Initial upload v3.4.7

This commit is contained in:
Jay D Dee
2016-09-22 13:16:18 -04:00
parent a3c8079774
commit a35039bc05
480 changed files with 211015 additions and 3 deletions

0
algo/hodl/.dirstamp Normal file
View File

181
algo/hodl/aes.c Normal file
View File

@@ -0,0 +1,181 @@
#include <stdint.h>
#include <x86intrin.h>
#include "wolf-aes.h"
#include "miner.h"
#ifndef NO_AES_NI
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf)
{
__m128i tmp1, tmp2, tmp3;
tmp1 = keys[0] = KeyBuf[0];
tmp3 = keys[1] = KeyBuf[1];
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
#ifdef __AVX__
#define AESENC(i,j) \
State[j] = _mm_aesenc_si128(State[j], ExpandedKey[j][i]);
#define AESENC_N(i) \
AESENC(i,0) \
AESENC(i,1) \
AESENC(i,2) \
AESENC(i,3) \
AESENC(i,4) \
AESENC(i,5) \
AESENC(i,6) \
AESENC(i,7) \
static inline void AES256Core(__m128i* State, __m128i ExpandedKey[][16])
{
const uint32_t N = AES_PARALLEL_N;
for(int j=0; j<N; ++j) {
State[j] = _mm_xor_si128(State[j], ExpandedKey[j][0]);
}
AESENC_N(1)
AESENC_N(2)
AESENC_N(3)
AESENC_N(4)
AESENC_N(5)
AESENC_N(6)
AESENC_N(7)
AESENC_N(8)
AESENC_N(9)
AESENC_N(10)
AESENC_N(11)
AESENC_N(12)
AESENC_N(13)
for(int j=0; j<N; ++j) {
State[j] = _mm_aesenclast_si128(State[j], ExpandedKey[j][14]);
}
}
void AES256CBC(__m128i** data, const __m128i** next, __m128i ExpandedKey[][16], __m128i* IV)
{
const uint32_t N = AES_PARALLEL_N;
__m128i State[N];
for(int j=0; j<N; ++j) {
State[j] = _mm_xor_si128( _mm_xor_si128(data[j][0], next[j][0]), IV[j]);
}
AES256Core(State, ExpandedKey);
for(int j=0; j<N; ++j) {
data[j][0] = State[j];
}
for(int i = 1; i < BLOCK_COUNT; ++i) {
for(int j=0; j<N; ++j) {
State[j] = _mm_xor_si128( _mm_xor_si128(data[j][i], next[j][i]), data[j][i - 1]);
}
AES256Core(State, ExpandedKey);
for(int j=0; j<N; ++j) {
data[j][i] = State[j];
}
}
}
#else // NO AVX
static inline __m128i AES256Core(__m128i State, const __m128i *ExpandedKey)
{
State = _mm_xor_si128(State, ExpandedKey[0]);
for(int i = 1; i < 14; ++i) State = _mm_aesenc_si128(State, ExpandedKey[i]);
return(_mm_aesenclast_si128(State, ExpandedKey[14]));
}
void AES256CBC(__m128i *Ciphertext, const __m128i *Plaintext, const __m128i *ExpandedKey, __m128i IV, uint32_t BlockCount)
{
__m128i State = _mm_xor_si128(Plaintext[0], IV);
State = AES256Core(State, ExpandedKey);
Ciphertext[0] = State;
for(int i = 1; i < BlockCount; ++i)
{
State = _mm_xor_si128(Plaintext[i], Ciphertext[i - 1]);
State = AES256Core(State, ExpandedKey);
Ciphertext[i] = State;
}
}
#endif
#endif

