//printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
|
||||
memset_zero_256( sc->buf, pad >> 2 );
|
||||
}
|
||||
else
|
||||
@@ -561,23 +510,9 @@ printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]);
|
||||
mm256_bswap_32( _mm256_set1_epi32( high ) );
|
||||
sc->buf[ ( pad+4 ) >> 2 ] =
|
||||
mm256_bswap_32( _mm256_set1_epi32( low ) );
|
||||
/*
|
||||
d = (uint32_t*)sc->buf;
|
||||
printf("sha256 8 close3: compress\n");
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[64],d[72],d[80],d[88]);
|
||||
printf("sha256 8 buf: %08lx %08lx %08lx %08lx\n",d[96],d[104],d[112],d[120]);
|
||||
d= (uint32_t*)sc->val;
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
*/
|
||||
|
||||
sha256_8way_round( sc->buf, sc->val );
|
||||
/*
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[0],d[8],d[16],d[24]);
|
||||
printf("sha256 8 val: %08lx %08lx %08lx %08lx\n",d[32],d[40],d[48],d[56]);
|
||||
*/
|
||||
|
||||
for ( u = 0; u < 8; u ++ )
|
||||
((__m256i*)dst)[u] = mm256_bswap_32( sc->val[u] );
|
||||
}
|
||||
|
@@ -11,13 +11,6 @@ bool register_sha256t_algo( algo_gate_t* gate )
|
||||
#else
|
||||
gate->scanhash = (void*)&scanhash_sha256t;
|
||||
gate->hash = (void*)&sha256t_hash;
|
||||
/*
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &sha256t_ctx );
|
||||
#else
|
||||
sph_sha256_init( &sha256t_ctx );
|
||||
#endif
|
||||
*/
|
||||
#endif
|
||||
gate->optimizations = SSE42_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
|
@@ -3,68 +3,43 @@
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include "sph_sha2.h"
|
||||
#include <openssl/sha.h>
|
||||
|
||||
#if !defined(SHA256T_4WAY)
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
static __thread SHA256_CTX sha256t_ctx __attribute__ ((aligned (64)));
|
||||
#else
|
||||
static __thread sph_sha256_context sha256t_ctx __attribute__ ((aligned (64)));
|
||||
#endif
|
||||
static __thread SHA256_CTX sha256t_ctx __attribute__ ((aligned (64)));
|
||||
|
||||
void sha256t_midstate( const void* input )
|
||||
{
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_Init( &sha256t_ctx );
|
||||
SHA256_Update( &sha256t_ctx, input, 64 );
|
||||
#else
|
||||
sph_sha256_init( &sha256t_ctx );
|
||||
sph_sha256( &sha256t_ctx, input, 64 );
|
||||
#endif
|
||||
}
|
||||
|
||||
void sha256t_hash( void* output, const void* input )
|
||||
{
|
||||
uint32_t _ALIGN(64) hashA[16];
|
||||
uint32_t _ALIGN(64) hash[16];
|
||||
const int midlen = 64; // bytes
|
||||
const int tail = 80 - midlen; // 16
|
||||
|
||||
#ifndef USE_SPH_SHA
|
||||
SHA256_CTX ctx_sha256 __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx_sha256, &sha256t_ctx, sizeof sha256t_ctx );
|
||||
SHA256_CTX ctx __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx, &sha256t_ctx, sizeof sha256t_ctx );
|
||||
|
||||
SHA256_Update( &ctx_sha256, input + midlen, tail );
|
||||
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
|
||||
SHA256_Update( &ctx, input + midlen, tail );
|
||||
SHA256_Final( (unsigned char*)hash, &ctx );
|
||||
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashA, 32 );
|
||||
