This commit is contained in:
Jay D Dee
2019-06-03 21:36:33 -04:00
parent 02202ab803
commit ce259b915a
58 changed files with 2969 additions and 4932 deletions

View File

@@ -1,646 +0,0 @@
/*-
* Copyright 2005-2016 Colin Percival
* Copyright 2016-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "insecure_memzero.h"
#include "sysendian.h"
#include "sha256.h"
#ifdef __ICC
/* Miscompile with icc 14.0.0 (at least), so don't use restrict there */
#define restrict
#elif __STDC_VERSION__ >= 199901L
/* Have restrict */
#elif defined(__GNUC__)
#define restrict __restrict
#else
#define restrict
#endif
/*
* Encode a length len*2 vector of (uint32_t) into a length len*8 vector of
* (uint8_t) in big-endian form.
*/
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
/* Encode vector, two words at a time. */
do {
be32enc(&dst[0], src[0]);
be32enc(&dst[4], src[1]);
src += 2;
dst += 8;
} while (--len);
}
/*
* Decode a big-endian length len*8 vector of (uint8_t) into a length
* len*2 vector of (uint32_t).
*/
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
/* Decode vector, two words at a time. */
do {
dst[0] = be32dec(&src[0]);
dst[1] = be32dec(&src[4]);
src += 8;
dst += 2;
} while (--len);
}
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
{
int i;
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 8);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state. */
state[0] += S[0];
state[1] += S[1];
state[2] += S[2];
state[3] += S[3];
state[4] += S[4];
state[5] += S[5];
state[6] += S[6];
state[7] += S[7];
}
static const uint8_t PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}
/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Initialize state. */
memcpy(ctx->state, initial_state, sizeof(initial_state));
}
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
static void
_SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
uint32_t r;
const uint8_t * src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72])
{
/* Add padding. */
SHA256_Pad(ctx, tmp32);
/* Write the hash. */
be32enc_vect(digest, ctx->state, 4);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Final(digest, ctx, tmp32);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
_SHA256_Update(&ctx, in, len, tmp32);
_SHA256_Final(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
static void
_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen,
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
uint8_t khash[static restrict 32])
{
const uint8_t * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
_SHA256_Update(&ctx->ictx, K, Klen, tmp32);
_SHA256_Final(khash, &ctx->ictx, tmp32);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->ictx, pad, 64, tmp32);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->octx, pad, 64, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
uint32_t tmp32[72];
uint8_t pad[64];
uint8_t khash[32];
/* Call the real function. */
_HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(khash, 32);
insecure_memzero(pad, 64);
}
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
static void
_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
/* Feed data to the inner SHA256 operation. */
_SHA256_Update(&ctx->ictx, in, len, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_HMAC_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
{
/* Finish the inner SHA256 operation. */
_SHA256_Final(ihash, &ctx->ictx, tmp32);
/* Feed the inner hash to the outer SHA256 operation. */
_SHA256_Update(&ctx->octx, ihash, 32, tmp32);
/* Finish the outer SHA256 operation. */
_SHA256_Final(digest, &ctx->octx, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
uint32_t tmp32[72];
uint8_t ihash[32];
/* Call the real function. */
_HMAC_SHA256_Final(digest, ctx, tmp32, ihash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(ihash, 32);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
_HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
_HMAC_SHA256_Update(&ctx, in, len, tmp32);
_HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(tmp8, 96);
}
/* Add padding and terminating bit-count, but don't invoke Transform yet. */
static int
SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8],
uint32_t tmp32[static restrict 72])
{
uint32_t r;
r = (ctx->count >> 3) & 0x3f;
if (r >= 56)
return -1;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be64enc(len, ctx->count);
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
_SHA256_Update(ctx, PAD, 56 - r, tmp32);
/* Add the terminating bit-count. */
ctx->buf[63] = len[7];
_SHA256_Update(ctx, len, 7, tmp32);
return 0;
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX Phctx, PShctx, hctx;
uint32_t tmp32[72];
union {
uint8_t tmp8[96];
uint32_t state[8];
} u;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Sanity-check. */
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) {
uint32_t oldcount;
uint8_t * ivecp;
/* Compute HMAC state after processing P and S. */
_HMAC_SHA256_Init(&hctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
_HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32);
/* Prepare ictx padding. */
oldcount = hctx.ictx.count & (0x3f << 3);
_HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32);
if ((hctx.ictx.count & (0x3f << 3)) < oldcount ||
SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32))
goto generic; /* Can't happen due to saltlen check */
ivecp = hctx.ictx.buf + (oldcount >> 3);
/* Prepare octx padding. */
hctx.octx.count += 32 << 3;
SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivecp, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(u.state, hctx.ictx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.ictx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(hctx.octx.buf, u.state, 4);
memcpy(u.state, hctx.octx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.octx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(&buf[i * 32], u.state, 4);
}
goto cleanup;
}
generic:
/* Compute HMAC state after processing P. */
_HMAC_SHA256_Init(&Phctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
/* Compute HMAC state after processing P and S. */
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, ivec, 4, tmp32);
_HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8);
if (c > 1) {
/* T_i = U_1 ... */
memcpy(U, T, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, U, 32, tmp32);
_HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean the stack. */
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(U, 32);
insecure_memzero(T, 32);
cleanup:
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(&u, sizeof(u));
}

