Initial upload v3.4.7

This commit is contained in:
Jay D Dee
2016-09-22 13:16:18 -04:00
parent a3c8079774
commit a35039bc05
480 changed files with 211015 additions and 3 deletions

945
algo/lyra2/sponge.c Normal file
View File

@@ -0,0 +1,945 @@
/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <immintrin.h>
#include "sponge.h"
#include "lyra2.h"
/**
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
* typically have their internal state initialized with zeros, Blake2b's G function
* has a fixed point: if the internal state and message are both filled with zeros. the
* resulting permutation will always be a block filled with zeros; this happens because
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
* relying on the IV for avoiding possible fixed points.
*
* @param state The 1024-bit array to be initialized
*/
void initState(uint64_t state[/*16*/])
{
#ifdef __AVX2__
(*(__m256i*)(&state[0])) = _mm256_setzero_si256();
(*(__m256i*)(&state[4])) = _mm256_setzero_si256();
(*(__m256i*)(&state[8])) = _mm256_set_epi64x( blake2b_IV[3],
blake2b_IV[2],
blake2b_IV[1],
blake2b_IV[0] );
(*(__m256i*)(&state[12])) = _mm256_set_epi64x(blake2b_IV[7],
blake2b_IV[6],
blake2b_IV[5],
blake2b_IV[4] );
//AVX is around the same number of instructions as unnoptimized
//#elif defined __AVX__
#else
//First 512 bis are zeros
memset(state, 0, 64);
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
state[8] = blake2b_IV[0];
state[9] = blake2b_IV[1];
state[10] = blake2b_IV[2];
state[11] = blake2b_IV[3];
state[12] = blake2b_IV[4];
state[13] = blake2b_IV[5];
state[14] = blake2b_IV[6];
state[15] = blake2b_IV[7];
#endif
}
/**
* Execute Blake2b's G function, with all 12 rounds.
*
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void blake2bLyra( uint64_t *v )
{
#if defined __AVX2__
LYRA_INIT_AVX2; // defines local a[4]
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_ROUND_AVX2;
LYRA_CLOSE_AVX2;
#elif defined __AVX__
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_ROUND_AVX;
LYRA_CLOSE_AVX;
#else
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
ROUND_LYRA(0);
#endif
}
/**
* Executes a reduced version of Blake2b's G function with only one round
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
__inline static void reducedBlake2bLyra(uint64_t *v) {
#if defined __AVX2__
LYRA_INIT_AVX2; // defines local a[4]
LYRA_ROUND_AVX2;
LYRA_CLOSE_AVX2;
#elif defined __AVX__
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
LYRA_ROUND_AVX;
LYRA_CLOSE_AVX;
#else
ROUND_LYRA(0);
#endif
}
/**
* Performs a squeeze operation, using Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param out Array that will receive the data squeezed
* @param len The number of bytes to be squeezed into the "out" array
*/
void squeeze(uint64_t *state, byte *out, unsigned int len)
{
int fullBlocks = len / BLOCK_LEN_BYTES;
byte *ptr = out;
int i;
//Squeezes full blocks
for (i = 0; i < fullBlocks; i++) {
memcpy(ptr, state, BLOCK_LEN_BYTES);
blake2bLyra(state);
ptr += BLOCK_LEN_BYTES;
}
//Squeezes remaining bytes
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
* of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
*/
void absorbBlock(uint64_t *state, const uint64_t *in)
{
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
#if defined __AVX2__
__m256i state_v[3], in_v[3];
// only state is guaranteed aligned 256
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
in_v [2] = _mm256_loadu_si256( (__m256i*)(&in[8]) );
_mm256_store_si256( (__m256i*)&state[0],
_mm256_xor_si256( state_v[0], in_v[0] ) );
_mm256_store_si256( (__m256i*)&state[4],
_mm256_xor_si256( state_v[1], in_v[1] ) );