171
algo/hodl/block.h Normal file
View File

@@ -0,0 +1,171 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2013 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PRIMITIVES_BLOCK_H
#define BITCOIN_PRIMITIVES_BLOCK_H
#include "serialize.h"
#include "hodl_uint256.h"
/** Nodes collect new transactions into a block, hash them into a hash tree,
* and scan through nonce values to make the block's hash satisfy proof-of-work
* requirements. When they solve the proof-of-work, they broadcast the block
* to everyone and the block is added to the block chain. The first transaction
* in the block is a special one that creates a new coin owned by the creator
* of the block.
*/
class CBlockHeader
{
public:
// header
static const int32_t CURRENT_VERSION=4;
int32_t nVersion;
uint256 hashPrevBlock;
uint256 hashMerkleRoot;
uint32_t nTime;
uint32_t nBits;
uint32_t nNonce;
uint32_t nStartLocation;
uint32_t nFinalCalculation;
CBlockHeader()
{
SetNull();
}
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(this->nVersion);
nVersion = this->nVersion;
READWRITE(hashPrevBlock);
READWRITE(hashMerkleRoot);
READWRITE(nTime);
READWRITE(nBits);
READWRITE(nNonce);
READWRITE(nStartLocation);
READWRITE(nFinalCalculation);
}
void SetNull()
{
nVersion = CBlockHeader::CURRENT_VERSION;
hashPrevBlock.SetNull();
hashMerkleRoot.SetNull();
nTime = 0;
nBits = 0;
nNonce = 0;
nStartLocation = 0;
nFinalCalculation = 0;
}
bool IsNull() const
{
return (nBits == 0);
}
uint256 GetHash() const;
uint256 GetMidHash() const;
uint256 FindBestPatternHash(int& collisions,char *scratchpad,int nThreads);
uint256 FindBestPatternHash(int& collisions,char *scratchpad);
int64_t GetBlockTime() const
{
return (int64_t)nTime;
}
};
class CBlock : public CBlockHeader
{
public:
// network and disk
//std::vector<CTransaction> vtx;
std::vector<int> vtx;
// memory only
mutable std::vector<uint256> vMerkleTree;
CBlock()
{
SetNull();
}
CBlock(const CBlockHeader &header)
{
SetNull();
*((CBlockHeader*)this) = header;
}
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
READWRITE(*(CBlockHeader*)this);
READWRITE(vtx);
}
void SetNull()
{
CBlockHeader::SetNull();
vtx.clear();
vMerkleTree.clear();
}
CBlockHeader GetBlockHeader() const
{
CBlockHeader block;
block.nVersion = nVersion;
block.hashPrevBlock = hashPrevBlock;
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
block.nStartLocation = nStartLocation;
block.nFinalCalculation = nFinalCalculation;
return block;
}
std::string ToString() const;
};
/** Describes a place in the block chain to another node such that if the
* other node doesn't have the same branch, it can find a recent common trunk.
* The further back it is, the further before the fork it may be.
*/
struct CBlockLocator
{
std::vector<uint256> vHave;
CBlockLocator() {}
CBlockLocator(const std::vector<uint256>& vHaveIn)
{
vHave = vHaveIn;
}
ADD_SERIALIZE_METHODS;
template <typename Stream, typename Operation>
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(vHave);
}
void SetNull()
{
vHave.clear();
}
bool IsNull() const
{
return vHave.empty();
}
};
#endif // BITCOIN_PRIMITIVES_BLOCK_H

70
algo/hodl/common.h Normal file
View File

@@ -0,0 +1,70 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_COMMON_H
#define BITCOIN_CRYPTO_COMMON_H
#if defined(HAVE_CONFIG_H)
#include "bitcoin-config.h"
#endif
#if ((defined(_WIN64) || defined(__WINDOWS__)))
#include "hodl-endian.h"
#endif
#include <stdint.h>
uint16_t static inline ReadLE16(const unsigned char* ptr)
{
return le16toh(*((uint16_t*)ptr));
}
uint32_t static inline ReadLE32(const unsigned char* ptr)
{
return le32toh(*((uint32_t*)ptr));
}
uint64_t static inline ReadLE64(const unsigned char* ptr)
{
return le64toh(*((uint64_t*)ptr));
}
void static inline WriteLE16(unsigned char* ptr, uint16_t x)
{
*((uint16_t*)ptr) = htole16(x);
}
void static inline WriteLE32(unsigned char* ptr, uint32_t x)
{
*((uint32_t*)ptr) = htole32(x);
}
void static inline WriteLE64(unsigned char* ptr, uint64_t x)
{
*((uint64_t*)ptr) = htole64(x);
}
uint32_t static inline ReadBE32(const unsigned char* ptr)
{
return be32toh(*((uint32_t*)ptr));
}
uint64_t static inline ReadBE64(const unsigned char* ptr)
{
return be64toh(*((uint64_t*)ptr));
}
void static inline WriteBE32(unsigned char* ptr, uint32_t x)
{
*((uint32_t*)ptr) = htobe32(x);
}
void static inline WriteBE64(unsigned char* ptr, uint64_t x)
{
*((uint64_t*)ptr) = htobe64(x);
}
#endif // BITCOIN_CRYPTO_COMMON_H
//#endif