View File

@@ -1,680 +0,0 @@
/*-
* Copyright 2005-2016 Colin Percival
* Copyright 2016-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "insecure_memzero.h"
#include "sysendian.h"
#include "sha256.h"
#include "avxdefs.h"
#ifdef __ICC
/* Miscompile with icc 14.0.0 (at least), so don't use restrict there */
#define restrict
#elif __STDC_VERSION__ >= 199901L
/* Have restrict */
#elif defined(__GNUC__)
#define restrict __restrict
#else
#define restrict
#endif
/*
* Encode a length len*2 vector of (uint32_t) into a length len*8 vector of
* (uint8_t) in big-endian form.
*/
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
/* Encode vector, two words at a time. */
do {
be32enc(&dst[0], src[0]);
be32enc(&dst[4], src[1]);
src += 2;
dst += 8;
} while (--len);
}
/*
* Decode a big-endian length len*8 vector of (uint8_t) into a length
* len*2 vector of (uint32_t).
*/
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
/* Decode vector, two words at a time. */
do {
dst[0] = be32dec(&src[0]);
dst[1] = be32dec(&src[4]);
src += 8;
dst += 2;
} while (--len);
}
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#if 0 //defined(__SHA__)
// ABEF = _mm_sha256rnds2_epu32( CDGH, ABEF, k )
//_mm_sha256rnds2_epu32 (__m128i a, __m128i b, __m128i k)
// b = { ABEF } a = { CDGH }
//
//a = _mm_set_epi32( S[(66 - i) % 8], S[(67 - i) % 8],
// S[(70 - i) % 8], S[(71 - i) % 8] );
//b = _mm_set_epi32( S[(64 - i) % 8], S[(65 - i) % 8],
// S[(68 - i) % 8], S[(69 - i) % 8] );
//k = _mm_set1_epi32( W[i + ii] + Krnd[i + ii] )
// _mm_sha256rnds2_epu32(a,b,k)
#define RNDr( S, W, i, ii ) do \
{ \
uint32_t abef[4]; \
__m128i ABEF = _mm_set_epi32( S[(66 - i) % 8], S[(67 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8] ); \
__m128i CDGH = _mm_set_epi32( S[(64 - i) % 8], S[(65 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8] ); \
__m128i K = _mm_set1_epi32( W[i + ii] + Krnd[i + ii] ); \
casti_m128i( abef, 0 ) = _mm_sha256rnds2_epu32( CDGH, ABEF, K ); \
S[(66 - i) % 8] = abef[3]; \
S[(67 - i) % 8] = abef[2]; \
S[(64 - i) % 8] = abef[1]; \
S[(65 - i) % 8] = abef[0]; \
} while(0)
#else
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
#endif
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
{
int i;
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 8);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state. */
state[0] += S[0];
state[1] += S[1];
state[2] += S[2];
state[3] += S[3];
state[4] += S[4];
state[5] += S[5];
state[6] += S[6];
state[7] += S[7];
}
static const uint8_t PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}
/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Initialize state. */
memcpy(ctx->state, initial_state, sizeof(initial_state));
}
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
static void
_SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
uint32_t r;
const uint8_t * src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72])
{
/* Add padding. */
SHA256_Pad(ctx, tmp32);
/* Write the hash. */
be32enc_vect(digest, ctx->state, 4);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Final(digest, ctx, tmp32);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
_SHA256_Update(&ctx, in, len, tmp32);
_SHA256_Final(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
static void
_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen,
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
uint8_t khash[static restrict 32])
{
const uint8_t * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
_SHA256_Update(&ctx->ictx, K, Klen, tmp32);
_SHA256_Final(khash, &ctx->ictx, tmp32);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->ictx, pad, 64, tmp32);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
_SHA256_Update(&ctx->octx, pad, 64, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
uint32_t tmp32[72];
uint8_t pad[64];
uint8_t khash[32];
/* Call the real function. */
_HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(khash, 32);
insecure_memzero(pad, 64);
}
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
static void
_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
/* Feed data to the inner SHA256 operation. */
_SHA256_Update(&ctx->ictx, in, len, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_HMAC_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
{
/* Finish the inner SHA256 operation. */
_SHA256_Final(ihash, &ctx->ictx, tmp32);
/* Feed the inner hash to the outer SHA256 operation. */
_SHA256_Update(&ctx->octx, ihash, 32, tmp32);
/* Finish the outer SHA256 operation. */
_SHA256_Final(digest, &ctx->octx, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
uint32_t tmp32[72];
uint8_t ihash[32];
/* Call the real function. */
_HMAC_SHA256_Final(digest, ctx, tmp32, ihash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(ihash, 32);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
_HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
_HMAC_SHA256_Update(&ctx, in, len, tmp32);
_HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(tmp8, 96);
}
/* Add padding and terminating bit-count, but don't invoke Transform yet. */
static int
SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8],
uint32_t tmp32[static restrict 72])
{
uint32_t r;
r = (ctx->count >> 3) & 0x3f;
if (r >= 56)
return -1;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be64enc(len, ctx->count);
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
_SHA256_Update(ctx, PAD, 56 - r, tmp32);
/* Add the terminating bit-count. */
ctx->buf[63] = len[7];
_SHA256_Update(ctx, len, 7, tmp32);
return 0;
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX Phctx, PShctx, hctx;
uint32_t tmp32[72];
union {
uint8_t tmp8[96];
uint32_t state[8];
} u;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Sanity-check. */
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) {
uint32_t oldcount;
uint8_t * ivecp;
/* Compute HMAC state after processing P and S. */
_HMAC_SHA256_Init(&hctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
_HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32);
/* Prepare ictx padding. */
oldcount = hctx.ictx.count & (0x3f << 3);
_HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32);
if ((hctx.ictx.count & (0x3f << 3)) < oldcount ||
SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32))
goto generic; /* Can't happen due to saltlen check */
ivecp = hctx.ictx.buf + (oldcount >> 3);
/* Prepare octx padding. */
hctx.octx.count += 32 << 3;
SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivecp, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(u.state, hctx.ictx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.ictx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(hctx.octx.buf, u.state, 4);
memcpy(u.state, hctx.octx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.octx.buf,
&tmp32[0], &tmp32[64]);
be32enc_vect(&buf[i * 32], u.state, 4);
}
goto cleanup;
}
generic:
/* Compute HMAC state after processing P. */
_HMAC_SHA256_Init(&Phctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
/* Compute HMAC state after processing P and S. */
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, ivec, 4, tmp32);
_HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8);
if (c > 1) {
/* T_i = U_1 ... */
memcpy(U, T, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, U, 32, tmp32);
_HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean the stack. */
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(U, 32);
insecure_memzero(T, 32);
cleanup:
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(&u, sizeof(u));
}

