mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
v3.10.4
This commit is contained in:
@@ -46,6 +46,7 @@
|
||||
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
|
||||
*/
|
||||
|
||||
#if 0
|
||||
int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
|
||||
const uint64_t timeCost, const uint64_t nRows,
|
||||
@@ -216,29 +217,55 @@ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
|
||||
|
||||
// This version is currently only used by REv3 and has some hard coding
|
||||
// specific to v3 such as input data size of 32 bytes.
|
||||
//
|
||||
// Similarly with REv2. Thedifference with REv3 isn't clear and maybe
|
||||
// they can be merged.
|
||||
//
|
||||
// RE is used by RE, allium. The main difference between RE and REv2
|
||||
// in the matrix size.
|
||||
//
|
||||
// Z also needs to support 80 byte input as well as 32 byte, and odd
|
||||
// matrix sizes like 330 rows. It is used by lyra2z330, lyra2z, lyra2h.
|
||||
|
||||
|
||||
/////////////////////////////////////////////////
|
||||
|
||||
// 2 way 256
|
||||
// drop salt, salt len arguments, hard code some others.
|
||||
// Data is interleaved 2x256.
|
||||
|
||||
//int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
// const void *pwd, uint64_t pwdlen, uint64_t timeCost,
|
||||
// uint64_t nRows, uint64_t nCols )
|
||||
|
||||
// hard coded for 32 byte input as well as matrix size.
|
||||
// Other required versions include 80 byte input and different block
|
||||
// sizez
|
||||
|
||||
int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
const void *pwd, const uint64_t pwdlen, const void *salt,
|
||||
const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows,
|
||||
const uint64_t nCols )
|
||||
{
|
||||
//====================== Basic variables ============================//
|
||||
uint64_t _ALIGN(256) state[16];
|
||||
int64_t row = 2; //index of row to be processed
|
||||
int64_t prev = 1; //index of prev (last row ever computed/modified)
|
||||
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
|
||||
int64_t tau; //Time Loop iterator
|
||||
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
|
||||
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
|
||||
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
|
||||
uint64_t _ALIGN(256) state[32];
|
||||
int64_t row = 2;
|
||||
int64_t prev = 1;
|
||||
int64_t rowa0 = 0;
|
||||
int64_t rowa1 = 0;
|
||||
int64_t tau;
|
||||
int64_t step = 1;
|
||||
int64_t window = 2;
|
||||
int64_t gap = 1;
|
||||
// int64_t i; //auxiliary iteration counter
|
||||
int64_t v64; // 64bit var for memcpy
|
||||
uint64_t instance0 = 0; // Seperate instance for each lane
|
||||
// int64_t v64; // 64bit var for memcpy
|
||||
uint64_t instance0 = 0;
|
||||
uint64_t instance1 = 0;
|
||||
//====================================================================/
|
||||
|
||||
@@ -248,7 +275,9 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
uint64_t *ptrWord = wholeMatrix;
|
||||
|
||||
// 2 way 256 rewrite. Salt always == password, and data is interleaved,
|
||||
// need to build in parallel:
|
||||
// need to build in parallel as pw isalready interleaved.
|
||||
|
||||
|
||||
// { password, (64 or 80 bytes)
|
||||
// salt, (64 or 80 bytes) = same as password
|
||||
// Klen, (u64) = 32 bytes
|
||||
@@ -262,16 +291,45 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
// 1 (byte)
|
||||
// }
|
||||
|
||||
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
|
||||
// It's all u64 so don't use byte
|
||||
|
||||
|
||||
// input is usually 32 maybe 64, both are aligned to 256 bit vector.
|
||||
// 80 byte inpput is not aligned complicating matters for lyra2z.
|
||||
|
||||
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
|
||||
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
|
||||
|
||||
uint64_t *ptr = wholeMatrix;
|
||||
uint64_t *pw = (uint64_t*)pwd;
|
||||
|
||||
byte *ptrByte = (byte*) wholeMatrix;
|
||||
memcpy( ptr, pw, 2*pwdlen ); // password
|
||||
ptr += pwdlen>>2;
|
||||
memcpy( ptr, pw, 2*pwdlen ); // password lane 1
|
||||
ptr += pwdlen>>2;
|
||||
|
||||
// now build the rest interleaving on the fly.
