mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Initial upload v3.4.7
This commit is contained in:
945
algo/lyra2/sponge.c
Normal file
945
algo/lyra2/sponge.c
Normal file
@@ -0,0 +1,945 @@
|
||||
/**
|
||||
* A simple implementation of Blake2b's internal permutation
|
||||
* in the form of a sponge.
|
||||
*
|
||||
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
|
||||
*
|
||||
* This software is hereby placed in the public domain.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
|
||||
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
||||
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||||
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
||||
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||||
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
#include <immintrin.h>
|
||||
#include "sponge.h"
|
||||
#include "lyra2.h"
|
||||
|
||||
/**
|
||||
* Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
|
||||
* receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
|
||||
* typically have their internal state initialized with zeros, Blake2b's G function
|
||||
* has a fixed point: if the internal state and message are both filled with zeros. the
|
||||
* resulting permutation will always be a block filled with zeros; this happens because
|
||||
* Blake2b does not use the constants originally employed in Blake2 inside its G function,
|
||||
* relying on the IV for avoiding possible fixed points.
|
||||
*
|
||||
* @param state The 1024-bit array to be initialized
|
||||
*/
|
||||
void initState(uint64_t state[/*16*/])
|
||||
{
|
||||
#ifdef __AVX2__
|
||||
|
||||
(*(__m256i*)(&state[0])) = _mm256_setzero_si256();
|
||||
(*(__m256i*)(&state[4])) = _mm256_setzero_si256();
|
||||
|
||||
(*(__m256i*)(&state[8])) = _mm256_set_epi64x( blake2b_IV[3],
|
||||
blake2b_IV[2],
|
||||
blake2b_IV[1],
|
||||
blake2b_IV[0] );
|
||||
(*(__m256i*)(&state[12])) = _mm256_set_epi64x(blake2b_IV[7],
|
||||
blake2b_IV[6],
|
||||
blake2b_IV[5],
|
||||
blake2b_IV[4] );
|
||||
|
||||
//AVX is around the same number of instructions as unnoptimized
|
||||
//#elif defined __AVX__
|
||||
|
||||
#else
|
||||
|
||||
//First 512 bis are zeros
|
||||
memset(state, 0, 64);
|
||||
//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
|
||||
state[8] = blake2b_IV[0];
|
||||
state[9] = blake2b_IV[1];
|
||||
state[10] = blake2b_IV[2];
|
||||
state[11] = blake2b_IV[3];
|
||||
state[12] = blake2b_IV[4];
|
||||
state[13] = blake2b_IV[5];
|
||||
state[14] = blake2b_IV[6];
|
||||
state[15] = blake2b_IV[7];
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Execute Blake2b's G function, with all 12 rounds.
|
||||
*
|
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||
*/
|
||||
__inline static void blake2bLyra( uint64_t *v )
|
||||
{
|
||||
#if defined __AVX2__
|
||||
|
||||
LYRA_INIT_AVX2; // defines local a[4]
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_CLOSE_AVX2;
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_CLOSE_AVX;
|
||||
|
||||
#else
|
||||
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
ROUND_LYRA(0);
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Executes a reduced version of Blake2b's G function with only one round
|
||||
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
|
||||
*/
|
||||
__inline static void reducedBlake2bLyra(uint64_t *v) {
|
||||
|
||||
#if defined __AVX2__
|
||||
LYRA_INIT_AVX2; // defines local a[4]
|
||||
LYRA_ROUND_AVX2;
|
||||
LYRA_CLOSE_AVX2;
|
||||
#elif defined __AVX__
|
||||
LYRA_INIT_AVX; // defines locals a0[4], a1[4]
|
||||
LYRA_ROUND_AVX;
|
||||
LYRA_CLOSE_AVX;
|
||||
#else
|
||||
ROUND_LYRA(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a squeeze operation, using Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param out Array that will receive the data squeezed
|
||||
* @param len The number of bytes to be squeezed into the "out" array
|
||||
*/
|
||||
void squeeze(uint64_t *state, byte *out, unsigned int len)
|
||||
{
|
||||
int fullBlocks = len / BLOCK_LEN_BYTES;
|
||||
byte *ptr = out;
|
||||
int i;
|
||||
|
||||
//Squeezes full blocks
|
||||
for (i = 0; i < fullBlocks; i++) {
|
||||
memcpy(ptr, state, BLOCK_LEN_BYTES);
|
||||
blake2bLyra(state);
|
||||
ptr += BLOCK_LEN_BYTES;
|
||||
}
|
||||
|
||||
//Squeezes remaining bytes
|
||||
memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
|
||||
* of type uint64_t), using Blake2b's G function as the internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param in The block to be absorbed (BLOCK_LEN_INT64 words)
|
||||
*/
|
||||
void absorbBlock(uint64_t *state, const uint64_t *in)
|
||||
{
|
||||
//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3];
|
||||
|
||||
// only state is guaranteed aligned 256
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&in[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)&state[0],
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)&state[4],
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_store_si256( (__m256i*)&state[8],