View File

@@ -1,672 +0,0 @@
/*-
* Copyright 2005-2016 Colin Percival
* Copyright 2016-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "insecure_memzero.h"
#include "sysendian.h"
#include "sha256.h"
#ifdef __ICC
/* Miscompile with icc 14.0.0 (at least), so don't use restrict there */
#define restrict
#elif __STDC_VERSION__ >= 199901L
/* Have restrict */
#elif defined(__GNUC__)
#define restrict __restrict
#else
#define restrict
#endif
/*
* Encode a length len*2 vector of (uint32_t) into a length len*8 vector of
* (uint8_t) in big-endian form.
*/
static void
be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
{
/* Encode vector, two words at a time. */
do {
be32enc(&dst[0], src[0]);
be32enc(&dst[4], src[1]);
src += 2;
dst += 8;
} while (--len);
}
/*
* Decode a big-endian length len*8 vector of (uint8_t) into a length
* len*2 vector of (uint32_t).
*/
static void
be32dec_vect(uint32_t * dst, const uint8_t * src, size_t len)
{
/* Decode vector, two words at a time. */
do {
dst[0] = be32dec(&src[0]);
dst[1] = be32dec(&src[4]);
src += 8;
dst += 2;
} while (--len);
}
#if 0
/* SHA256 round constants. */
static const uint32_t Krnd[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
h += S1(e) + Ch(e, f, g) + k; \
d += h; \
h += S0(a) + Maj(a, b, c);
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i + ii] + Krnd[i + ii])
/* Message schedule computation */
#define MSCH(W, ii, i) \
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t state[static restrict 8],
const uint8_t block[static restrict 64],
uint32_t W[static restrict 64], uint32_t S[static restrict 8])
{
int i;
/* 1. Prepare the first part of the message schedule W. */
be32dec_vect(W, block, 8);
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
for (i = 0; i < 64; i += 16) {
RNDr(S, W, 0, i);
RNDr(S, W, 1, i);
RNDr(S, W, 2, i);
RNDr(S, W, 3, i);
RNDr(S, W, 4, i);
RNDr(S, W, 5, i);
RNDr(S, W, 6, i);
RNDr(S, W, 7, i);
RNDr(S, W, 8, i);
RNDr(S, W, 9, i);
RNDr(S, W, 10, i);
RNDr(S, W, 11, i);
RNDr(S, W, 12, i);
RNDr(S, W, 13, i);
RNDr(S, W, 14, i);
RNDr(S, W, 15, i);
if (i == 48)
break;
MSCH(W, 0, i);
MSCH(W, 1, i);
MSCH(W, 2, i);
MSCH(W, 3, i);
MSCH(W, 4, i);
MSCH(W, 5, i);
MSCH(W, 6, i);
MSCH(W, 7, i);
MSCH(W, 8, i);
MSCH(W, 9, i);
MSCH(W, 10, i);
MSCH(W, 11, i);
MSCH(W, 12, i);
MSCH(W, 13, i);
MSCH(W, 14, i);
MSCH(W, 15, i);
}
/* 4. Mix local working variables into global state. */
state[0] += S[0];
state[1] += S[1];
state[2] += S[2];
state[3] += S[3];
state[4] += S[4];
state[5] += S[5];
state[6] += S[6];
state[7] += S[7];
}
#endif
static const uint8_t PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx, uint32_t tmp32[static restrict 72])
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = (ctx->count >> 3) & 0x3f;
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if (r < 56) {
/* Pad to 56 mod 64. */
memcpy(&ctx->buf[r], PAD, 56 - r);
} else {
/* Finish the current block and mix. */
memcpy(&ctx->buf[r], PAD, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset(&ctx->buf[0], 0, 56);
}
/* Add the terminating bit-count. */
be64enc(&ctx->buf[56], ctx->count);
/* Mix in the final block. */
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
}
#if 0
/* Magic initialization constants. */
static const uint32_t initial_state[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void
SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far. */
ctx->count = 0;
/* Initialize state. */
memcpy(ctx->state, initial_state, sizeof(initial_state));
}
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
static void
_SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
uint32_t r;
const uint8_t * src = in;