|
||||
|
||||
//Prepends the password
|
||||
memcpy(ptrByte, pwd, pwdlen);
|
||||
ptrByte += pwdlen;
|
||||
ptr[0] = ptr[ 4] = kLen;
|
||||
ptr[1] = ptr[ 5] = pwdlen;
|
||||
ptr[2] = ptr[ 6] = pwdlen; // saltlen
|
||||
ptr[3] = ptr[ 7] = timeCost;
|
||||
ptr[8] = ptr[12] = nRows;
|
||||
ptr[9] = ptr[13] = nCols;
|
||||
ptr[10] = ptr[14] = 0x80;
|
||||
ptr[11] = ptr[15] = 0x0100000000000000;
|
||||
|
||||
ptr = wholeMatrix;
|
||||
|
||||
/*
|
||||
// do it the old way to compare.
|
||||
|
||||
uint64_t pb[512];
|
||||
byte* ptrByte = (byte*)pb;
|
||||
|
||||
//Prepends the password (use salt for testing)
|
||||
memcpy( ptrByte, salt, saltlen );
|
||||
ptrByte += saltlen;
|
||||
|
||||
//Concatenates the salt
|
||||
memcpy(ptrByte, salt, saltlen);
|
||||
@@ -280,55 +338,259 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
|
||||
- (saltlen + pwdlen) );
|
||||
|
||||
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
|
||||
memcpy(ptrByte, &kLen, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = pwdlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = saltlen;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = timeCost;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nRows;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
v64 = nCols;
|
||||
memcpy(ptrByte, &v64, sizeof(int64_t));
|
||||
ptrByte += sizeof(uint64_t);
|
||||
memcpy(ptrByte, &kLen, 8);
|
||||
ptrByte += 8;
|
||||
memcpy(ptrByte, &pwdlen, 8);
|
||||
ptrByte += 8;
|
||||
memcpy(ptrByte, &saltlen, 8);
|
||||
ptrByte += 8;
|
||||
memcpy(ptrByte, &timeCost, 8);
|
||||
ptrByte += 8;
|
||||
memcpy(ptrByte, &nRows, 8);
|
||||
ptrByte += 8;
|
||||
memcpy(ptrByte, &nCols, 8);
|
||||
ptrByte += 8;
|
||||
|
||||
|
||||
//Now comes the padding
|
||||
*ptrByte = 0x80; //first byte of padding: right after the password
|
||||
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
|
||||
ptrByte = (byte*) pb; //resets the pointer to the start of the memory matrix
|
||||
|
||||
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
|
||||
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
|
||||
*/
|
||||
|
||||
|
||||
// display the data
|
||||
printf("LYRA2REV3 data, blocks= %d\n", nBlocksInput);
|
||||
/*
|
||||
uint64_t* m = (uint64_t*)wholeMatrix;
|
||||
|
||||
printf("Lyra2v3 1: blocklensafe %d\n", BLOCK_LEN_BLAKE2_SAFE_BYTES);
|
||||
printf("pb: %016lx %016lx %016lx %016lx\n",pb[0],pb[1],pb[2],pb[3]);
|
||||
printf("pb: %016lx %016lx %016lx %016lx\n",pb[4],pb[5],pb[6],pb[7]);
|
||||
printf("pb: %016lx %016lx %016lx %016lx\n",pb[8],pb[8],pb[10],pb[11]);
|
||||
printf("pb: %016lx %016lx %016lx %016lx\n",pb[12],pb[13],pb[14],pb[15]);
|
||||
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[0],m[1],m[2],m[3]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[4],m[5],m[6],m[7]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[8],m[8],m[10],m[11]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[12],m[13],m[14],m[15]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[16],m[17],m[18],m[19]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[20],m[21],m[22],m[23]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[24],m[25],m[26],m[27]);
|
||||
printf("data V: %016lx %016lx %016lx %016lx\n",m[28],m[29],m[30],m[31]);
|
||||
*/
|
||||
|
||||
// from here on it's all simd acces to state and matrix
|
||||
// define vector pointers and adjust sizes and pointer offsets
|
||||
|
||||
uint64_t _ALIGN(256) st[16];
|
||||
|
||||
|
||||
ptrWord = wholeMatrix;
|
||||
|
||||
absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN );
|
||||
reducedSqueezeRow0( state, &wholeMatrix[0], nCols );
|
||||
absorbBlockBlake2Safe_2way( state, ptrWord, nBlocksInput, BLOCK_LEN );
|
||||
|
||||
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
|
||||