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
|
||||
SHA256_Init( &ctx );
|
||||
SHA256_Update( &ctx, hash, 32 );
|
||||
SHA256_Final( (unsigned char*)hash, &ctx );
|
||||
|
||||
SHA256_Init( &ctx_sha256 );
|
||||
SHA256_Update( &ctx_sha256, hashA, 32 );
|
||||
SHA256_Final( (unsigned char*)hashA, &ctx_sha256 );
|
||||
#else
|
||||
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
|
||||
memcpy( &ctx_sha256, &sha256t_mid, sizeof sha256t_mid );
|
||||
SHA256_Init( &ctx );
|
||||
SHA256_Update( &ctx, hash, 32 );
|
||||
SHA256_Final( (unsigned char*)hash, &ctx );
|
||||
|
||||
sph_sha256( &ctx_sha256, input + midlen, tail );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
|
||||
sph_sha256_init( &ctx_sha256 );
|
||||
sph_sha256( &ctx_sha256, hashA, 32 );
|
||||
sph_sha256_close( &ctx_sha256, hashA );
|
||||
#endif
|
||||
memcpy( output, hashA, 32 );
|
||||
memcpy( output, hash, 32 );
|
||||
}
|
||||
|
||||
int scanhash_sha256t(int thr_id, struct work *work,
|
||||
uint32_t max_nonce, uint64_t *hashes_done)
|
||||
int scanhash_sha256t( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done)
|
||||
{
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
@@ -96,39 +71,26 @@ int scanhash_sha256t(int thr_id, struct work *work,
|
||||
};
|
||||
|
||||
// we need bigendian data...
|
||||
for (int k = 0; k < 19; k++)
|
||||
be32enc(&endiandata[k], pdata[k]);
|
||||
for ( int k = 0; k < 19; k++ )
|
||||
be32enc( &endiandata[k], pdata[k] );
|
||||
|
||||
sha256t_midstate( endiandata );
|
||||
|
||||
#ifdef DEBUG_ALGO
|
||||
if (Htarg != 0)
|
||||
printf("[%d] Htarg=%X\n", thr_id, Htarg);
|
||||
#endif
|
||||
for (int m=0; m < 6; m++) {
|
||||
if (Htarg <= htmax[m]) {
|
||||
for ( int m = 0; m < 6; m++ )
|
||||
{
|
||||
if ( Htarg <= htmax[m] )
|
||||
{
|
||||
uint32_t mask = masks[m];
|
||||
do {
|
||||
pdata[19] = ++n;
|
||||
be32enc(&endiandata[19], n);
|
||||
sha256t_hash( hash64, endiandata );
|
||||
#ifndef DEBUG_ALGO
|
||||
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
|
||||
if ( ( !(hash64[7] & mask) ) && fulltest( hash64, ptarget ) )
|
||||
{
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return true;
|
||||
}
|
||||
#else
|
||||
if (!(n % 0x1000) && !thr_id) printf(".");
|
||||
if (!(hash64[7] & mask)) {
|
||||
printf("[%d]",thr_id);
|
||||
if (fulltest(hash64, ptarget)) {
|
||||
*hashes_done = n - first_nonce + 1;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} while (n < max_nonce && !work_restart[thr_id].restart);
|
||||
// see blake.c if else to understand the loop on htmax => mask
|
||||
} while ( n < max_nonce && !work_restart[thr_id].restart );
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@@ -59,17 +59,28 @@ static const sph_u32 IV512[] = {
|
||||
C32(0xE275EADE), C32(0x502D9FCD), C32(0xB9357178), C32(0x022A4B9A)
|
||||
};
|
||||
|
||||
// Partially rotate elements in two 128 bit vectors as one 256 bit vector
|
||||
// and return the rotated high 128 bits.
|
||||
// Partially rotate elements in two 128 bit vectors a & b as one 256 bit vector
|
||||
// and return the rotated 128 bit vector a.