_mm256_store_si256( (__m256i*)&state[8],
_mm256_xor_si256( state_v[2], in_v[2] ) );
#elif defined __AVX__
__m128i state_v[6], in_v[6];
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
in_v[4] = _mm_load_si128( (__m128i*)(&in[8]) );
in_v[5] = _mm_load_si128( (__m128i*)(&in[10]) );
_mm_store_si128( (__m128i*)(&state[0]),
_mm_xor_si128( state_v[0], in_v[0] ) );
_mm_store_si128( (__m128i*)(&state[2]),
_mm_xor_si128( state_v[1], in_v[1] ) );
_mm_store_si128( (__m128i*)(&state[4]),
_mm_xor_si128( state_v[2], in_v[2] ) );
_mm_store_si128( (__m128i*)(&state[6]),
_mm_xor_si128( state_v[3], in_v[3] ) );
_mm_store_si128( (__m128i*)(&state[8]),
_mm_xor_si128( state_v[4], in_v[4] ) );
_mm_store_si128( (__m128i*)(&state[10]),
_mm_xor_si128( state_v[5], in_v[5] ) );
#else
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
state[8] ^= in[8];
state[9] ^= in[9];
state[10] ^= in[10];
state[11] ^= in[11];
#endif
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
* words of type uint64_t), using Blake2b's G function as the internal permutation
*
* @param state The current state of the sponge
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
*/
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in)
{
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
#if defined __AVX2__
__m256i state_v[2], in_v[2];
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
_mm256_store_si256( (__m256i*)(&state[0]),
_mm256_xor_si256( state_v[0], in_v[0] ) );
_mm256_store_si256( (__m256i*)(&state[4]),
_mm256_xor_si256( state_v[1], in_v[1] ) );
#elif defined __AVX__
__m128i state_v[4], in_v[4];
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
_mm_store_si128( (__m128i*)(&state[0]),
_mm_xor_si128( state_v[0], in_v[0] ) );
_mm_store_si128( (__m128i*)(&state[2]),
_mm_xor_si128( state_v[1], in_v[1] ) );
_mm_store_si128( (__m128i*)(&state[4]),
_mm_xor_si128( state_v[2], in_v[2] ) );
_mm_store_si128( (__m128i*)(&state[6]),
_mm_xor_si128( state_v[3], in_v[3] ) );
#else
state[0] ^= in[0];
state[1] ^= in[1];
state[2] ^= in[2];
state[3] ^= in[3];
state[4] ^= in[4];
state[5] ^= in[5];
state[6] ^= in[6];
state[7] ^= in[7];
#endif
//Applies the transformation f to the sponge's state
blake2bLyra(state);
}
/**
* Performs a reduced squeeze operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowOut Row to receive the data squeezed
*/
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols)
{
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
unsigned int i;
//M[row][C-1-col] = H.reduced_squeeze()
for (i = 0; i < nCols; i++)
{
#if defined __AVX2__
_mm256_storeu_si256( (__m256i*)&ptrWord[0],
_mm256_load_si256( (__m256i*)(&state[0]) ) );
_mm256_storeu_si256( (__m256i*)&ptrWord[4],
_mm256_load_si256( (__m256i*)(&state[4]) ) );
_mm256_storeu_si256( (__m256i*)&ptrWord[8],
_mm256_load_si256( (__m256i*)(&state[8]) ) );
#elif defined __AVX__
_mm_store_si128( (__m128i*)(&ptrWord[0]),
_mm_load_si128( (__m128i*)(&state[0]) ) );
_mm_store_si128( (__m128i*)(&ptrWord[2]),
_mm_load_si128( (__m128i*)(&state[2]) ) );
_mm_store_si128( (__m128i*)(&ptrWord[4]),
_mm_load_si128( (__m128i*)(&state[4]) ) );
_mm_store_si128( (__m128i*)(&ptrWord[6]),
_mm_load_si128( (__m128i*)(&state[6]) ) );
_mm_store_si128( (__m128i*)(&ptrWord[8]),
_mm_load_si128( (__m128i*)(&state[8]) ) );
_mm_store_si128( (__m128i*)(&ptrWord[10]),
_mm_load_si128( (__m128i*)(&state[10]) ) );
#else
ptrWord[0] = state[0];
ptrWord[1] = state[1];
ptrWord[2] = state[2];
ptrWord[3] = state[3];
ptrWord[4] = state[4];
ptrWord[5] = state[5];
ptrWord[6] = state[6];
ptrWord[7] = state[7];
ptrWord[8] = state[8];
ptrWord[9] = state[9];