83
algo/hodl/hash.cpp Normal file
View File

@@ -0,0 +1,83 @@
// Copyright (c) 2013-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hash.h"
#include "common.h"
#include "hmac_sha512.h"
inline uint32_t ROTL32(uint32_t x, int8_t r)
{
return (x << r) | (x >> (32 - r));
}
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash)
{
// The following is MurmurHash3 (x86_32), see http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
uint32_t h1 = nHashSeed;
if (vDataToHash.size() > 0)
{
const uint32_t c1 = 0xcc9e2d51;
const uint32_t c2 = 0x1b873593;
const int nblocks = vDataToHash.size() / 4;
//----------
// body
const uint8_t* blocks = &vDataToHash[0] + nblocks * 4;
for (int i = -nblocks; i; i++) {
uint32_t k1 = ReadLE32(blocks + i*4);
k1 *= c1;
k1 = ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
h1 = ROTL32(h1, 13);
h1 = h1 * 5 + 0xe6546b64;
}
//----------
// tail
const uint8_t* tail = (const uint8_t*)(&vDataToHash[0] + nblocks * 4);
uint32_t k1 = 0;
switch (vDataToHash.size() & 3) {
case 3:
k1 ^= tail[2] << 16;
case 2:
k1 ^= tail[1] << 8;
case 1:
k1 ^= tail[0];
k1 *= c1;
k1 = ROTL32(k1, 15);
k1 *= c2;
h1 ^= k1;
};
}
//----------
// finalization
h1 ^= vDataToHash.size();
h1 ^= h1 >> 16;
h1 *= 0x85ebca6b;
h1 ^= h1 >> 13;
h1 *= 0xc2b2ae35;
h1 ^= h1 >> 16;
return h1;
}
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
{
unsigned char num[4];
num[0] = (nChild >> 24) & 0xFF;
num[1] = (nChild >> 16) & 0xFF;
num[2] = (nChild >> 8) & 0xFF;
num[3] = (nChild >> 0) & 0xFF;
CHMAC_SHA512(chainCode.begin(), chainCode.size()).Write(&header, 1).Write(data, 32).Write(num, 4).Finalize(output);
}