|
||||
// a[3:0] = { b[0], a[3], a[2], a[1] }
|
||||
#if defined(__SSSE3__)
|
||||
|
||||
#define mm_ror256hi_1x32( hi, lo ) _mm_alignr_epi8( lo, hi, 4 )
|
||||
#define mm_ror256hi_1x32( a, b ) _mm_alignr_epi8( b, a, 4 )
|
||||
|
||||
#else // SSE2
|
||||
|
||||
#define mm_ror256hi_1x32( hi, lo ) \
|
||||
_mm_or_si128( _mm_srli_si128( hi, 4 ), \
|
||||
_mm_slli_si128( lo, 12 ) )
|
||||
#define mm_ror256hi_1x32( a, b ) \
|
||||
_mm_or_si128( _mm_srli_si128( a, 4 ), \
|
||||
_mm_slli_si128( b, 12 ) )
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__AVX2__)
|
||||
// 2 way version of above
|
||||
// a[7:0] = { b[4], a[7], a[6], a[5], b[0], a[3], a[2], a[1] }
|
||||
|
||||
#define mm256_ror2x256hi_1x32( a, b ) \
|
||||
_mm256_blend_epi32( mm256_ror256_1x32( a ), \
|
||||
mm256_rol256_3x32( b ), 0x88 )
|
||||
|
||||
#endif
|
||||
|
||||
|
@@ -11,7 +11,7 @@ bool register_c11_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_c11;
|
||||
gate->hash = (void*)&c11_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -17,7 +17,7 @@ bool register_timetravel_algo( algo_gate_t* gate )
|
||||
gate->hash = (void*)&timetravel_hash;
|
||||
#endif
|
||||
gate->set_target = (void*)&tt8_set_target;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
return true;
|
||||
};
|
||||
|
@@ -17,7 +17,7 @@ bool register_timetravel10_algo( algo_gate_t* gate )
|
||||
gate->hash = (void*)&timetravel10_hash;
|
||||
#endif
|
||||
gate->set_target = (void*)&tt10_set_target;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
return true;
|
||||
};
|
||||
|
@@ -11,7 +11,7 @@ bool register_x11_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x11;
|
||||
gate->hash = (void*)&x11_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -89,7 +89,7 @@ bool register_x11evo_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x11evo;
|
||||
gate->hash = (void*)&x11evo_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -11,7 +11,7 @@ bool register_x11gost_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x11gost;
|
||||
gate->hash = (void*)&x11gost_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -2,7 +2,7 @@
|
||||
|
||||
bool register_skunk_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AVX2_OPT;
|
||||
#if defined (SKUNK_4WAY)
|
||||
gate->miner_thread_init = (void*)&skunk_4way_thread_init;
|
||||
gate->scanhash = (void*)&scanhash_skunk_4way;
|
||||
|
@@ -2,7 +2,7 @@
|
||||
|
||||
bool register_polytimos_algo( algo_gate_t* gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
#ifdef POLYTIMOS_4WAY
|
||||
init_polytimos_4way_ctx();
|
||||
gate->scanhash = (void*)&scanhash_polytimos_4way;
|
||||
|
@@ -11,7 +11,7 @@ bool register_veltor_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_veltor;
|
||||
gate->hash = (void*)&veltor_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -11,7 +11,7 @@ bool register_x14_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x14;
|
||||
gate->hash = (void*)&x14hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->get_max64 = (void*)&get_max64_0x3ffff;
|
||||
return true;
|
||||
};
|
||||
|
@@ -11,7 +11,7 @@ bool register_x15_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x15;
|
||||
gate->hash = (void*)&x15hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -429,7 +429,7 @@ int scanhash_hmq1725( int thr_id, struct work *work, int32_t max_nonce,
|
||||
bool register_hmq1725_algo( algo_gate_t* gate )
|
||||
{
|
||||
init_hmq1725_ctx();
