This commit is contained in:
Jay D Dee
2018-02-15 14:48:50 -05:00
parent e4265a6f11
commit d60a268972
57 changed files with 3469 additions and 2135 deletions

163
algo/lyra2/allium-4way.c Normal file
View File

@@ -0,0 +1,163 @@
#include "allium-gate.h"
#include <memory.h>
#if defined (ALLIUM_4WAY)
#include "algo/blake/blake-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#include "algo/groestl/aes_ni/hash-groestl256.h"
typedef struct {
blake256_4way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
skein256_4way_context skein;
hashState_groestl256 groestl;
} allium_4way_ctx_holder;
static allium_4way_ctx_holder allium_4way_ctx;
void init_allium_4way_ctx()
{
keccak256_4way_init( &allium_4way_ctx.keccak );
cubehashInit( &allium_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_4way_ctx.skein );
init_groestl256( &allium_4way_ctx.groestl, 32 );
}
void allium_4way_hash( void *state, const void *input )
{
uint32_t hash0[8] __attribute__ ((aligned (64)));
uint32_t hash1[8] __attribute__ ((aligned (32)));
uint32_t hash2[8] __attribute__ ((aligned (32)));
uint32_t hash3[8] __attribute__ ((aligned (32)));
uint32_t vhash32[8*4] __attribute__ ((aligned (64)));
uint32_t vhash64[8*4] __attribute__ ((aligned (64)));
allium_4way_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_4way_ctx, sizeof(allium_4way_ctx) );
blake256_4way( &ctx.blake, input + (64<<2), 16 );
blake256_4way_close( &ctx.blake, vhash32 );
mm256_reinterleave_4x64( vhash64, vhash32, 256 );
keccak256_4way( &ctx.keccak, vhash64, 32 );
keccak256_4way_close( &ctx.keccak, vhash64 );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*)hash0, 32 );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*)hash1, 32 );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*)hash2, 32 );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*)hash3, 32 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );
LYRA2RE( hash2, 32, hash2, 32, hash2, 32, 1, 8, 8 );
LYRA2RE( hash3, 32, hash3, 32, hash3, 32, 1, 8, 8 );
mm256_interleave_4x64( vhash64, hash0, hash1, hash2, hash3, 256 );
skein256_4way( &ctx.skein, vhash64, 32 );
skein256_4way_close( &ctx.skein, vhash64 );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
update_and_final_groestl256( &ctx.groestl, hash0, hash0, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash1, hash1, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash2, hash2, 256 );
memcpy( &ctx.groestl, &allium_4way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash3, hash3, 256 );
memcpy( state, hash0, 32 );
memcpy( state+32, hash1, 32 );
memcpy( state+64, hash2, 32 );
memcpy( state+96, hash3, 32 );
}
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
uint32_t *nonces = work->nonces;
bool *found = work->nfound;
int num_found = 0;
uint32_t *noncep0 = vdata + 76; // 19*4
uint32_t *noncep1 = vdata + 77;
uint32_t *noncep2 = vdata + 78;
uint32_t *noncep3 = vdata + 79;
if ( opt_benchmark )
( (uint32_t*)ptarget )[7] = 0x0000ff;
swab32_array( edata, pdata, 20 );
mm_interleave_4x32( vdata, edata, edata, edata, edata, 640 );
blake256_4way_init( &allium_4way_ctx.blake );
blake256_4way( &allium_4way_ctx.blake, vdata, 64 );
do {
found[0] = found[1] = found[2] = found[3] = false;
be32enc( noncep0, n );
be32enc( noncep1, n+1 );
be32enc( noncep2, n+2 );
be32enc( noncep3, n+3 );
allium_4way_hash( hash, vdata );
pdata[19] = n;
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
found[0] = true;
num_found++;
nonces[0] = pdata[19] = n;
work_set_target_ratio( work, hash );
}
if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
{
found[1] = true;
num_found++;
nonces[1] = n+1;
work_set_target_ratio( work, hash+8 );
}
if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) )
{
found[2] = true;
num_found++;
nonces[2] = n+2;
work_set_target_ratio( work, hash+16 );
}
if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) )
{
found[3] = true;
num_found++;
nonces[3] = n+3;
work_set_target_ratio( work, hash+24 );
}
n += 4;
} while ( (num_found == 0) && (n < max_nonce-4)
&& !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return num_found;
}
#endif