176
algo/hodl/hash.h Normal file
View File

@@ -0,0 +1,176 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2013 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H
#include <iostream>
//#include "ripemd160.h"
#include "sha256.h"
#include "serialize.h"
#include "hodl_uint256.h"
//#include "version.h"
#include <vector>
static const int PROTOCOL_VERSION = 70002;
typedef uint256 ChainCode;
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[sha.OUTPUT_SIZE];
sha.Finalize(buf);
sha.Reset().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
}
CHash256& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash256& Reset() {
sha.Reset();
return *this;
}
};
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
/*
class CHash160 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
unsigned char buf[sha.OUTPUT_SIZE];
sha.Finalize(buf);
CRIPEMD160().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
}
CHash160& Write(const unsigned char *data, size_t len) {
sha.Write(data, len);
return *this;
}
CHash160& Reset() {
sha.Reset();
return *this;
}
};
*/
/** Compute the 256-bit hash of an object. */
template<typename T1>
inline uint256 Hash(const T1 pbegin, const T1 pend)
{
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 256-bit hash of the concatenation of three objects. */
template<typename T1, typename T2, typename T3>
inline uint256 Hash(const T1 p1begin, const T1 p1end,
const T2 p2begin, const T2 p2end,
const T3 p3begin, const T3 p3end) {
static const unsigned char pblank[1] = {};
uint256 result;
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
.Finalize((unsigned char*)&result);
return result;
}
/** Compute the 160-bit hash an object. */
/*
template<typename T1>
inline uint160 Hash160(const T1 pbegin, const T1 pend)
{
static unsigned char pblank[1] = {};
uint160 result;
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
.Finalize((unsigned char*)&result);
return result;
}
*/
/** Compute the 160-bit hash of a vector. */
/*
inline uint160 Hash160(const std::vector<unsigned char>& vch)
{
return Hash160(vch.begin(), vch.end());
}
*/
/** A writer stream (for serialization) that computes a 256-bit hash. */
class CHashWriter
{
private:
CHash256 ctx;
public:
int nType;
int nVersion;
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
CHashWriter& write(const char *pch, size_t size) {
ctx.Write((const unsigned char*)pch, size);
return (*this);
}
// invalidates the object
uint256 GetHash() {
uint256 result;
ctx.Finalize((unsigned char*)&result);
return result;
}
template<typename T>
CHashWriter& operator<<(const T& obj) {
// Serialize to this stream
::Serialize(*this, obj, nType, nVersion);
return (*this);
}
};
/** Compute the 256-bit hash of an object's serialization. */
template<typename T>
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
{
CHashWriter ss(nType, nVersion);
ss << obj;
return ss.GetHash();
}
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
#endif // BITCOIN_HASH_H

33
algo/hodl/hmac_sha512.cpp Normal file
View File

@@ -0,0 +1,33 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hmac_sha512.h"
#include <string.h>
CHMAC_SHA512::CHMAC_SHA512(const unsigned char* key, size_t keylen)
{
unsigned char rkey[128];
if (keylen <= 128) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, 128 - keylen);
} else {
CSHA512().Write(key, keylen).Finalize(rkey);
memset(rkey + 64, 0, 64);
}
for (int n = 0; n < 128; n++)
rkey[n] ^= 0x5c;
outer.Write(rkey, 128);
for (int n = 0; n < 128; n++)
rkey[n] ^= 0x5c ^ 0x36;
inner.Write(rkey, 128);
}
void CHMAC_SHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
{
unsigned char temp[64];
inner.Finalize(temp);
outer.Write(temp, 64).Finalize(hash);
}

32
algo/hodl/hmac_sha512.h Normal file
View File

@@ -0,0 +1,32 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_HMAC_SHA512_H
#define BITCOIN_CRYPTO_HMAC_SHA512_H
#include "sha512.h"
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for HMAC-SHA-512. */
class CHMAC_SHA512
{
private:
CSHA512 outer;
CSHA512 inner;
public:
static const size_t OUTPUT_SIZE = 64;
CHMAC_SHA512(const unsigned char* key, size_t keylen);
CHMAC_SHA512& Write(const unsigned char* data, size_t len)
{
inner.Write(data, len);
return *this;
}
void Finalize(unsigned char hash[OUTPUT_SIZE]);
};
#endif // BITCOIN_CRYPTO_HMAC_SHA512_H