/* Return immediately if we have nothing to do. */
if (len == 0)
return;
/* Number of bytes left in the buffer from previous updates. */
r = (ctx->count >> 3) & 0x3f;
/* Update number of bits. */
ctx->count += (uint64_t)(len) << 3;
/* Handle the case where we don't need to perform any transforms. */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block. */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks. */
while (len >= 64) {
SHA256_Transform(ctx->state, src, &tmp32[0], &tmp32[64]);
src += 64;
len -= 64;
}
/* Copy left over data into buffer. */
memcpy(ctx->buf, src, len);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Update(SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72])
{
/* Add padding. */
SHA256_Pad(ctx, tmp32);
/* Write the hash. */
be32enc_vect(digest, ctx->state, 4);
}
/* Wrapper function for intermediate-values sanitization. */
void
SHA256_Final(uint8_t digest[32], SHA256_CTX * ctx)
{
uint32_t tmp32[72];
/* Call the real function. */
_SHA256_Final(digest, ctx, tmp32);
/* Clear the context state. */
insecure_memzero(ctx, sizeof(SHA256_CTX));
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
#endif
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf(const void * in, size_t len, uint8_t digest[32])
{
SHA256_CTX ctx;
uint32_t tmp32[72];
SHA256_Init(&ctx);
SHA256_Update(&ctx, in, len);
SHA256_Final(digest, &ctx);
// _SHA256_Update(&ctx, in, len, tmp32);
// _SHA256_Final(digest, &ctx, tmp32);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(SHA256_CTX));
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
static void
_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen,
uint32_t tmp32[static restrict 72], uint8_t pad[static restrict 64],
uint8_t khash[static restrict 32])
{
const uint8_t * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
// _SHA256_Update(&ctx->ictx, K, Klen, tmp32);
// _SHA256_Final(khash, &ctx->ictx, tmp32);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
// _SHA256_Update(&ctx->ictx, pad, 64, tmp32);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
// _SHA256_Update(&ctx->octx, pad, 64, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
uint32_t tmp32[72];
uint8_t pad[64];
uint8_t khash[32];
/* Call the real function. */
_HMAC_SHA256_Init(ctx, _K, Klen, tmp32, pad, khash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(khash, 32);
insecure_memzero(pad, 64);
}
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
static void
_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len,
uint32_t tmp32[static restrict 72])
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
// _SHA256_Update(&ctx->ictx, in, len, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
{
uint32_t tmp32[72];
/* Call the real function. */
_HMAC_SHA256_Update(ctx, in, len, tmp32);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
static void
_HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx,
uint32_t tmp32[static restrict 72], uint8_t ihash[static restrict 32])
{
/* Finish the inner SHA256 operation. */
_SHA256_Final(ihash, &ctx->ictx, tmp32);
/* Feed the inner hash to the outer SHA256 operation. */
_SHA256_Update(&ctx->octx, ihash, 32, tmp32);
/* Finish the outer SHA256 operation. */
_SHA256_Final(digest, &ctx->octx, tmp32);
// _SHA256_Final(ihash, &ctx->ictx, tmp32);
// _SHA256_Update(&ctx->octx, ihash, 32, tmp32);
// _SHA256_Final(digest, &ctx->octx, tmp32);
}
/* Wrapper function for intermediate-values sanitization. */
void
HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
{
uint32_t tmp32[72];
uint8_t ihash[32];
/* Call the real function. */
_HMAC_SHA256_Final(digest, ctx, tmp32, ihash);
/* Clean the stack. */