22
algo/lyra2/allium-gate.c Normal file
View File

@@ -0,0 +1,22 @@
#include "allium-gate.h"
int64_t get_max64_0xFFFFLL() { return 0xFFFFLL; }
bool register_allium_algo( algo_gate_t* gate )
{
#if defined (ALLIUM_4WAY)
init_allium_4way_ctx();
gate->scanhash = (void*)&scanhash_allium_4way;
gate->hash = (void*)&allium_4way_hash;
#else
init_allium_ctx();
gate->scanhash = (void*)&scanhash_allium;
gate->hash = (void*)&allium_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
gate->set_target = (void*)&alt_set_target;
gate->get_max64 = (void*)&get_max64_0xFFFFLL;
return true;
};

29
algo/lyra2/allium-gate.h Normal file
View File

@@ -0,0 +1,29 @@
#ifndef ALLIUM_GATE_H__
#define ALLIUM_GATE_H__ 1
#include "algo-gate-api.h"
#include <stdint.h>
#include "lyra2.h"
#if defined(__AVX2__) && defined(__AES__)
#define ALLIUM_4WAY
#endif
bool register_allium_algo( algo_gate_t* gate );
#if defined(ALLIUM_4WAY)
void allium_4way_hash( void *state, const void *input );
int scanhash_allium_4way( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_allium_4way_ctx();
#endif
void allium_hash( void *state, const void *input );
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done );
void init_allium_ctx();
#endif

111
algo/lyra2/allium.c Normal file
View File

@@ -0,0 +1,111 @@
#include "allium-gate.h"
#include <memory.h>
#include "algo/blake/sph_blake.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl256.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
#include "lyra2.h"
typedef struct {
cubehashParam cube;
sph_blake256_context blake;
sph_keccak256_context keccak;
sph_skein256_context skein;
#if defined (__AES__)
hashState_groestl256 groestl;
#else
sph_groestl256_context groestl;
#endif
} allium_ctx_holder;
static allium_ctx_holder allium_ctx;
void init_allium_ctx()
{
sph_keccak256_init( &allium_ctx.keccak );
cubehashInit( &allium_ctx.cube, 256, 16, 32 );
sph_skein256_init( &allium_ctx.skein );
#if defined (__AES__)
init_groestl256( &allium_ctx.groestl, 32 );
#else
sph_groestl256_init( &allium_ctx.groestl );
#endif
}
void allium_hash(void *state, const void *input)
{
uint32_t hash[8] __attribute__ ((aligned (64)));
allium_ctx_holder ctx __attribute__ ((aligned (32)));
memcpy( &ctx, &allium_ctx, sizeof(allium_ctx) );
sph_blake256( &ctx.blake, input + 64, 16 );
sph_blake256_close( &ctx.blake, hash );
sph_keccak256( &ctx.keccak, hash, 32 );
sph_keccak256_close( &ctx.keccak, hash );
LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash, (const byte*)hash, 32 );
LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 );
sph_skein256( &ctx.skein, hash, 32 );
sph_skein256_close( &ctx.skein, hash );
#if defined (__AES__)
update_and_final_groestl256( &ctx.groestl, hash, hash, 256 );
#else
sph_groestl256( &ctx.groestl, hash, 32 );
sph_groestl256_close( &ctx.groestl, hash );
#endif
memcpy(state, hash, 32);
}
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t _ALIGN(128) hash[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
if ( opt_benchmark )
ptarget[7] = 0x3ffff;
for ( int i = 0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
sph_blake256_init( &allium_ctx.blake );
sph_blake256( &allium_ctx.blake, endiandata, 64 );
do {
be32enc( &endiandata[19], nonce );
allium_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
work_set_target_ratio( work, hash );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce;
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