75
algo/hodl/hodl-endian.h Normal file
View File

@@ -0,0 +1,75 @@
#ifndef HODL_BYTESWAP_H
#define HODL_BYTESWAP_H 1
#define __bswap_constant_16(x) \
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
static __inline unsigned short int
__bswap_16 (unsigned short int __bsx)
{
return __bswap_constant_16 (__bsx);
}
// LE
# define htobe16(x) __bswap_16 (x)
# define htole16(x) (x)
# define be16toh(x) __bswap_16 (x)
# define le16toh(x) (x)
// BE
//# define htole16(x) __bswap_16 (x)
//# define htobe16(x) (x)
//# define le16toh(x) __bswap_16 (x)
//# define be16toh(x) (x)
#define __bswap_constant_32(x) \
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
static __inline unsigned int
__bswap_32 (unsigned int __bsx)
{
return __builtin_bswap32 (__bsx);
}
// LE
# define htobe32(x) __bswap_32 (x)
# define htole32(x) (x)
# define be32toh(x) __bswap_32 (x)
# define le32toh(x) (x)
// BE
//# define htole32(x) __bswap_32 (x)
//# define htobe32(x) (x)
//# define le32toh(x) __bswap_32 (x)
//# define be32toh(x) (x)
# define __bswap_constant_64(x) \
((((x) & 0xff00000000000000ull) >> 56) \
| (((x) & 0x00ff000000000000ull) >> 40) \
| (((x) & 0x0000ff0000000000ull) >> 24) \
| (((x) & 0x000000ff00000000ull) >> 8) \
| (((x) & 0x00000000ff000000ull) << 8) \
| (((x) & 0x0000000000ff0000ull) << 24) \
| (((x) & 0x000000000000ff00ull) << 40) \
| (((x) & 0x00000000000000ffull) << 56))
static __inline uint64_t
__bswap_64 (uint64_t __bsx)
{
return __bswap_constant_64 (__bsx);
}
// LE
# define htobe64(x) __bswap_64 (x)
# define htole64(x) (x)
# define be64toh(x) __bswap_64 (x)
# define le64toh(x) (x)
// BE
//# define htole64(x) __bswap_64 (x)
//# define htobe64(x) (x)
//# define le64toh(x) __bswap_64 (x)
//# define be64toh(x) (x)
#endif

112
algo/hodl/hodl-gate.c Normal file
View File

@@ -0,0 +1,112 @@
#include <memory.h>
#include <stdlib.h>
#include "miner.h"
//#include "algo-gate-api.h"
#include "hodl-gate.h"
#include "hodl.h"
#include "hodl-wolf.h"
#define HODL_NSTARTLOC_INDEX 20
#define HODL_NFINALCALC_INDEX 21
static struct work hodl_work;
pthread_barrier_t hodl_barrier;
// All references to this buffer are local to this file, so no args
// need to be passed.
unsigned char *hodl_scratchbuf = NULL;
void hodl_set_target( struct work* work, double diff )
{
diff_to_target(work->target, diff / 8388608.0 );
}
void hodl_le_build_stratum_request( char* req, struct work* work,
struct stratum_ctx *sctx )
{
uint32_t ntime, nonce, nstartloc, nfinalcalc;
char ntimestr[9], noncestr[9], nstartlocstr[9], nfinalcalcstr[9];
unsigned char *xnonce2str;
le32enc( &ntime, work->data[ algo_gate.ntime_index ] );
le32enc( &nonce, work->data[ algo_gate.nonce_index ] );
bin2hex( ntimestr, (char*)(&ntime), sizeof(uint32_t) );
bin2hex( noncestr, (char*)(&nonce), sizeof(uint32_t) );
xnonce2str = abin2hex(work->xnonce2, work->xnonce2_len );
le32enc( &nstartloc, work->data[ HODL_NSTARTLOC_INDEX ] );
le32enc( &nfinalcalc, work->data[ HODL_NFINALCALC_INDEX ] );
bin2hex( nstartlocstr, (char*)(&nstartloc), sizeof(uint32_t) );
bin2hex( nfinalcalcstr, (char*)(&nfinalcalc), sizeof(uint32_t) );
sprintf( req, "{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}",
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr,
nstartlocstr, nfinalcalcstr );
free( xnonce2str );
}
void hodl_build_extraheader( struct work* g_work, struct stratum_ctx *sctx )
{
g_work->data[ algo_gate.ntime_index ] = le32dec( sctx->job.ntime );
g_work->data[ algo_gate.nbits_index ] = le32dec( sctx->job.nbits );
g_work->data[22] = 0x80000000;
g_work->data[31] = 0x00000280;
}
// called only by thread 0, saves a backup of g_work
void hodl_get_new_work( struct work* work, struct work* g_work)
{
work_free( &hodl_work );
work_copy( &hodl_work, g_work );
hodl_work.data[ algo_gate.nonce_index ] = ( clock() + rand() ) % 9999;
}
// called by every thread, copies the backup to each thread's work.
void hodl_resync_threads( struct work* work )
{
int nonce_index = algo_gate.nonce_index;
pthread_barrier_wait( &hodl_barrier );
if ( memcmp( work->data, hodl_work.data, algo_gate.work_cmp_size ) )
{
work_free( work );
work_copy( work, &hodl_work );
}
work->data[ nonce_index ] = swab32( hodl_work.data[ nonce_index ] );
}
bool hodl_do_this_thread( int thr_id )
{
return ( thr_id == 0 );
}
int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
uint64_t *hashes_done )
{
#ifdef NO_AES_NI
GetPsuedoRandomData( hodl_scratchbuf, work->data, thr_id );
pthread_barrier_wait( &hodl_barrier );
return scanhash_hodl( thr_id, work, max_nonce, hashes_done );
#else
GenRandomGarbage( hodl_scratchbuf, work->data, thr_id );
pthread_barrier_wait( &hodl_barrier );
return scanhash_hodl_wolf( thr_id, work, max_nonce, hashes_done );
#endif
}
bool register_hodl_algo( algo_gate_t* gate )
{
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
gate->scanhash = (void*)&hodl_scanhash;
gate->get_new_work = (void*)&hodl_get_new_work;
gate->set_target = (void*)&hodl_set_target;
gate->build_stratum_request = (void*)&hodl_le_build_stratum_request;
gate->build_extraheader = (void*)&hodl_build_extraheader;
gate->resync_threads = (void*)&hodl_resync_threads;
gate->do_this_thread = (void*)&hodl_do_this_thread;
gate->work_cmp_size = 76;
hodl_scratchbuf = (unsigned char*)malloc( 1 << 30 );
return ( hodl_scratchbuf != NULL );
}