uint64_t *p = wholeMatrix;
|
||||
printf("wholematrix[0]\n");
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[2*ROW_LEN_INT64];
|
||||
printf("wholematrix[1]\n");
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[4*ROW_LEN_INT64];
|
||||
printf("wholematrix[2]\n");
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[6*ROW_LEN_INT64];
|
||||
printf("wholematrix[3]\n");
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV1 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
|
||||
//printf("SV1: %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
|
||||
/*
|
||||
absorbBlockBlake2Safe( st, pb, nBlocksInput, BLOCK_LEN );
|
||||
|
||||
|
||||
printf("SV: %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SS: %016lx %016lx %016lx %016lx\n",st[0],st[1],st[2],st[3]);
|
||||
*/
|
||||
|
||||
reducedSqueezeRow0_2way( state, &wholeMatrix[0], nCols );
|
||||
|
||||
// At this point the entire matrix should be filled but only col 0 is.
|
||||
// The others are unchanged or the display offsets are wrong.
|
||||
|
||||
p = wholeMatrix;
|
||||
printf("wholematrix[0] %x\n",wholeMatrix);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[32],p[33],p[34],p[35]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[36],p[37],p[38],p[39]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[40],p[41],p[42],p[43]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[44],p[45],p[46],p[47]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[48],p[49],p[50],p[51]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[52],p[53],p[54],p[55]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[56],p[57],p[58],p[59]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[60],p[61],p[62],p[63]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[64],p[65],p[66],p[67]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[68],p[69],p[70],p[71]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[72],p[73],p[74],p[75]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[76],p[77],p[78],p[79]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[80],p[81],p[82],p[83]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[84],p[85],p[86],p[87]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[88],p[89],p[90],p[91]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[92],p[93],p[94],p[95]);
|
||||
|
||||
|
||||
|
||||
|
||||
p = &wholeMatrix[2*ROW_LEN_INT64];
|
||||
printf("wholematrix[1] %x\n", &wholeMatrix[2*ROW_LEN_INT64]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[4*ROW_LEN_INT64];
|
||||
printf("wholematrix[2] %x\n",&wholeMatrix[4*ROW_LEN_INT64]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[6*ROW_LEN_INT64];
|
||||
printf("wholematrix[3] %x\n",&wholeMatrix[6*ROW_LEN_INT64]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV2 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
|
||||
//printf("SV2 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
/*
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]);
|
||||
printf("SV2 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]);
|
||||
*/
|
||||
|
||||
reducedDuplexRow1_2way( state, &wholeMatrix[0], &wholeMatrix[2*ROW_LEN_INT64],
|
||||
nCols);
|
||||
|
||||
|
||||
//printf("SV3 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
/*
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]);
|
||||
printf("SV3 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]);
|
||||
*/
|
||||
p = wholeMatrix;
|
||||
printf("wholematrix[0]\n");
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[2*ROW_LEN_INT64];
|
||||
printf("wholematrix[1]\n");
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[4*ROW_LEN_INT64];
|
||||
printf("wholematrix[2]\n");
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[6*ROW_LEN_INT64];
|
||||
printf("wholematrix[3]\n");