123
algo/lyra2/allium.c.broke Normal file
View File

@@ -0,0 +1,123 @@
#include "allium-gate.h"
#include <memory.h>
#include "algo/blake/sph_blake.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl256.h"
#else
#include "algo/groestl/sph_groestl.h"
#endif
typedef struct {
cubehashParam cube;
sph_blake256_context blake;
sph_keccak256_context keccak;
sph_skein256_context skein;
#if defined (__AES__)
hashState_groestl256 groestl;
#else
sph_groestl256_context groestl;
#endif
} allium_ctx_holder;
static allium_ctx_holder allium_ctx;
static __thread sph_blake256_context allium_blake_mid;
void init_allium_ctx()
{
cubehashInit( &allium_ctx.cube, 256, 16, 32 );
sph_blake256_init( &allium_ctx.blake );
sph_keccak256_init( &allium_ctx.keccak );
sph_skein256_init( &allium_ctx.skein );
#if defined (__AES__)
init_groestl256( &allium_ctx.groestl, 32 );
#else
sph_groestl256_init( &allium_ctx.groestl );
#endif
}
void allium_blake256_midstate( const void* input )
{
memcpy( &allium_blake_mid, &allium_ctx.blake, sizeof allium_blake_mid );
sph_blake256( &allium_blake_mid, input, 64 );
}
void allium_hash( void *state, const void *input )
{
allium_ctx_holder ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &allium_ctx, sizeof(allium_ctx) );
uint8_t hash[128] __attribute__ ((aligned (64)));
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
memcpy( &ctx.blake, &allium_blake_mid, sizeof allium_blake_mid );
sph_blake256( &ctx.blake, (uint8_t*)input + midlen, tail );
sph_blake256_close( &ctx.blake, hash );
sph_keccak256( &ctx.keccak, hash, 32 );
sph_keccak256_close(&ctx.keccak, hash);
LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 );
// LYRA2REV2( allium_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash, (const byte*)hash, 32 );
LYRA2RE( hash, 32, hash, 32, hash, 32, 1, 8, 8 );
// LYRA2REV2( allium_wholeMatrix, hash, 32, hash, 32, hash, 32, 1, 8, 8 );
sph_skein256( &ctx.skein, hash, 32 );
sph_skein256_close( &ctx.skein, hash );
#if defined (__AES__)
update_and_final_groestl256( &ctx.groestl, hash, hash, 256 );
#else
sph_groestl256( &ctx.skein, hash, 32 );
sph_groestl256_close( &ctx.skein, hash );
#endif
memcpy( state, hash, 32 );
}
int scanhash_allium( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t endiandata[20] __attribute__ ((aligned (64)));
uint32_t hash[8] __attribute__((aligned(64)));
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
const uint32_t Htarg = ptarget[7];
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
swab32_array( endiandata, pdata, 20 );
allium_blake256_midstate( endiandata );
do {
be32enc(&endiandata[19], nonce);
allium_hash(hash, endiandata);
if (hash[7] <= Htarg )
{
if( fulltest(hash, ptarget) )
{
pdata[19] = nonce;
work_set_target_ratio( work, hash );
*hashes_done = pdata[19] - first_nonce;
return 1;
}
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

View File

@@ -47,8 +47,9 @@
*/
int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, const void *salt, uint64_t saltlen,
uint64_t timeCost, const uint64_t nRows, const uint64_t nCols )
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
const uint64_t timeCost, const uint64_t nRows,
const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
@@ -67,12 +68,14 @@ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
uint64_t *ptrWord = wholeMatrix;
memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
//=== Getting the password + salt + basil padded with 10*1 ==========//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
@@ -209,8 +212,9 @@ int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
}
int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, const void *salt, uint64_t saltlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols )
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
const uint64_t timeCost, const uint64_t nRows,
const uint64_t nCols )
{
//========================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
@@ -228,7 +232,9 @@ int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
//==== Getting the password + salt + basil padded with 10*1 ============//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
@@ -347,9 +353,9 @@ int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
}
// Lyra2RE doesn't like the new wholeMatrix implementation
int LYRA2RE( void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, const void *salt, uint64_t saltlen,
uint64_t timeCost, const uint64_t nRows, const uint64_t nCols )
int LYRA2RE( void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen,
const void *salt, const uint64_t saltlen, const uint64_t timeCost,
const uint64_t nRows, const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
@@ -374,18 +380,19 @@ int LYRA2RE( void *K, uint64_t kLen, const void *pwd,
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
i = (int64_t)ROW_LEN_BYTES * nRows;
uint64_t *wholeMatrix = _mm_malloc( i, 64 );
uint64_t *wholeMatrix = _mm_malloc( i, 32 );
// uint64_t *wholeMatrix = _mm_malloc( i, 64 );
if (wholeMatrix == NULL)
return -1;
/*
#if defined (__AVX2__)
memset_zero_m256i( (__m256i*)wholeMatrix, i/32 );
#elif defined(__AVX__)
memset_zero_m128i( (__m128i*)wholeMatrix, i/16 );
#else
//#if defined (__AVX2__)
// memset_zero_m256i( (__m256i*)wholeMatrix, i<<5 );
//#elif defined(__AVX__)
// memset_zero_m128i( (__m128i*)wholeMatrix, i<<4 );
//#else
memset(wholeMatrix, 0, i);
#endif
*/
//#endif
uint64_t *ptrWord = wholeMatrix;
//=== Getting the password + salt + basil padded with 10*1 ==========//