insecure_memzero(tmp32, 288);
insecure_memzero(ihash, 32);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
uint32_t tmp32[72];
uint8_t tmp8[96];
_HMAC_SHA256_Init(&ctx, K, Klen, tmp32, &tmp8[0], &tmp8[64]);
_HMAC_SHA256_Update(&ctx, in, len, tmp32);
_HMAC_SHA256_Final(digest, &ctx, tmp32, &tmp8[0]);
/* Clean the stack. */
insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(tmp8, 96);
}
/* Add padding and terminating bit-count, but don't invoke Transform yet. */
static int
SHA256_Pad_Almost(SHA256_CTX * ctx, uint8_t len[static restrict 8],
uint32_t tmp32[static restrict 72])
{
uint32_t r;
r = (ctx->count >> 3) & 0x3f;
if (r >= 56)
return -1;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be64enc(len, ctx->count);
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
SHA256_Update(ctx, PAD, 56 - r, tmp);
/* Add the terminating bit-count. */
ctx->buf[63] = len[7];
SHA256_Update(ctx, len, 7, tmp);
/* Add 1--56 bytes so that the resulting length is 56 mod 64. */
// _SHA256_Update(ctx, PAD, 56 - r, tmp32);
/* Add the terminating bit-count. */
// ctx->buf[63] = len[7];
// _SHA256_Update(ctx, len, 7, tmp32);
return 0;
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX Phctx, PShctx, hctx;
uint32_t tmp32[72];
union {
uint8_t tmp8[96];
uint32_t state[8];
} u;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Sanity-check. */
assert(dkLen <= 32 * (size_t)(UINT32_MAX));
if (c == 1 && (dkLen & 31) == 0 && (saltlen & 63) <= 51) {
uint32_t oldcount;
uint8_t * ivecp;
/* Compute HMAC state after processing P and S. */
_HMAC_SHA256_Init(&hctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
_HMAC_SHA256_Update(&hctx, salt, saltlen, tmp32);
/* Prepare ictx padding. */
oldcount = hctx.ictx.count & (0x3f << 3);
_HMAC_SHA256_Update(&hctx, "\0\0\0", 4, tmp32);
if ((hctx.ictx.count & (0x3f << 3)) < oldcount ||
SHA256_Pad_Almost(&hctx.ictx, u.tmp8, tmp32))
goto generic; /* Can't happen due to saltlen check */
ivecp = hctx.ictx.buf + (oldcount >> 3);
/* Prepare octx padding. */
hctx.octx.count += 32 << 3;
SHA256_Pad_Almost(&hctx.octx, u.tmp8, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivecp, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(u.state, hctx.ictx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.ictx.buf );
be32enc_vect(hctx.octx.buf, u.state, 4);
memcpy(u.state, hctx.octx.state, sizeof(u.state));
SHA256_Transform(u.state, hctx.octx.buf );
// SHA256_Transform(u.state, hctx.ictx.buf,
// &tmp32[0], &tmp32[64]);
// be32enc_vect(hctx.octx.buf, u.state, 4);
// memcpy(u.state, hctx.octx.state, sizeof(u.state));
// SHA256_Transform(u.state, hctx.octx.buf,
// &tmp32[0], &tmp32[64]);
be32enc_vect(&buf[i * 32], u.state, 4);
}
goto cleanup;
}
generic:
/* Compute HMAC state after processing P. */
_HMAC_SHA256_Init(&Phctx, passwd, passwdlen,
tmp32, &u.tmp8[0], &u.tmp8[64]);
/* Compute HMAC state after processing P and S. */
memcpy(&PShctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&PShctx, salt, saltlen, tmp32);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, ivec, 4, tmp32);
_HMAC_SHA256_Final(T, &hctx, tmp32, u.tmp8);
if (c > 1) {
/* T_i = U_1 ... */
memcpy(U, T, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
memcpy(&hctx, &Phctx, sizeof(HMAC_SHA256_CTX));
_HMAC_SHA256_Update(&hctx, U, 32, tmp32);
_HMAC_SHA256_Final(U, &hctx, tmp32, u.tmp8);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean the stack. */
insecure_memzero(&Phctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(U, 32);
insecure_memzero(T, 32);
cleanup:
insecure_memzero(&hctx, sizeof(HMAC_SHA256_CTX));
insecure_memzero(tmp32, 288);
insecure_memzero(&u, sizeof(u));
}