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV3 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
|
||||
|
||||
do
|
||||
{
|
||||
|
||||
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
reducedDuplexRowSetup_2way( state, &wholeMatrix[2*prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[2*rowa0*ROW_LEN_INT64],
|
||||
&wholeMatrix[2*row*ROW_LEN_INT64], nCols );
|
||||
|
||||
rowa = (rowa + step) & (window - 1);
|
||||
rowa0 = (rowa0 + step) & (window - 1);
|
||||
|
||||
prev = row;
|
||||
row++;
|
||||
|
||||
if (rowa == 0)
|
||||
if (rowa0 == 0)
|
||||
{
|
||||
step = window + gap; //changes the step: approximately doubles its value
|
||||
window *= 2; //doubles the size of the re-visitation window
|
||||
@@ -337,6 +599,80 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
|
||||
} while (row < nRows);
|
||||
|
||||
|
||||
p = wholeMatrix;
|
||||
printf("wholematrix[0]\n");
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[2*ROW_LEN_INT64];
|
||||
printf("wholematrix[1]\n");
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[4*ROW_LEN_INT64];
|
||||
printf("wholematrix[2]\n");
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
p = &wholeMatrix[6*ROW_LEN_INT64];
|
||||
printf("wholematrix[3]\n");
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
|
||||
|
||||
|
||||
//printf("SV5 prev= %d\n",prev);
|
||||
/*
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV4 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
|
||||
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]);
|
||||
printf("SV4 S %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]);
|
||||
*/
|
||||
|
||||
//printf("Lyra2v3 4\n");
|
||||
|
||||
uint64_t *ptr0 = wholeMatrix; // base address for each lane
|
||||
uint64_t *ptr1 = wholeMatrix + 4;
|
||||
|
||||
// convert a simple offset to an index into interleaved data.
|
||||
// good for state and 4 row matrix.
|
||||
// index = ( int( off / 4 ) * 2 ) + ( off mod 4 )
|
||||
|
||||
#define offset_to_index( o ) \
|
||||
( ( ( (uint64_t)( (o) & 0xf) / 4 ) * 8 ) + ( (o) % 4 ) )
|
||||
|
||||
row = 0;
|
||||
for (tau = 1; tau <= timeCost; tau++)
|
||||
{
|
||||
@@ -344,24 +680,79 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
do
|
||||
{
|
||||
// This part is not parallel, rowa will be different for each lane.
|
||||
// state (u64[16]) is interleaved 2x256, need to extract seperately.
|
||||
// state (u64[16]) is interleaved 2x256, need to extract seperately
|
||||
// and figure out where the data is when interleaved.
|
||||
// &state[0] (or matrix) is the start of lane 0, while &state[4]
|
||||
// is the start of lane 1. From there there are 4 consecutive elements
|
||||
// followed by 4 elements from the other lane that must be skipped.
|
||||
|
||||
// index = 2 * instance / 4 * 4 + instance % 4
|
||||
uint64_t index0 = ( ( (instance0 & 0xf) >> 3 ) << 2 )
|
||||
+ ( instance0 & 0x3 )
|
||||
uint64_t index1 = ( ( (instance1 & 0xf) >> 3 ) << 2 )
|
||||
+ ( instance1 & 0x3 )
|
||||
povly ptr;
|
||||
ptr.u64 = wholeMatrix;
|
||||
|
||||
instance0 = state[ index0 ] & 0xf;
|
||||
instance1 = (state+4)[ index1 ] & 0xf;
|
||||
/*
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[27]);
|
||||
printf("SV4a %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]);
|
||||
*
|
||||
//printf("SV4a o to i %016lx = %016lx\n", instance0, offset_to_index( instance0 ) );
|
||||
*/
|
||||
instance0 = state[ offset_to_index( instance0 ) ];
|
||||
instance1 = (&state[4])[ offset_to_index( instance1 ) ];
|
||||
|
||||
rowa0 = state[ instance0 ];
|
||||
rowa1 = (state+4)[ instance1 ];
|
||||
printf("SV4b o to i %016lx = %016lx, state0 %016lx\n", instance0, offset_to_index( instance0 ), state[offset_to_index( instance0 )] );
|
||||