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | SHA_OPT;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
gate->scanhash = (void*)&scanhash_hmq1725;
|
||||
gate->hash = (void*)&hmq1725hash;
|
||||
|
@@ -86,7 +86,7 @@ void x16r_4way_hash( void* output, const void* input )
|
||||
if ( s_ntime == UINT32_MAX )
|
||||
{
|
||||
const uint8_t* tmp = (uint8_t*) in0;
|
||||
x16r_getAlgoString( &tmp[4], hashOrder );
|
||||
x16_r_s_getAlgoString( &tmp[4], hashOrder );
|
||||
}
|
||||
|
||||
// Input data is both 64 bit interleaved (input)
|
||||
@@ -321,10 +321,11 @@ int scanhash_x16r_4way( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
for ( int k=0; k < 19; k++ )
|
||||
be32enc( &endiandata[k], pdata[k] );
|
||||
|
||||
if ( s_ntime != pdata[17] )
|
||||
// if ( s_ntime != pdata[17] )
|
||||
if ( s_ntime != endiandata[17] )
|
||||
{
|
||||
uint32_t ntime = swab32(pdata[17]);
|
||||
x16r_getAlgoString( (const char*) (&endiandata[1]), hashOrder );
|
||||
x16_r_s_getAlgoString( (const char*) (&endiandata[1]), hashOrder );
|
||||
s_ntime = ntime;
|
||||
if ( opt_debug && !thr_id )
|
||||
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
|
||||
|
@@ -1,6 +1,6 @@
|
||||
#include "x16r-gate.h"
|
||||
|
||||
void x16r_getAlgoString( const uint8_t* prevblock, char *output )
|
||||
void x16r_getAlgoString( const char* prevblock, char *output )
|
||||
{
|
||||
char *sptr = output;
|
||||
for ( int j = 0; j < X16R_HASH_FUNC_COUNT; j++ )
|
||||
@@ -16,6 +16,22 @@ void x16r_getAlgoString( const uint8_t* prevblock, char *output )
|
||||
*sptr = '\0';
|
||||
}
|
||||
|
||||
void x16s_getAlgoString( const char* prevblock, char *output )
|
||||
{
|
||||
uint8_t* data = (uint8_t*)prevblock;
|
||||
strcpy( output, "0123456789ABCDEF" );
|
||||
for ( int i = 0; i < 16; i++ )
|
||||
{
|
||||
uint8_t b = (15 - i) >> 1; // 16 ascii hex chars, reversed
|
||||
uint8_t algoDigit = (i & 1) ? data[b] & 0xF : data[b] >> 4;
|
||||
int offset = algoDigit;
|
||||
// insert the nth character at the front
|
||||
char oldVal = output[offset];
|
||||
for( int j = offset; j-- > 0; )
|
||||
output[j+1] = output[j];
|
||||
output[0] = oldVal;
|
||||
}
|
||||
}
|
||||
|
||||
bool register_x16r_algo( algo_gate_t* gate )
|
||||
{
|
||||
@@ -28,8 +44,26 @@ bool register_x16r_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x16r;
|
||||
gate->hash = (void*)&x16r_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
x16_r_s_getAlgoString = (void*)&x16r_getAlgoString;
|
||||
return true;
|
||||
};
|
||||
|
||||
bool register_x16s_algo( algo_gate_t* gate )
|
||||
{
|
||||
#if defined (X16R_4WAY)
|
||||
init_x16r_4way_ctx();
|
||||
gate->scanhash = (void*)&scanhash_x16r_4way;
|
||||
gate->hash = (void*)&x16r_4way_hash;
|
||||
#else
|
||||
init_x16r_ctx();
|
||||
gate->scanhash = (void*)&scanhash_x16r;
|
||||
gate->hash = (void*)&x16r_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&alt_set_target;
|
||||
x16_r_s_getAlgoString = (void*)&x16s_getAlgoString;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -29,8 +29,12 @@ enum x16r_Algo {
|
||||
X16R_HASH_FUNC_COUNT
|
||||
};
|
||||
|
||||
bool (*x16_r_s_getAlgoString) ( const char*, char* );
|
||||
void x16r_getAlgoString( const char* prevblock, char *output );
|
||||
void x16s_getAlgoString( const char* prevblock, char *output );
|
||||
|
||||
bool register_x16r_algo( algo_gate_t* gate );
|
||||
void x16r_getAlgoString( const uint8_t* prevblock, char *output );
|
||||