ptrWord[10] = state[10];
ptrWord[11] = state[11];
#endif
//Goes to next block (column) that will receive the squeezed data
ptrWord -= BLOCK_LEN_INT64;
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
}
}
/**
* Performs a reduced duplex operation for a single row, from the highest to
* the lowest index, using the reduced-round Blake2b's G function as the
* internal permutation
*
* @param state The current state of the sponge
* @param rowIn Row to feed the sponge
* @param rowOut Row to receive the sponge's output
*/
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
unsigned int i;
for (i = 0; i < nCols; i++)
{
//Absorbing "M[prev][col]"
#if defined __AVX2__
__m256i state_v[3], in_v[3];
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
_mm256_store_si256( (__m256i*)(&state[0]),
_mm256_xor_si256( state_v[0], in_v[0] ) );
_mm256_store_si256( (__m256i*)(&state[4]),
_mm256_xor_si256( state_v[1], in_v[1] ) );
_mm256_store_si256( (__m256i*)(&state[8]),
_mm256_xor_si256( state_v[2], in_v[2] ) );
#elif defined __AVX__
__m128i state_v[6], in_v[6];
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
_mm_store_si128( (__m128i*)(&state[0]),
_mm_xor_si128( state_v[0], in_v[0] ) );
_mm_store_si128( (__m128i*)(&state[2]),
_mm_xor_si128( state_v[1], in_v[1] ) );
_mm_store_si128( (__m128i*)(&state[4]),
_mm_xor_si128( state_v[2], in_v[2] ) );
_mm_store_si128( (__m128i*)(&state[6]),
_mm_xor_si128( state_v[3], in_v[3] ) );
_mm_store_si128( (__m128i*)(&state[8]),
_mm_xor_si128( state_v[4], in_v[4] ) );
_mm_store_si128( (__m128i*)(&state[10]),
_mm_xor_si128( state_v[5], in_v[5] ) );
#else
state[0] ^= (ptrWordIn[0]);
state[1] ^= (ptrWordIn[1]);
state[2] ^= (ptrWordIn[2]);
state[3] ^= (ptrWordIn[3]);
state[4] ^= (ptrWordIn[4]);
state[5] ^= (ptrWordIn[5]);
state[6] ^= (ptrWordIn[6]);
state[7] ^= (ptrWordIn[7]);
state[8] ^= (ptrWordIn[8]);
state[9] ^= (ptrWordIn[9]);
state[10] ^= (ptrWordIn[10]);
state[11] ^= (ptrWordIn[11]);
#endif
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][C-1-col] = M[prev][col] XOR rand
#if defined __AVX2__
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
_mm256_xor_si256( state_v[0], in_v[0] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
_mm256_xor_si256( state_v[1], in_v[1] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
_mm256_xor_si256( state_v[2], in_v[2] ) );
#elif defined __AVX__
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[0]),
_mm_xor_si128( state_v[0], in_v[0] ) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[2]),
_mm_xor_si128( state_v[1], in_v[1] ) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[4]),
_mm_xor_si128( state_v[2], in_v[2] ) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[6]),
_mm_xor_si128( state_v[3], in_v[3] ) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[8]),
_mm_xor_si128( state_v[4], in_v[4] ) );
_mm_storeu_si128( (__m128i*)(&ptrWordOut[10]),
_mm_xor_si128( state_v[5], in_v[5] ) );
#else
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
#endif
//Input: next column (i.e., next block in sequence)
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left and N_COLS is a system parameter.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
unsigned int i;
for (i = 0; i < nCols; i++)
{
//Absorbing "M[prev] [+] M[row*]"
#if defined __AVX2__
__m256i state_v[3], in_v[3], inout_v[3];
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
_mm256_store_si256( (__m256i*)(&state[0]),
_mm256_xor_si256( state_v[0],
_mm256_add_epi64( in_v[0],
inout_v[0] ) ) );
_mm256_store_si256( (__m256i*)(&state[4]),
_mm256_xor_si256( state_v[1],
_mm256_add_epi64( in_v[1],