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&in[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&in[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= in[0];
|
||||
state[1] ^= in[1];
|
||||
state[2] ^= in[2];
|
||||
state[3] ^= in[3];
|
||||
state[4] ^= in[4];
|
||||
state[5] ^= in[5];
|
||||
state[6] ^= in[6];
|
||||
state[7] ^= in[7];
|
||||
state[8] ^= in[8];
|
||||
state[9] ^= in[9];
|
||||
state[10] ^= in[10];
|
||||
state[11] ^= in[11];
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
|
||||
* words of type uint64_t), using Blake2b's G function as the internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param in The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
|
||||
*/
|
||||
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in)
|
||||
{
|
||||
|
||||
//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[2], in_v[2];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&in[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&in[4]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[4], in_v[4];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&in[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&in[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&in[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&in[6]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= in[0];
|
||||
state[1] ^= in[1];
|
||||
state[2] ^= in[2];
|
||||
state[3] ^= in[3];
|
||||
state[4] ^= in[4];
|
||||
state[5] ^= in[5];
|
||||
state[6] ^= in[6];
|
||||
state[7] ^= in[7];
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the transformation f to the sponge's state
|
||||
blake2bLyra(state);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a reduced squeeze operation for a single row, from the highest to
|
||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowOut Row to receive the data squeezed
|
||||
*/
|
||||
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
|
||||
unsigned int i;
|
||||
//M[row][C-1-col] = H.reduced_squeeze()
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
#if defined __AVX2__
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[0],
|
||||
_mm256_load_si256( (__m256i*)(&state[0]) ) );
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[4],
|
||||
_mm256_load_si256( (__m256i*)(&state[4]) ) );
|
||||
_mm256_storeu_si256( (__m256i*)&ptrWord[8],
|
||||
_mm256_load_si256( (__m256i*)(&state[8]) ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[0]),
|
||||
_mm_load_si128( (__m128i*)(&state[0]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[2]),
|
||||
_mm_load_si128( (__m128i*)(&state[2]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[4]),
|
||||
_mm_load_si128( (__m128i*)(&state[4]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[6]),
|
||||
_mm_load_si128( (__m128i*)(&state[6]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[8]),
|
||||
_mm_load_si128( (__m128i*)(&state[8]) ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWord[10]),
|
||||
_mm_load_si128( (__m128i*)(&state[10]) ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWord[0] = state[0];
|
||||
ptrWord[1] = state[1];
|
||||
ptrWord[2] = state[2];
|
||||
ptrWord[3] = state[3];
|
||||
ptrWord[4] = state[4];
|
||||
ptrWord[5] = state[5];
|
||||
ptrWord[6] = state[6];
|
||||
ptrWord[7] = state[7];
|
||||
ptrWord[8] = state[8];
|
||||
ptrWord[9] = state[9];
|
||||
ptrWord[10] = state[10];
|
||||
ptrWord[11] = state[11];
|
||||
#endif
|
||||
|
||||
//Goes to next block (column) that will receive the squeezed data
|
||||
ptrWord -= BLOCK_LEN_INT64;
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a reduced duplex operation for a single row, from the highest to
|
||||
* the lowest index, using the reduced-round Blake2b's G function as the
|
||||
* internal permutation
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row to feed the sponge
|
||||
* @param rowOut Row to receive the sponge's output
|
||||
*/
|
||||
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
//Absorbing "M[prev][col]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0]);
|
||||
state[1] ^= (ptrWordIn[1]);
|
||||
state[2] ^= (ptrWordIn[2]);
|
||||
state[3] ^= (ptrWordIn[3]);
|
||||
state[4] ^= (ptrWordIn[4]);
|
||||
state[5] ^= (ptrWordIn[5]);
|
||||
state[6] ^= (ptrWordIn[6]);
|
||||
state[7] ^= (ptrWordIn[7]);
|
||||
state[8] ^= (ptrWordIn[8]);
|
||||
state[9] ^= (ptrWordIn[9]);
|
||||
state[10] ^= (ptrWordIn[10]);
|
||||
state[11] ^= (ptrWordIn[11]);
|
||||
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[row][C-1-col] = M[prev][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_storeu_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||
#endif
|
||||
|
||||
//Input: next column (i.e., next block in sequence)
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||
* the wordwise addition of two columns, ignoring carries between words). The
|
||||
* output of this operation, "rand", is then used to make
|
||||
* "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
|
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||
* rotation to the left and N_COLS is a system parameter.