bool register_x16s_algo( algo_gate_t* gate );
|
||||
|
||||
#if defined(X16R_4WAY)
|
||||
|
||||
|
@@ -61,27 +61,7 @@ x16r_ctx_holder x16r_ctx __attribute__ ((aligned (64)));
|
||||
|
||||
void init_x16r_ctx()
|
||||
{
|
||||
//#ifdef NO_AES_NI
|
||||
// sph_groestl512_init(&x16r_ctx.groestl );
|
||||
// sph_echo512_init(&x16r_ctx.echo);
|
||||
//#else
|
||||
// init_echo( &x16r_ctx.echo, 512 );
|
||||
// init_groestl( &x16r_ctx.groestl, 64 );
|
||||
//#endif
|
||||
// sph_blake512_init( &x16r_ctx.blake );
|
||||
// sph_bmw512_init( &x16r_ctx.bmw );
|
||||
// sph_skein512_init( &x16r_ctx.bmw );
|
||||
// sph_jh512_init( &x16r_ctx.jh );
|
||||
// sph_keccak512_init( &x16r_ctx.keccak );
|
||||
// init_luffa( &x16r_ctx.luffa, 512 );
|
||||
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
|
||||
// sph_shavite512_init( &x16r_ctx.shavite );
|
||||
// init_sd( &x16r_ctx.simd, 512 );
|
||||
// sph_hamsi512_init( &x16r_ctx.hamsi );
|
||||
// sph_fugue512_init( &x16r_ctx.fugue );
|
||||
// sph_shabal512_init( &x16r_ctx.shabal );
|
||||
// sph_whirlpool_init( &x16r_ctx.whirlpool );
|
||||
// SHA512_Init( &x16r_ctx.sha512 );
|
||||
};
|
||||
|
||||
void x16r_hash( void* output, const void* input )
|
||||
@@ -94,7 +74,7 @@ void x16r_hash( void* output, const void* input )
|
||||
if ( s_ntime == UINT32_MAX )
|
||||
{
|
||||
const uint8_t* in8 = (uint8_t*) input;
|
||||
x16r_getAlgoString( &in8[4], hashOrder );
|
||||
x16_r_s_getAlgoString( &in8[4], hashOrder );
|
||||
}
|
||||
|
||||
for ( int i = 0; i < 16; i++ )
|
||||
@@ -218,10 +198,14 @@ int scanhash_x16r( int thr_id, struct work *work, uint32_t max_nonce,
|
||||
for ( int k=0; k < 19; k++ )
|
||||
be32enc( &endiandata[k], pdata[k] );
|
||||
|
||||
// This code is suspicious. s_ntime is saved after byteswapping pdata[17]
|
||||
// but is tested vs unswapped pdata[17]. This should result in calling
|
||||
// getAlgoString every pass, but that doesn't seem to be the case.
|
||||
// It appears to be working correctly as is.
|
||||
if ( s_ntime != pdata[17] )
|
||||
{
|
||||
uint32_t ntime = swab32(pdata[17]);
|
||||
x16r_getAlgoString( (const char*) (&endiandata[1]), hashOrder );
|
||||
x16_r_s_getAlgoString( (const char*) (&endiandata[1]), hashOrder );
|
||||
s_ntime = ntime;
|
||||
if ( opt_debug && !thr_id )
|
||||
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
|
||||
|
@@ -11,7 +11,7 @@ bool register_x17_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_x17;
|
||||
gate->hash = (void*)&x17_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
return true;
|
||||
};
|
||||
|
||||
|
@@ -16,7 +16,7 @@ bool register_xevan_algo( algo_gate_t* gate )
|
||||
gate->scanhash = (void*)&scanhash_xevan;
|
||||
gate->hash = (void*)&xevan_hash;
|
||||
#endif
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
|
||||
gate->set_target = (void*)&xevan_set_target;
|
||||
gate->get_max64 = (void*)&get_max64_0xffffLL;
|
||||
return true;
|
||||
|
@@ -427,7 +427,7 @@ int64_t yescryptr16_get_max64()
|
||||
|
||||
void yescrypt_gate_base(algo_gate_t *gate )
|
||||
{
|
||||
gate->optimizations = SSE2_OPT | AVX_OPT | SHA_OPT;
|
||||
gate->optimizations = SSE2_OPT | SHA_OPT;
|
||||
gate->scanhash = (void*)&scanhash_yescrypt;
|
||||
gate->hash = (void*)&yescrypt_hash;
|
||||
gate->set_target = (void*)&scrypt_set_target;
|
||||
|
64
avxdefs.h
64
avxdefs.h
@@ -1,20 +1,13 @@
|
||||
#ifndef AVXDEFS_H__
|
||||
#define AVXDEFS_H__
|
||||
|
||||
// Some tools to help using AVX and AVX2.