6
algo/hodl/hodl-gate.h Normal file
View File

@@ -0,0 +1,6 @@
#include "algo-gate-api.h"
extern unsigned char *hodl_scratchbuf;
bool register_hodl_algo ( algo_gate_t* gate );

210
algo/hodl/hodl-wolf.c Normal file
View File

@@ -0,0 +1,210 @@
#include <string.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#include <x86intrin.h>
#include "sha512-avx.h"
#include "wolf-aes.h"
#include "hodl-gate.h"
#include "hodl-wolf.h"
#include "miner.h"
#ifndef NO_AES_NI
void GenerateGarbageCore(CacheEntry *Garbage, int ThreadID, int ThreadCount, void *MidHash)
{
#ifdef __AVX__
uint64_t* TempBufs[SHA512_PARALLEL_N];
uint64_t* desination[SHA512_PARALLEL_N];
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
TempBufs[i] = (uint64_t*)malloc(32);
memcpy(TempBufs[i], MidHash, 32);
}
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N) {
for(int j=0; j<SHA512_PARALLEL_N; ++j) {
((uint32_t*)TempBufs[j])[0] = i + j;
desination[j] = (uint64_t*)((uint8_t *)Garbage + ((i+j) * GARBAGE_CHUNK_SIZE));
}
sha512Compute32b_parallel(TempBufs, desination);
}
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
free(TempBufs[i]);
}
#else
uint32_t TempBuf[8];
memcpy(TempBuf, MidHash, 32);
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i)
{
TempBuf[0] = i;
SHA512((uint8_t *)TempBuf, 32, ((uint8_t *)Garbage) + (i * GARBAGE_CHUNK_SIZE));
}
#endif
}
/*
void Rev256(uint32_t *Dest, const uint32_t *Src)
{
for(int i = 0; i < 8; ++i) Dest[i] = swab32(Src[i]);
}
*/
int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
uint64_t *hashes_done )
{
#ifdef __AVX__
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
CacheEntry Cache[AES_PARALLEL_N];
__m128i* data[AES_PARALLEL_N];
const __m128i* next[AES_PARALLEL_N];
uint32_t CollisionCount = 0;
for ( int n=0; n<AES_PARALLEL_N; ++n )
{
data[n] = Cache[n].dqwords;
}
// Search for pattern in psuedorandom data
int searchNumber = COMPARE_SIZE / opt_n_threads;
int startLoc = threadNumber * searchNumber;
for ( int32_t k = startLoc; k < startLoc + searchNumber && !work_restart[threadNumber].restart; k += AES_PARALLEL_N )
{
// copy data to first l2 cache
for ( int n=0; n<AES_PARALLEL_N; ++n )
{
memcpy(Cache[n].dwords, Garbage + k + n, GARBAGE_SLICE_SIZE);
}
for(int j = 0; j < AES_ITERATIONS; ++j)
{
__m128i ExpKey[AES_PARALLEL_N][16];
__m128i ivs[AES_PARALLEL_N];
// use last 4 bytes of first cache as next location
for(int n=0; n<AES_PARALLEL_N; ++n) {
uint32_t nextLocation = Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 1] & (COMPARE_SIZE - 1); //% COMPARE_SIZE;
next[n] = Garbage[nextLocation].dqwords;
__m128i last[2];
last[0] = _mm_xor_si128(Cache[n].dqwords[254], next[n][254]);
last[1] = _mm_xor_si128(Cache[n].dqwords[255], next[n][255]);
// Key is last 32b of Cache
// IV is last 16b of Cache