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row used only as input
|
||||
* @param rowInOut Row used as input and to receive output after rotation
|
||||
* @param rowOut Row receiving the output
|
||||
*
|
||||
*/
|
||||
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3], inout_v[3];
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0],
|
||||
_mm256_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1],
|
||||
_mm256_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2],
|
||||
_mm256_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6], inout_v[6];
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
|
||||
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
|
||||
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
|
||||
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
|
||||
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
|
||||
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0],
|
||||
_mm_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1],
|
||||
_mm_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2],
|
||||
_mm_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3],
|
||||
_mm_add_epi64( in_v[3],
|
||||
inout_v[3] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4],
|
||||
_mm_add_epi64( in_v[4],
|
||||
inout_v[4] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5],
|
||||
_mm_add_epi64( in_v[5],
|
||||
inout_v[5] ) ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[row][col] = M[prev][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], in_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], in_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], in_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], in_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], in_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], in_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], in_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], in_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], in_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] = ptrWordIn[0] ^ state[0];
|
||||
ptrWordOut[1] = ptrWordIn[1] ^ state[1];
|
||||
ptrWordOut[2] = ptrWordIn[2] ^ state[2];
|
||||
ptrWordOut[3] = ptrWordIn[3] ^ state[3];
|
||||
ptrWordOut[4] = ptrWordIn[4] ^ state[4];
|
||||
ptrWordOut[5] = ptrWordIn[5] ^ state[5];
|
||||
ptrWordOut[6] = ptrWordIn[6] ^ state[6];
|
||||
ptrWordOut[7] = ptrWordIn[7] ^ state[7];
|
||||
ptrWordOut[8] = ptrWordIn[8] ^ state[8];
|
||||
ptrWordOut[9] = ptrWordIn[9] ^ state[9];
|
||||
ptrWordOut[10] = ptrWordIn[10] ^ state[10];
|
||||
ptrWordOut[11] = ptrWordIn[11] ^ state[11];
|
||||
#endif
|
||||
|
||||
//M[row*][col] = M[row*][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11];
|
||||
ptrWordInOut[1] ^= state[0];
|
||||
ptrWordInOut[2] ^= state[1];
|
||||
ptrWordInOut[3] ^= state[2];
|
||||
ptrWordInOut[4] ^= state[3];
|
||||
ptrWordInOut[5] ^= state[4];
|
||||
ptrWordInOut[6] ^= state[5];
|
||||
ptrWordInOut[7] ^= state[6];
|
||||
ptrWordInOut[8] ^= state[7];
|
||||
ptrWordInOut[9] ^= state[8];
|
||||
ptrWordInOut[10] ^= state[9];
|
||||
ptrWordInOut[11] ^= state[10];
|
||||
|
||||
//Inputs: next column (i.e., next block in sequence)
|
||||
ptrWordInOut += BLOCK_LEN_INT64;
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
//Output: goes to previous column
|
||||
ptrWordOut -= BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
|
||||
* the wordwise addition of two columns, ignoring carries between words). The
|
||||
* output of this operation, "rand", is then used to make
|
||||
* "M[rowOut][col] = M[rowOut][col] XOR rand" and
|
||||
* "M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
|
||||
* rotation to the left.