|
||||
// Some tools to help using SIMD vectors.
|
||||
//
|
||||
// The baseline requirements for these utilities is AVX for 128 bit vectors
|
||||
// and AVX2 for 256 bit vectors. However most of the 128 bit code requires
|
||||
// only SSE2 with a couple of exceptions. This provides full support for
|
||||
// Intel Core2.
|
||||
// The baseline requirements for these utilities is SSE2 for 128 bit vectors
|
||||
// and AVX2 for 256 bit vectors.
|
||||
//
|
||||
// SSSE3 is required for mm_shuffle_epi8 used by bswap functions which is
|
||||
// included in Core2 but not some AMD architectures.
|
||||
//
|
||||
// SSE4.1 is required for _mm_blend_epi16 used by some rotate functions.
|
||||
//
|
||||
// Slower versions of these functions are automatically selected at compile
|
||||
// time.
|
||||
// Some 128 bit functions have SSSE3 or SSE4.2 implementations that are
|
||||
// more efficient on capable CPUs.
|
||||
//
|
||||
// AVX512F has more powerful 256 bit instructions but with 512 bit vectors
|
||||
// available there is little reason to use the 256 bit enhancements.
|
||||
@@ -159,6 +152,11 @@ static inline __m128i foo()
|
||||
// These can't be used for compile time initialization.
|
||||
// These should be used for all simple vectors. Use above for
|
||||
// vector array initializing.
|
||||
//
|
||||
// _mm_setzero_si128 uses pxor instruction, it's unclear what _mm_set_epi does.
|
||||
// If a pseudo constant is used repeatedly in a function it may be worthwhile
|
||||
// to define a register variable to represent that constant.
|
||||
// register __m128i zero = mm_zero;
|
||||
|
||||
// Constant zero
|
||||
#define m128_zero _mm_setzero_si128()
|
||||
@@ -425,7 +423,7 @@ do { \
|
||||
v1 = t; \
|
||||
} while(0)
|
||||
|
||||
/*
|
||||
|
||||
// No comparable rol.
|
||||
#define mm_ror256_1x16( v1, v2 ) \
|
||||
do { \
|
||||
@@ -433,8 +431,8 @@ do { \
|
||||
v1 = _mm_alignr_epi8( v2, v1, 2 ); \
|
||||
v2 = t; \
|
||||
} while(0)
|
||||
*/
|
||||
|
||||
/*
|
||||
#define mm_ror256_1x16( v1, v2 ) \
|
||||
do { \
|
||||
__m128i t; \
|
||||
@@ -444,6 +442,7 @@ do { \
|
||||
v2 = _mm_blend_epi16( v1, v2, 0x01 ); \
|
||||
v1 = t; \
|
||||
} while(0)
|
||||
*/
|
||||
|
||||
#define mm_rol256_1x16( v1, v2 ) \
|
||||
do { \
|
||||
@@ -888,6 +887,41 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
#define mm256_ror512_1x128(v1, v2) _mm256_permute2x128_si256( v1, v2, 0x39 )
|
||||
#define mm256_rol512_1x128(v1, v2) _mm256_permute2x128_si256( v1, v2, 0x93 )
|
||||
|
||||
// No comparable rol.