View File

@@ -1,129 +0,0 @@
/*-
* Copyright 2005-2016 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Use #defines in order to avoid namespace collisions with anyone else's
* SHA256 code (e.g., the code in OpenSSL).
*/
#define SHA256_Init libcperciva_SHA256_Init
#define SHA256_Update libcperciva_SHA256_Update
#define SHA256_Final libcperciva_SHA256_Final
#define SHA256_Buf libcperciva_SHA256_Buf
#define SHA256_CTX libcperciva_SHA256_CTX
#define HMAC_SHA256_Init libcperciva_HMAC_SHA256_Init
#define HMAC_SHA256_Update libcperciva_HMAC_SHA256_Update
#define HMAC_SHA256_Final libcperciva_HMAC_SHA256_Final
#define HMAC_SHA256_Buf libcperciva_HMAC_SHA256_Buf
#define HMAC_SHA256_CTX libcperciva_HMAC_SHA256_CTX
/* Context structure for SHA256 operations. */
typedef struct {
uint32_t state[8];
uint64_t count;
uint8_t buf[64];
} SHA256_CTX;
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void SHA256_Init(SHA256_CTX *);
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
void SHA256_Update(SHA256_CTX *, const void *, size_t);
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
void SHA256_Final(uint8_t[32], SHA256_CTX *);
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void SHA256_Buf(const void *, size_t, uint8_t[32]);
/* Context structure for HMAC-SHA256 operations. */
typedef struct {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
void HMAC_SHA256_Final(uint8_t[32], HMAC_SHA256_CTX *);
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void HMAC_SHA256_Buf(const void *, size_t, const void *, size_t, uint8_t[32]);
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#ifdef __cplusplus
}
#endif
#endif /* !_SHA256_H_ */

View File

@@ -1,134 +0,0 @@
/*-
* Copyright 2005-2016 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#include <stddef.h>
#include <stdint.h>
#include <openssl.sha>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Use #defines in order to avoid namespace collisions with anyone else's
* SHA256 code (e.g., the code in OpenSSL).
*/
/*
#define SHA256_Init libcperciva_SHA256_Init
#define SHA256_Update libcperciva_SHA256_Update
#define SHA256_Final libcperciva_SHA256_Final
#define SHA256_CTX libcperciva_SHA256_CTX
*/
#define SHA256_Buf libcperciva_SHA256_Buf
#define HMAC_SHA256_Init libcperciva_HMAC_SHA256_Init
#define HMAC_SHA256_Update libcperciva_HMAC_SHA256_Update
#define HMAC_SHA256_Final libcperciva_HMAC_SHA256_Final
#define HMAC_SHA256_Buf libcperciva_HMAC_SHA256_Buf
#define HMAC_SHA256_CTX libcperciva_HMAC_SHA256_CTX
#if 0
/* Context structure for SHA256 operations. */
typedef struct {
uint32_t state[8];
uint64_t count;
uint8_t buf[64];
} SHA256_CTX;
/**
* SHA256_Init(ctx):
* Initialize the SHA256 context ${ctx}.
*/
void SHA256_Init(SHA256_CTX *);
/**
* SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the SHA256 context ${ctx}.
*/
void SHA256_Update(SHA256_CTX *, const void *, size_t);
/**
* SHA256_Final(digest, ctx):
* Output the SHA256 hash of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
void SHA256_Final(uint8_t[32], SHA256_CTX *);
#endif
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void SHA256_Buf(const void *, size_t, uint8_t[32]);
/* Context structure for HMAC-SHA256 operations. */
typedef struct {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
/**
* HMAC_SHA256_Init(ctx, K, Klen):
* Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
* ${K}.
*/
void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
/**
* HMAC_SHA256_Update(ctx, in, len):
* Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
*/
void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
/**
* HMAC_SHA256_Final(digest, ctx):
* Output the HMAC-SHA256 of the data input to the context ${ctx} into the
* buffer ${digest}.
*/
void HMAC_SHA256_Final(uint8_t[32], HMAC_SHA256_CTX *);
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void HMAC_SHA256_Buf(const void *, size_t, const void *, size_t, uint8_t[32]);
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#ifdef __cplusplus
}
#endif
#endif /* !_SHA256_H_ */