|
||||
*
|
||||
* @param state The current state of the sponge
|
||||
* @param rowIn Row used only as input
|
||||
* @param rowInOut Row used as input and to receive output after rotation
|
||||
* @param rowOut Row receiving the output
|
||||
*
|
||||
*/
|
||||
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
|
||||
{
|
||||
uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
|
||||
uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
|
||||
uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < nCols; i++)
|
||||
{
|
||||
|
||||
//Absorbing "M[prev] [+] M[row*]"
|
||||
#if defined __AVX2__
|
||||
|
||||
__m256i state_v[3], in_v[3], inout_v[3];
|
||||
#define out_v in_v // reuse register in next code block
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
in_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[0]) );
|
||||
inout_v[0] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
in_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[4]) );
|
||||
inout_v[1] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
in_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordIn[8]) );
|
||||
inout_v[2] = _mm256_loadu_si256( (__m256i*)(&ptrWordInOut[8]) );
|
||||
|
||||
_mm256_store_si256( (__m256i*)(&state[0]),
|
||||
_mm256_xor_si256( state_v[0],
|
||||
_mm256_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[4]),
|
||||
_mm256_xor_si256( state_v[1],
|
||||
_mm256_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm256_store_si256( (__m256i*)(&state[8]),
|
||||
_mm256_xor_si256( state_v[2],
|
||||
_mm256_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
#elif defined __AVX__
|
||||
|
||||
__m128i state_v[6], in_v[6], inout_v[6];
|
||||
#define out_v in_v // reuse register in next code block
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
inout_v[0] = _mm_load_si128( (__m128i*)(&ptrWordInOut[0]) );
|
||||
inout_v[1] = _mm_load_si128( (__m128i*)(&ptrWordInOut[2]) );
|
||||
inout_v[2] = _mm_load_si128( (__m128i*)(&ptrWordInOut[4]) );
|
||||
inout_v[3] = _mm_load_si128( (__m128i*)(&ptrWordInOut[6]) );
|
||||
inout_v[4] = _mm_load_si128( (__m128i*)(&ptrWordInOut[8]) );
|
||||
inout_v[5] = _mm_load_si128( (__m128i*)(&ptrWordInOut[10]) );
|
||||
|
||||
in_v[0] = _mm_load_si128( (__m128i*)(&ptrWordIn[0]) );
|
||||
in_v[1] = _mm_load_si128( (__m128i*)(&ptrWordIn[2]) );
|
||||
in_v[2] = _mm_load_si128( (__m128i*)(&ptrWordIn[4]) );
|
||||
in_v[3] = _mm_load_si128( (__m128i*)(&ptrWordIn[6]) );
|
||||
in_v[4] = _mm_load_si128( (__m128i*)(&ptrWordIn[8]) );
|
||||
in_v[5] = _mm_load_si128( (__m128i*)(&ptrWordIn[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&state[0]),
|
||||
_mm_xor_si128( state_v[0],
|
||||
_mm_add_epi64( in_v[0],
|
||||
inout_v[0] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[2]),
|
||||
_mm_xor_si128( state_v[1],
|
||||
_mm_add_epi64( in_v[1],
|
||||
inout_v[1] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[4]),
|
||||
_mm_xor_si128( state_v[2],
|
||||
_mm_add_epi64( in_v[2],
|
||||
inout_v[2] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[6]),
|
||||
_mm_xor_si128( state_v[3],
|
||||
_mm_add_epi64( in_v[3],
|
||||
inout_v[3] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[8]),
|
||||
_mm_xor_si128( state_v[4],
|
||||
_mm_add_epi64( in_v[4],
|
||||
inout_v[4] ) ) );
|
||||
_mm_store_si128( (__m128i*)(&state[10]),
|
||||
_mm_xor_si128( state_v[5],
|
||||
_mm_add_epi64( in_v[5],
|
||||
inout_v[5] ) ) );
|
||||
|
||||
#else
|
||||
|
||||
state[0] ^= (ptrWordIn[0] + ptrWordInOut[0]);
|
||||
state[1] ^= (ptrWordIn[1] + ptrWordInOut[1]);
|
||||
state[2] ^= (ptrWordIn[2] + ptrWordInOut[2]);
|
||||
state[3] ^= (ptrWordIn[3] + ptrWordInOut[3]);
|
||||
state[4] ^= (ptrWordIn[4] + ptrWordInOut[4]);
|
||||
state[5] ^= (ptrWordIn[5] + ptrWordInOut[5]);
|
||||
state[6] ^= (ptrWordIn[6] + ptrWordInOut[6]);
|
||||
state[7] ^= (ptrWordIn[7] + ptrWordInOut[7]);
|
||||
state[8] ^= (ptrWordIn[8] + ptrWordInOut[8]);
|
||||
state[9] ^= (ptrWordIn[9] + ptrWordInOut[9]);
|
||||