ExpandAESKey256(ExpKey[n], last);
ivs[n] = last[1];
}
AES256CBC(data, next, ExpKey, ivs);
}
for(int n=0; n<AES_PARALLEL_N; ++n)
if((Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 1] & (COMPARE_SIZE - 1)) < 1000)
{
uint32_t BlockHdr[22], FinalPoW[8];
swab32_array( BlockHdr, pdata, 20 );
BlockHdr[20] = k + n;
BlockHdr[21] = Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 2];
sha256d( (uint8_t *)FinalPoW, (uint8_t *)BlockHdr, 88 );
CollisionCount++;
if( FinalPoW[7] <= ptarget[7] )
{
pdata[20] = swab32( BlockHdr[20] );
pdata[21] = swab32( BlockHdr[21] );
*hashes_done = CollisionCount;
return(1);
}
}
}
*hashes_done = CollisionCount;
return(0);
#else // no AVX
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t BlockHdr[22], FinalPoW[8];
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
CacheEntry Cache;
uint32_t CollisionCount = 0;
swab32_array( BlockHdr, pdata, 20 );
// Search for pattern in psuedorandom data
int searchNumber = COMPARE_SIZE / opt_n_threads;
int startLoc = threadNumber * searchNumber;
for(int32_t k = startLoc; k < startLoc + searchNumber && !work_restart[threadNumber].restart; k++)
{
// copy data to first l2 cache
memcpy(Cache.dwords, Garbage + k, GARBAGE_SLICE_SIZE);
#ifndef NO_AES_NI
for(int j = 0; j < AES_ITERATIONS; j++)
{
CacheEntry TmpXOR;
__m128i ExpKey[16];
// use last 4 bytes of first cache as next location
uint32_t nextLocation = Cache.dwords[(GARBAGE_SLICE_SIZE >> 2)
- 1] & (COMPARE_SIZE - 1); //% COMPARE_SIZE;
// Copy data from indicated location to second l2 cache -
memcpy(&TmpXOR, Garbage + nextLocation, GARBAGE_SLICE_SIZE);
//XOR location data into second cache
for( int i = 0; i < (GARBAGE_SLICE_SIZE >> 4); ++i )
TmpXOR.dqwords[i] = _mm_xor_si128( Cache.dqwords[i],
TmpXOR.dqwords[i] );
// Key is last 32b of TmpXOR
// IV is last 16b of TmpXOR
ExpandAESKey256( ExpKey, TmpXOR.dqwords +
(GARBAGE_SLICE_SIZE / sizeof(__m128i)) - 2 );
AES256CBC( Cache.dqwords, TmpXOR.dqwords, ExpKey,
TmpXOR.dqwords[ (GARBAGE_SLICE_SIZE / sizeof(__m128i))
- 1 ], 256 ); }
#endif
// use last X bits as solution
if( ( Cache.dwords[ (GARBAGE_SLICE_SIZE >> 2) - 1 ]
& (COMPARE_SIZE - 1) ) < 1000 )
{
BlockHdr[20] = k;
BlockHdr[21] = Cache.dwords[ (GARBAGE_SLICE_SIZE >> 2) - 2 ];
sha256d( (uint8_t *)FinalPoW, (uint8_t *)BlockHdr, 88 );
CollisionCount++;
if( FinalPoW[7] <= ptarget[7] )
{
pdata[20] = swab32( BlockHdr[20] );
pdata[21] = swab32( BlockHdr[21] );
*hashes_done = CollisionCount;
return(1);
}
}
}
*hashes_done = CollisionCount;
return(0);
#endif
}
void GenRandomGarbage(CacheEntry *Garbage, uint32_t *pdata, int thr_id)
{
uint32_t BlockHdr[20], MidHash[8];
swab32_array( BlockHdr, pdata, 20 );
sha256d((uint8_t *)MidHash, (uint8_t *)BlockHdr, 80);
GenerateGarbageCore(Garbage, thr_id, opt_n_threads, MidHash);
}
#endif