218
algo/yespower/sha256_p.c Normal file
View File

@@ -0,0 +1,218 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256_p.h"
#include "compat.h"
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
*/
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
{
SHA256_CTX ctx;
SHA256_Init( &ctx );
SHA256_Update( &ctx, in, len );
SHA256_Final( digest, &ctx );
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init( &ctx, K, Klen );
HMAC_SHA256_Update( &ctx, in, len );
HMAC_SHA256_Final( digest, &ctx );
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init( &ctx->ictx );
SHA256_Update( &ctx->ictx, K, Klen );
SHA256_Final( khash, &ctx->ictx );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
SHA256_Update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init( &ctx->octx );
memset(pad, 0x5c, 64);
for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i];
SHA256_Update( &ctx->octx, pad, 64 );
/* Clean the stack. */
//memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final( ihash, &ctx->ictx );
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update( &ctx->octx, ihash, 32 );
/* Finish the outer SHA256 operation. */
SHA256_Final( digest, &ctx->octx );
/* Clean the stack. */
//memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32];
uint8_t ivec[4];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
HMAC_SHA256_Update(&hctx, ivec, 4);
HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen);
HMAC_SHA256_Update(&hctx, U, 32);
HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
//memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
}

View File

@@ -1,496 +0,0 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256_p.h"
#include "compat.h"
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform_p(uint32_t * state, const unsigned char block[64])
{
uint32_t _ALIGN(128) W[64], S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
#if 0
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
#endif
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
// only called by SHA256_Final_p
/* Add padding and terminating bit-count. */
static void
SHA256_Pad_p(SHA256_CTX_p * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update_p(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update_p(ctx, len, 8);
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void
SHA256_Init_p(SHA256_CTX_p * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void
SHA256_Update_p(SHA256_CTX_p * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform_p(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform_p(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA256_Final_p(unsigned char digest[32], SHA256_CTX_p * ctx)
{
/* Add padding */
SHA256_Pad_p(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/**
* SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
*/
void
SHA256_Buf_p(const void * in, size_t len, uint8_t digest[32])
{
// SHA256_CTX_p ctx;
// uint32_t tmp32[72];
#if defined(__SHA__)
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, in, len);
SHA256_Final(digest, &ctx);
#else
SHA256_CTX_p ctx;
SHA256_Init_p(&ctx);
SHA256_Update_p(&ctx, in, len);
SHA256_Final_p(digest, &ctx);
#endif
/* Clean the stack. */
// insecure_memzero(&ctx, sizeof(SHA256_CTX));
// insecure_memzero(tmp32, 288);
}
/**
* HMAC_SHA256_Buf(K, Klen, in, len, digest):
* Compute the HMAC-SHA256 of ${len} bytes from ${in} using the key ${K} of
* length ${Klen}, and write the result to ${digest}.
*/
void
HMAC_SHA256_Buf_p(const void * K, size_t Klen, const void * in, size_t len,
uint8_t digest[32])
{
HMAC_SHA256_CTX_p ctx;
// uint32_t tmp32[72];
// uint8_t tmp8[96];
HMAC_SHA256_Init_p(&ctx, K, Klen);
HMAC_SHA256_Update_p(&ctx, in, len);
HMAC_SHA256_Final_p(digest, &ctx);
/* Clean the stack. */
// insecure_memzero(&ctx, sizeof(HMAC_SHA256_CTX));
// insecure_memzero(tmp32, 288);
// insecure_memzero(tmp8, 96);
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
HMAC_SHA256_Init_p(HMAC_SHA256_CTX_p * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
#if defined(__SHA__)
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
#else
SHA256_Init_p(&ctx->ictx);
SHA256_Update_p(&ctx->ictx, K, Klen);
SHA256_Final_p(khash, &ctx->ictx);
#endif
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
#if defined(__SHA__)
SHA256_Init(&ctx->ictx);
#else
SHA256_Init_p(&ctx->ictx);
#endif
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
#if defined(__SHA__)
SHA256_Update(&ctx->ictx, pad, 64);
#else
SHA256_Update_p(&ctx->ictx, pad, 64);
#endif
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
#if defined(__SHA__)
SHA256_Init(&ctx->octx);
#else
SHA256_Init_p(&ctx->octx);
#endif
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
#if defined(__SHA__)
SHA256_Update(&ctx->octx, pad, 64);
#else
SHA256_Update_p(&ctx->octx, pad, 64);
#endif
/* Clean the stack. */
//memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
HMAC_SHA256_Update_p(HMAC_SHA256_CTX_p * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
#if defined(__SHA__)
SHA256_Update(&ctx->ictx, in, len);
#else
SHA256_Update_p(&ctx->ictx, in, len);
#endif
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final_p(unsigned char digest[32], HMAC_SHA256_CTX_p * ctx)
{
unsigned char ihash[32];
#if defined(__SHA__)
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
#else
/* Finish the inner SHA256 operation. */
SHA256_Final_p(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update_p(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final_p(digest, &ctx->octx);
#endif
/* Clean the stack. */
//memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256_p(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX_p PShctx, hctx;
uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32];
uint8_t ivec[4];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init_p(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update_p(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX_p));
HMAC_SHA256_Update_p(&hctx, ivec, 4);
HMAC_SHA256_Final_p(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init_p(&hctx, passwd, passwdlen);
HMAC_SHA256_Update_p(&hctx, U, 32);
HMAC_SHA256_Final_p(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
//memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
}