state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
|
||||
state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);
|
||||
#endif
|
||||
|
||||
//Applies the reduced-round transformation f to the sponge's state
|
||||
reducedBlake2bLyra(state);
|
||||
|
||||
//M[rowOut][col] = M[rowOut][col] XOR rand
|
||||
#if defined __AVX2__
|
||||
|
||||
state_v[0] = _mm256_load_si256( (__m256i*)(&state[0]) );
|
||||
out_v [0] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[0]) );
|
||||
state_v[1] = _mm256_load_si256( (__m256i*)(&state[4]) );
|
||||
out_v [1] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[4]) );
|
||||
state_v[2] = _mm256_load_si256( (__m256i*)(&state[8]) );
|
||||
out_v [2] = _mm256_loadu_si256( (__m256i*)(&ptrWordOut[8]) );
|
||||
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[0]),
|
||||
_mm256_xor_si256( state_v[0], out_v[0] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[4]),
|
||||
_mm256_xor_si256( state_v[1], out_v[1] ) );
|
||||
_mm256_storeu_si256( (__m256i*)(&ptrWordOut[8]),
|
||||
_mm256_xor_si256( state_v[2], out_v[2] ) );
|
||||
|
||||
#elif defined __AVX__
|
||||
|
||||
state_v[0] = _mm_load_si128( (__m128i*)(&state[0]) );
|
||||
state_v[1] = _mm_load_si128( (__m128i*)(&state[2]) );
|
||||
state_v[2] = _mm_load_si128( (__m128i*)(&state[4]) );
|
||||
state_v[3] = _mm_load_si128( (__m128i*)(&state[6]) );
|
||||
state_v[4] = _mm_load_si128( (__m128i*)(&state[8]) );
|
||||
state_v[5] = _mm_load_si128( (__m128i*)(&state[10]) );
|
||||
|
||||
out_v[0] = _mm_load_si128( (__m128i*)(&ptrWordOut[0]) );
|
||||
out_v[1] = _mm_load_si128( (__m128i*)(&ptrWordOut[2]) );
|
||||
out_v[2] = _mm_load_si128( (__m128i*)(&ptrWordOut[4]) );
|
||||
out_v[3] = _mm_load_si128( (__m128i*)(&ptrWordOut[6]) );
|
||||
out_v[4] = _mm_load_si128( (__m128i*)(&ptrWordOut[8]) );
|
||||
out_v[5] = _mm_load_si128( (__m128i*)(&ptrWordOut[10]) );
|
||||
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[0]),
|
||||
_mm_xor_si128( state_v[0], out_v[0] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[2]),
|
||||
_mm_xor_si128( state_v[1], out_v[1] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[4]),
|
||||
_mm_xor_si128( state_v[2], out_v[2] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[6]),
|
||||
_mm_xor_si128( state_v[3], out_v[3] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[8]),
|
||||
_mm_xor_si128( state_v[4], out_v[4] ) );
|
||||
_mm_store_si128( (__m128i*)(&ptrWordOut[10]),
|
||||
_mm_xor_si128( state_v[5], out_v[5] ) );
|
||||
|
||||
#else
|
||||
|
||||
ptrWordOut[0] ^= state[0];
|
||||
ptrWordOut[1] ^= state[1];
|
||||
ptrWordOut[2] ^= state[2];
|
||||
ptrWordOut[3] ^= state[3];
|
||||
ptrWordOut[4] ^= state[4];
|
||||
ptrWordOut[5] ^= state[5];
|
||||
ptrWordOut[6] ^= state[6];
|
||||
ptrWordOut[7] ^= state[7];
|
||||
ptrWordOut[8] ^= state[8];
|
||||
ptrWordOut[9] ^= state[9];
|
||||
ptrWordOut[10] ^= state[10];
|
||||
ptrWordOut[11] ^= state[11];
|
||||
|
||||
#endif
|
||||
|
||||
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
|
||||
ptrWordInOut[0] ^= state[11];
|
||||
ptrWordInOut[1] ^= state[0];
|
||||
ptrWordInOut[2] ^= state[1];
|
||||
ptrWordInOut[3] ^= state[2];
|
||||
ptrWordInOut[4] ^= state[3];
|
||||
ptrWordInOut[5] ^= state[4];
|
||||
ptrWordInOut[6] ^= state[5];
|
||||
ptrWordInOut[7] ^= state[6];
|
||||
ptrWordInOut[8] ^= state[7];
|
||||
ptrWordInOut[9] ^= state[8];
|
||||
ptrWordInOut[10] ^= state[9];
|
||||
ptrWordInOut[11] ^= state[10];
|
||||
|
||||
//Goes to next block
|
||||
ptrWordOut += BLOCK_LEN_INT64;
|
||||
ptrWordInOut += BLOCK_LEN_INT64;
|
||||
ptrWordIn += BLOCK_LEN_INT64;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints an array of unsigned chars
|
||||
*/
|
||||
void printArray(unsigned char *array, unsigned int size, char *name)
|
||||
{
|
||||
unsigned int i;
|
||||
printf("%s: ", name);
|
||||
for (i = 0; i < size; i++) {
|
||||
printf("%2x|", array[i]);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
Reference in New Issue
Block a user