printf("SV4b o to i %016lx = %016lx, state1 %016lx\n", instance1, offset_to_index( instance1 ), (state+4)[offset_to_index( instance1 )] );
|
||||
|
||||
//printf("SV4b lane 1 instance1 = %d, rowa1= %d\n",instance1,rowa1);
|
||||
|
||||
reducedDuplexRow_2way( state, &wholeMatrix[prev*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa0*ROW_LEN_INT64],
|
||||
&wholeMatrix[rowa1*ROW_LEN_INT64],
|
||||
&wholeMatrix[row*ROW_LEN_INT64], nCols );
|
||||
rowa0 = state[ offset_to_index( instance0 ) ]
|
||||
& (unsigned int)(nRows-1);
|
||||
rowa1 = (state+4)[ offset_to_index( instance1 ) ]
|
||||
& (unsigned int)(nRows-1);
|
||||
|
||||
// matrix[prev] ie row 0, is messed up after rdr for row 1. ok after rdr 0
|
||||
|
||||
//printf("SV5 lane 1 instance1= %016lx, rowa1= %d\n",instance1,rowa1);
|
||||
printf("SV5 row= %d, step= %d\n",row,step);
|
||||
printf("SV5 instance0 %016lx, rowa0 %d, p0 %016lx\n",instance0,rowa0,ptr0[ 2* rowa0 * ROW_LEN_INT64 ]);
|
||||
printf("SV5 instance1 %016lx, rowa1 %d, p1 %016lx\n",instance1,rowa1,ptr1[ 2* rowa1 * ROW_LEN_INT64 ]);
|
||||
uint64_t *p = &wholeMatrix[2*rowa1*ROW_LEN_INT64];
|
||||
printf("SV5 prev= %d\n",prev);
|
||||
/*
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[0],p[1],p[2],p[3]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[4],p[5],p[6],p[7]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[8],p[9],p[10],p[11]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[12],p[13],p[14],p[15]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[16],p[17],p[18],p[19]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[20],p[21],p[22],p[23]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[24],p[25],p[26],p[27]);
|
||||
printf("SV5 M %016lx %016lx %016lx %016lx\n",p[28],p[29],p[30],p[31]);
|
||||
*/
|
||||
|
||||
reducedDuplexRow_2way( state, ptr, prev, rowa0, rowa1, row, nCols );
|
||||
|
||||
/*
|
||||
reducedDuplexRow_2way( state, &wholeMatrix[ 2* prev * ROW_LEN_INT64 ],
|
||||
&ptr0[ 2* rowa0 * ROW_LEN_INT64 ],
|
||||
&ptr1[ 2* rowa1 * ROW_LEN_INT64 ],
|
||||
&wholeMatrix[ 2* row*ROW_LEN_INT64], nCols );
|
||||
*/
|
||||
|
||||
/*
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[4],state[5],state[6],state[7]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[8],state[9],state[10],state[11]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[12],state[13],state[14],state[15]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[16],state[17],state[18],state[19]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[20],state[21],state[22],state[23]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[24],state[25],state[26],state[271]);
|
||||
printf("SV6 %016lx %016lx %016lx %016lx\n",state[28],state[29],state[30],state[31]);
|
||||
*/
|
||||
|
||||
/*
|
||||
instance = state[instance & 0xF];
|
||||
rowa = state[instance & 0xF] & (unsigned int)(nRows-1);
|
||||
@@ -378,13 +769,22 @@ int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
|
||||
} while ( row != 0 );
|
||||
}
|
||||
|
||||
absorbBlock( state, &wholeMatrix[rowa*ROW_LEN_INT64] );
|
||||
squeeze( state, K, (unsigned int) kLen );
|
||||
printf("SV7 %016lx %016lx %016lx %016lx\n",state[0],state[1],state[2],state[3]);
|
||||
|
||||
|
||||
// rowa mismatches here so need to do a split read
|
||||
absorbBlock_2way( state, &wholeMatrix[2*rowa0*ROW_LEN_INT64] );
|
||||
|
||||
squeeze_2way( state, K, (unsigned int) kLen );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#undef offset_to_index
|
||||
|
||||
#endif // AVX512
|
||||
|
||||
#if 0
|
||||
|
||||
//////////////////////////////////////////////////
|
||||
int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
|
||||
@@ -713,3 +1113,4 @@ int LYRA2RE( void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen,
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Reference in New Issue
Block a user