View File

@@ -33,45 +33,24 @@
#include <stdint.h>
#include <openssl/sha.h>
typedef struct SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX_p;
/*
typedef struct HMAC_SHA256Context {
SHA256_CTX_Y ictx;
SHA256_CTX_Y octx;
} HMAC_SHA256_CTX_Y;
*/
typedef struct HMAC_SHA256Context {
#if defined(__SHA__)
SHA256_CTX ictx;
SHA256_CTX octx;
#else
SHA256_CTX_p ictx;
SHA256_CTX_p octx;
#endif
} HMAC_SHA256_CTX_p;
} HMAC_SHA256_CTX;
void SHA256_Init_p(SHA256_CTX_p *);
void SHA256_Update_p(SHA256_CTX_p *, const void *, size_t);
void SHA256_Final_p(unsigned char [32], SHA256_CTX_p *);
void SHA256_Buf_p(const void * in, size_t len, uint8_t digest[32]);
void HMAC_SHA256_Init_p(HMAC_SHA256_CTX_p *, const void *, size_t);
void HMAC_SHA256_Update_p(HMAC_SHA256_CTX_p *, const void *, size_t);
void HMAC_SHA256_Final_p(unsigned char [32], HMAC_SHA256_CTX_p *);
void HMAC_SHA256_Buf_p(const void * K, size_t Klen, const void * in,
size_t len, uint8_t digest[32]);
void SHA256_Buf( const void * in, size_t len, uint8_t digest[32] );
void HMAC_SHA256_Init( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Update( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Final( unsigned char [32], HMAC_SHA256_CTX * );
void HMAC_SHA256_Buf( const void * K, size_t Klen, const void * in,
size_t len, uint8_t digest[32] );
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void PBKDF2_SHA256_p(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
void PBKDF2_SHA256( const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */

View File

@@ -62,6 +62,7 @@
#warning "Note: building generic code for non-x86. That's OK."
#endif
*/
/*
* The SSE4 code version has fewer instructions than the generic SSE2 version,
* but all of the instructions are SIMD, thereby wasting the scalar execution
@@ -96,7 +97,7 @@
#include <string.h>
#include "insecure_memzero.h"
#include "sha256.h"
#include "sha256_p.h"
#include "sysendian.h"
#include "yespower.h"
@@ -528,7 +529,7 @@ static volatile uint64_t Smask2var = Smask2;
/* 64-bit without AVX. This relies on out-of-order execution and register
* renaming. It may actually be fastest on CPUs with AVX(2) as well - e.g.,
* it runs great on Haswell. */
//#warning "Note: using x86-64 inline assembly for pwxform. That's great."
#warning "Note: using x86-64 inline assembly for pwxform. That's great."
#undef MAYBE_MEMORY_BARRIER
#define MAYBE_MEMORY_BARRIER \
__asm__("" : : : "memory");

File diff suppressed because it is too large Load Diff

View File

@@ -51,7 +51,7 @@
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sha256_p.h"
#include "sysendian.h"
#include "yespower.h"
@@ -534,11 +534,12 @@ int yespower(yespower_local_t *local,
if (pers) {
HMAC_SHA256_Buf(dst, sizeof(*dst), pers, perslen,
return true;
(uint8_t *)sha256);
SHA256_Buf(sha256, sizeof(sha256), (uint8_t *)dst);
}
} else {
HMAC_SHA256_Buf((uint8_t *)B + B_size - 64, 64,
HMAC_SHA256_Buf_P((uint8_t *)B + B_size - 64, 64,
sha256, sizeof(sha256), (uint8_t *)dst);
}

View File

@@ -38,7 +38,7 @@ void yespower_hash( const char *input, char *output, uint32_t len )
}
int scanhash_yespower( int thr_id, struct work *work, uint32_t max_nonce,
uint64_t *hashes_done )
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) endiandata[20];
@@ -48,6 +48,7 @@ int scanhash_yespower( int thr_id, struct work *work, uint32_t max_nonce,
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
/* int */ thr_id = mythr->id; // thr_id arg is deprecated
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);