|
||||
#define mm256_ror512_1x64( v1, v2 ) \
|
||||
do { \
|
||||
__m256i t = _mm256_alignr_epi8( v1, v2, 8 ); \
|
||||
v1 = _mm256_alignr_epi8( v2, v1, 8 ); \
|
||||
v2 = t; \
|
||||
} while(0)
|
||||
|
||||
#define mm256_rol512_1x64( v1, v2 ) \
|
||||
do { \
|
||||
__m256i t; \
|
||||
v1 = mm256_rol_1x64( v1 ); \
|
||||
v2 = mm256_rol_1x64( v2 ); \
|
||||
t = _mm256_blend_epi32( v1, v2, 0x03 ); \
|
||||
v2 = _mm256_blend_epi32( v1, v2, 0xFC ); \
|
||||
v1 = t; \
|
||||
} while(0)
|
||||
|
||||
#define mm256_ror512_1x32( v1, v2 ) \
|
||||
do { \
|
||||
__m256i t = _mm256_alignr_epi8( v1, v2, 4 ); \
|
||||
v1 = _mm256_alignr_epi8( v2, v1, 4 ); \
|
||||
v2 = t; \
|
||||
} while(0)
|
||||
|
||||
#define mm256_rol512_1x32( v1, v2 ) \
|
||||
do { \
|
||||
__m256i t; \
|
||||
v1 = mm256_rol_1x32( v1 ); \
|
||||
v2 = mm256_rol_1x32( v2 ); \
|
||||
t = _mm256_blend_epi32( v1, v2, 0x01 ); \
|
||||
v2 = _mm256_blend_epi32( v1, v2, 0xFE ); \
|
||||
v1 = t; \
|
||||
} while(0)
|
||||
|
||||
|
||||
//
|
||||
// Swap bytes in vector elements
|
||||
@@ -914,7 +948,7 @@ static inline void memcpy_256( __m256i *dst, const __m256i *src, int n )
|
||||
// usefulness tbd
|
||||
// __m128i hi, __m128i lo, returns __m256i
|
||||
#define mm256_pack_2x128( hi, lo ) \
|
||||
_mm256_inserti128_si256( _mm256_castsi128_si256( hi ), lo, 0 ) \
|
||||
_mm256_inserti128_si256( _mm256_castsi128_si256( lo ), hi, 1 ) \
|
||||
|
||||
// __m128i hi, __m128i lo, __m256i src
|
||||
#define mm256_unpack_2x128( hi, lo, src ) \
|
||||
|
20
configure
vendored
20
configure
vendored
@@ -1,6 +1,6 @@
|
||||
#! /bin/sh
|
||||
# Guess values for system-dependent variables and create Makefiles.
|
||||
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.8.5.
|
||||
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.8.6.
|
||||
#
|
||||
#
|
||||
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
|
||||
@@ -577,8 +577,8 @@ MAKEFLAGS=
|
||||
# Identity of this package.
|
||||
PACKAGE_NAME='cpuminer-opt'
|
||||
PACKAGE_TARNAME='cpuminer-opt'
|
||||
PACKAGE_VERSION='3.8.5'
|
||||
PACKAGE_STRING='cpuminer-opt 3.8.5'
|
||||
PACKAGE_VERSION='3.8.6'
|
||||
PACKAGE_STRING='cpuminer-opt 3.8.6'
|
||||
PACKAGE_BUGREPORT=''
|
||||
PACKAGE_URL=''
|
||||
|
||||
@@ -1321,7 +1321,7 @@ if test "$ac_init_help" = "long"; then
|
||||
# Omit some internal or obsolete options to make the list less imposing.
|
||||
# This message is too long to be a string in the A/UX 3.1 sh.
|
||||
cat <<_ACEOF
|
||||
\`configure' configures cpuminer-opt 3.8.5 to adapt to many kinds of systems.
|
||||
\`configure' configures cpuminer-opt 3.8.6 to adapt to many kinds of systems.
|
||||
|
||||
Usage: $0 [OPTION]... [VAR=VALUE]...