inout_v[1] ) ) );
_mm256_store_si256( (__m256i*)(&state[8]),
_mm256_xor_si256( state_v[2],
_mm256_add_epi64( in_v[2],
inout_v[2] ) ) );
#elif defined __AVX__
__m128i state_v[6], in_v[6], inout_v[6];
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
_mm_store_si128( (__m128i*)(&state[0]),
_mm_xor_si128( state_v[0],
_mm_add_epi64( in_v[0],
inout_v[0] ) ) );
_mm_store_si128( (__m128i*)(&state[2]),
_mm_xor_si128( state_v[1],
_mm_add_epi64( in_v[1],
inout_v[1] ) ) );
_mm_store_si128( (__m128i*)(&state[4]),
_mm_xor_si128( state_v[2],
_mm_add_epi64( in_v[2],
inout_v[2] ) ) );
_mm_store_si128( (__m128i*)(&state[6]),
_mm_xor_si128( state_v[3],
_mm_add_epi64( in_v[3],
inout_v[3] ) ) );
_mm_store_si128( (__m128i*)(&state[8]),
_mm_xor_si128( state_v[4],
_mm_add_epi64( in_v[4],
inout_v[4] ) ) );
_mm_store_si128( (__m128i*)(&state[10]),
_mm_xor_si128( state_v[5],
_mm_add_epi64( in_v[5],
inout_v[5] ) ) );
#else
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
#endif
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[row][col] = M[prev][col] XOR rand
#if defined __AVX2__
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
_mm256_xor_si256( state_v[0], in_v[0] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
_mm256_xor_si256( state_v[1], in_v[1] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
_mm256_xor_si256( state_v[2], in_v[2] ) );
#elif defined __AVX__
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
_mm_xor_si128( state_v[0], in_v[0] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
_mm_xor_si128( state_v[1], in_v[1] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
_mm_xor_si128( state_v[2], in_v[2] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
_mm_xor_si128( state_v[3], in_v[3] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
_mm_xor_si128( state_v[4], in_v[4] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
_mm_xor_si128( state_v[5], in_v[5] ) );
#else
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
#endif
//M[row*][col] = M[row*][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Inputs: next column (i.e., next block in sequence)
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
//Output: goes to previous column
ptrWordOut -= BLOCK_LEN_INT64;
}
}
/**
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
* the wordwise addition of two columns, ignoring carries between words). The
* output of this operation, "rand", is then used to make
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
* rotation to the left.
*
* @param state The current state of the sponge
* @param rowIn Row used only as input
* @param rowInOut Row used as input and to receive output after rotation
* @param rowOut Row receiving the output
*
*/
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
unsigned int i;
for (i = 0; i < nCols; i++)
{
//Absorbing "M[prev] [+] M[row*]"
#if defined __AVX2__
__m256i state_v[3], in_v[3], inout_v[3];
#define out_v in_v // reuse register in next code block
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
_mm256_store_si256( (__m256i*)(&state[0]),
_mm256_xor_si256( state_v[0],
_mm256_add_epi64( in_v[0],
inout_v[0] ) ) );
_mm256_store_si256( (__m256i*)(&state[4]),
_mm256_xor_si256( state_v[1],
_mm256_add_epi64( in_v[1],
inout_v[1] ) ) );
_mm256_store_si256( (__m256i*)(&state[8]),
_mm256_xor_si256( state_v[2],
_mm256_add_epi64( in_v[2],
inout_v[2] ) ) );
#elif defined __AVX__
__m128i state_v[6], in_v[6], inout_v[6];
#define out_v in_v // reuse register in next code block
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
_mm_store_si128( (__m128i*)(&state[0]),
_mm_xor_si128( state_v[0],