View File

@@ -54,4 +54,6 @@ int LYRA2Z( uint64_t*, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, const void *salt, uint64_t saltlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
#endif /* LYRA2_H_ */

View File

@@ -7,9 +7,6 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/cubehash/sph_cubehash.h"
//#include "algo/bmw/sph_bmw.h"
#include "algo/cubehash/sse2/cubehash_sse2.h"
typedef struct {
@@ -18,19 +15,16 @@ typedef struct {
cubehashParam cube;
skein256_4way_context skein;
bmw256_4way_context bmw;
// sph_bmw256_context bmw;
} lyra2v2_4way_ctx_holder;
static lyra2v2_4way_ctx_holder l2v2_4way_ctx;
void init_lyra2rev2_4way_ctx()
{
// blake256_4way_init( &l2v2_4way_ctx.blake );
keccak256_4way_init( &l2v2_4way_ctx.keccak );
cubehashInit( &l2v2_4way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &l2v2_4way_ctx.skein );
bmw256_4way_init( &l2v2_4way_ctx.bmw );
// sph_bmw256_init( &l2v2_4way_ctx.bmw );
}
void lyra2rev2_4way_hash( void *state, const void *input )
@@ -45,7 +39,6 @@ void lyra2rev2_4way_hash( void *state, const void *input )
memcpy( &ctx, &l2v2_4way_ctx, sizeof(l2v2_4way_ctx) );
blake256_4way( &ctx.blake, input + (64<<2), 16 );
// blake256_4way( &ctx.blake, input, 80 );
blake256_4way_close( &ctx.blake, vhash );
mm256_reinterleave_4x64( vhash64, vhash, 256 );
@@ -54,11 +47,11 @@ void lyra2rev2_4way_hash( void *state, const void *input )
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
LYRA2REV2( l2v2_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
@@ -71,36 +64,20 @@ void lyra2rev2_4way_hash( void *state, const void *input )
skein256_4way_close( &ctx.skein, vhash64 );
mm256_deinterleave_4x64( hash0, hash1, hash2, hash3, vhash64, 256 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
memcpy( &ctx.cube, &l2v2_4way_ctx.cube, sizeof ctx.cube );
cubehashReinit( &ctx.cube );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
// BMW256 4way has a lane corruption problem, only lanes 0 & 2 produce
// good hash. As a result this ugly workaround of running bmw256-4way
// twice with data shuffled to get all 4 lanes of good hash.
// The hash is then shuffled back into the appropriate lanes for output.
// Not as fast but still faster than using sph serially.
// shift lane 1 data to lane 2.
mm_interleave_4x32( vhash, hash0, hash0, hash1, hash1, 256 );
mm_interleave_4x32( vhash, hash0, hash1, hash2, hash3, 256 );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, vhash );
uint32_t trash[8] __attribute__ ((aligned (32)));
// extract lane 0 as usual and lane2 containing lane 1 hash
mm_deinterleave_4x32( state, trash, state+32, trash, vhash, 256 );
// shift lane2 data to lane 0 and lane 3 data to lane 2
mm_interleave_4x32( vhash, hash2, hash2, hash3, hash3, 256 );
bmw256_4way_init( &ctx.bmw );
bmw256_4way( &ctx.bmw, vhash, 32 );
bmw256_4way_close( &ctx.bmw, vhash );
// extract lane 2 hash from lane 0 and lane 3 hash from lane 2.
mm_deinterleave_4x32( state+64, trash, state+96, trash, vhash, 256 );
mm_deinterleave_4x32( state, state+32, state+64, state+96, vhash, 256 );
}
int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
@@ -144,7 +121,6 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) )
{
//printf("found0\n");
found[0] = true;
num_found++;
nonces[0] = pdata[19] = n;
@@ -152,7 +128,6 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
}
if ( (hash+8)[7] <= Htarg && fulltest( hash+8, ptarget ) )
{
//printf("found1\n");
found[1] = true;
num_found++;
nonces[1] = n+1;
@@ -160,7 +135,6 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
}
if ( (hash+16)[7] <= Htarg && fulltest( hash+16, ptarget ) )
{
//printf("found2\n");
found[2] = true;
num_found++;
nonces[2] = n+2;
@@ -168,7 +142,6 @@ int scanhash_lyra2rev2_4way( int thr_id, struct work *work, uint32_t max_nonce,
}
if ( (hash+24)[7] <= Htarg && fulltest( hash+24, ptarget ) )
{
//printf("found3\n");
found[3] = true;
num_found++;
nonces[3] = n+3;