|
||||
|
||||
@@ -1392,7 +1392,7 @@ fi
|
||||
|
||||
if test -n "$ac_init_help"; then
|
||||
case $ac_init_help in
|
||||
short | recursive ) echo "Configuration of cpuminer-opt 3.8.5:";;
|
||||
short | recursive ) echo "Configuration of cpuminer-opt 3.8.6:";;
|
||||
esac
|
||||
cat <<\_ACEOF
|
||||
|
||||
@@ -1497,7 +1497,7 @@ fi
|
||||
test -n "$ac_init_help" && exit $ac_status
|
||||
if $ac_init_version; then
|
||||
cat <<\_ACEOF
|
||||
cpuminer-opt configure 3.8.5
|
||||
cpuminer-opt configure 3.8.6
|
||||
generated by GNU Autoconf 2.69
|
||||
|
||||
Copyright (C) 2012 Free Software Foundation, Inc.
|
||||
@@ -2000,7 +2000,7 @@ cat >config.log <<_ACEOF
|
||||
This file contains any messages produced by compilers while
|
||||
running configure, to aid debugging if configure makes a mistake.
|
||||
|
||||
It was created by cpuminer-opt $as_me 3.8.5, which was
|
||||
It was created by cpuminer-opt $as_me 3.8.6, which was
|
||||
generated by GNU Autoconf 2.69. Invocation command line was
|
||||
|
||||
$ $0 $@
|
||||
@@ -2981,7 +2981,7 @@ fi
|
||||
|
||||
# Define the identity of the package.
|
||||
PACKAGE='cpuminer-opt'
|
||||
VERSION='3.8.5'
|
||||
VERSION='3.8.6'
|
||||
|
||||
|
||||
cat >>confdefs.h <<_ACEOF
|
||||
@@ -6677,7 +6677,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
|
||||
# report actual input values of CONFIG_FILES etc. instead of their
|
||||
# values after options handling.
|
||||
ac_log="
|
||||
This file was extended by cpuminer-opt $as_me 3.8.5, which was
|
||||
This file was extended by cpuminer-opt $as_me 3.8.6, which was
|
||||
generated by GNU Autoconf 2.69. Invocation command line was
|
||||
|
||||
CONFIG_FILES = $CONFIG_FILES
|
||||
@@ -6743,7 +6743,7 @@ _ACEOF
|
||||
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
|
||||
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
|
||||
ac_cs_version="\\
|
||||
cpuminer-opt config.status 3.8.5
|
||||
cpuminer-opt config.status 3.8.6
|
||||
configured by $0, generated by GNU Autoconf 2.69,
|
||||
with options \\"\$ac_cs_config\\"
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
AC_INIT([cpuminer-opt], [3.8.5])
|
||||
AC_INIT([cpuminer-opt], [3.8.6])
|
||||
|
||||
AC_PREREQ([2.59c])
|
||||
AC_CANONICAL_SYSTEM
|
||||
|
3
miner.h
3
miner.h
@@ -550,6 +550,7 @@ enum algos {
|
||||
ALGO_X14,
|
||||
ALGO_X15,
|
||||
ALGO_X16R,
|
||||
ALGO_X16S,
|
||||
ALGO_X17,
|
||||
ALGO_XEVAN,
|
||||
ALGO_YESCRYPT,
|
||||
@@ -629,6 +630,7 @@ static const char* const algo_names[] = {
|
||||
"x14",
|
||||
"x15",
|
||||
"x16r",
|
||||
"x16s",
|
||||
"x17",
|
||||
"xevan",
|
||||
"yescrypt",
|
||||
@@ -767,6 +769,7 @@ Options:\n\
|
||||
x14 X14\n\
|
||||
x15 X15\n\
|
||||
x16r Ravencoin (RVN)\n\
|
||||
x16s Pigeoncoin (PGN)\n\
|
||||
x17\n\
|
||||
xevan Bitsend (BSD)\n\
|
||||
yescrypt Globlboost-Y (BSTY)\n\
|
||||
|
Reference in New Issue
Block a user