_mm_add_epi64( in_v[0],
inout_v[0] ) ) );
_mm_store_si128( (__m128i*)(&state[2]),
_mm_xor_si128( state_v[1],
_mm_add_epi64( in_v[1],
inout_v[1] ) ) );
_mm_store_si128( (__m128i*)(&state[4]),
_mm_xor_si128( state_v[2],
_mm_add_epi64( in_v[2],
inout_v[2] ) ) );
_mm_store_si128( (__m128i*)(&state[6]),
_mm_xor_si128( state_v[3],
_mm_add_epi64( in_v[3],
inout_v[3] ) ) );
_mm_store_si128( (__m128i*)(&state[8]),
_mm_xor_si128( state_v[4],
_mm_add_epi64( in_v[4],
inout_v[4] ) ) );
_mm_store_si128( (__m128i*)(&state[10]),
_mm_xor_si128( state_v[5],
_mm_add_epi64( in_v[5],
inout_v[5] ) ) );
#else
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
#endif
//Applies the reduced-round transformation f to the sponge's state
reducedBlake2bLyra(state);
//M[rowOut][col] = M[rowOut][col] XOR rand
#if defined __AVX2__
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
out_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[0]) );
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
out_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[4]) );
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
out_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[8]) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
_mm256_xor_si256( state_v[0], out_v[0] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
_mm256_xor_si256( state_v[1], out_v[1] ) );
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
_mm256_xor_si256( state_v[2], out_v[2] ) );
#elif defined __AVX__
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
out_v[0] = _mm_load_si128( (__m128i*)(&ptrWordOut[0]) );
out_v[1] = _mm_load_si128( (__m128i*)(&ptrWordOut[2]) );
out_v[2] = _mm_load_si128( (__m128i*)(&ptrWordOut[4]) );
out_v[3] = _mm_load_si128( (__m128i*)(&ptrWordOut[6]) );
out_v[4] = _mm_load_si128( (__m128i*)(&ptrWordOut[8]) );
out_v[5] = _mm_load_si128( (__m128i*)(&ptrWordOut[10]) );
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
_mm_xor_si128( state_v[0], out_v[0] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
_mm_xor_si128( state_v[1], out_v[1] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
_mm_xor_si128( state_v[2], out_v[2] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
_mm_xor_si128( state_v[3], out_v[3] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
_mm_xor_si128( state_v[4], out_v[4] ) );
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
_mm_xor_si128( state_v[5], out_v[5] ) );
#else
ptrWordOut[0] ^= state[0];
ptrWordOut[1] ^= state[1];
ptrWordOut[2] ^= state[2];
ptrWordOut[3] ^= state[3];
ptrWordOut[4] ^= state[4];
ptrWordOut[5] ^= state[5];
ptrWordOut[6] ^= state[6];
ptrWordOut[7] ^= state[7];
ptrWordOut[8] ^= state[8];
ptrWordOut[9] ^= state[9];
ptrWordOut[10] ^= state[10];
ptrWordOut[11] ^= state[11];
#endif
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
ptrWordInOut[0] ^= state[11];
ptrWordInOut[1] ^= state[0];
ptrWordInOut[2] ^= state[1];
ptrWordInOut[3] ^= state[2];
ptrWordInOut[4] ^= state[3];
ptrWordInOut[5] ^= state[4];
ptrWordInOut[6] ^= state[5];
ptrWordInOut[7] ^= state[6];
ptrWordInOut[8] ^= state[7];
ptrWordInOut[9] ^= state[8];
ptrWordInOut[10] ^= state[9];
ptrWordInOut[11] ^= state[10];
//Goes to next block
ptrWordOut += BLOCK_LEN_INT64;
ptrWordInOut += BLOCK_LEN_INT64;
ptrWordIn += BLOCK_LEN_INT64;
}
}
/**
* Prints an array of unsigned chars
*/
void printArray(unsigned char *array, unsigned int size, char *name)
{
unsigned int i;
printf("%s: ", name);
for (i = 0; i < size; i++) {
printf("%2x|", array[i]);
}
printf("\n");
}
////////////////////////////////////////////////////////////////////////////////////////////////