27
algo/hodl/hodl-wolf.h Normal file
View File

@@ -0,0 +1,27 @@
#ifndef __HODL_H
#define __HODL_H
#include <stdint.h>
#include <x86intrin.h>
#include "miner.h"
#define AES_ITERATIONS 15
#define GARBAGE_SIZE (1 << 30)
#define GARBAGE_CHUNK_SIZE (1 << 6)
#define GARBAGE_SLICE_SIZE (1 << 12)
#define TOTAL_CHUNKS (1 << 24) // GARBAGE_SIZE / GARBAGE_CHUNK_SIZE
#define COMPARE_SIZE (1 << 18) // GARBAGE_SIZE / GARBAGE_SLICE_SIZE
typedef union _CacheEntry
{
uint32_t dwords[GARBAGE_SLICE_SIZE >> 2] __attribute__((aligned(16)));
__m128i dqwords[GARBAGE_SLICE_SIZE >> 4] __attribute__((aligned(16)));
} CacheEntry;
int scanhash_hodl_wolf( int thr_id, struct work* work, uint32_t max_nonce,
uint64_t *hashes_done );
void GenRandomGarbage( CacheEntry *Garbage, uint32_t *pdata, int thr_id);
#endif // __HODL_H

168
algo/hodl/hodl.cpp Normal file
View File

@@ -0,0 +1,168 @@
#include "miner.h"
#include "hodl-gate.h"
#include "hodl_uint256.h"
#include "hodl_arith_uint256.h"
#include "block.h"
#include <sstream>
#include "tinyformat.h"
#include <unordered_map>
#include "hash.h"
#include <openssl/aes.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
#define BEGIN(a) ((char*)&(a))
#define END(a) ((char*)&((&(a))[1]))
#define PSUEDORANDOM_DATA_SIZE 30 //2^30 = 1GB
#define PSUEDORANDOM_DATA_CHUNK_SIZE 6 //2^6 = 64 bytes //must be same as SHA512_DIGEST_LENGTH 64
#define L2CACHE_TARGET 12 // 2^12 = 4096 bytes
#define AES_ITERATIONS 15
void SHA512Filler(char *mainMemoryPsuedoRandomData, int threadNumber, uint256 midHash){
//Generate psuedo random data to store in main memory
uint32_t chunks=(1<<(PSUEDORANDOM_DATA_SIZE-PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^(30-6) = 16 mil
uint32_t chunkSize=(1<<(PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^6 = 64 bytes
unsigned char hash_tmp[sizeof(midHash)];
memcpy((char*)&hash_tmp[0], (char*)&midHash, sizeof(midHash) );
uint32_t* index = (uint32_t*)hash_tmp;
// uint32_t chunksToProcess=chunks/totalThreads;
uint32_t chunksToProcess = chunks / opt_n_threads;
uint32_t startChunk=threadNumber*chunksToProcess;
for( uint32_t i = startChunk; i < startChunk+chunksToProcess; i++){
//This changes the first character of hash_tmp
*index = i;
SHA512((unsigned char*)hash_tmp, sizeof(hash_tmp), (unsigned char*)&(mainMemoryPsuedoRandomData[i*chunkSize]));
}
}
extern "C"
// max_nonce is not used by this function
int scanhash_hodl( int threadNumber, struct work* work, uint32_t max_nonce,
uint64_t *hashes_done )
{
unsigned char *mainMemoryPsuedoRandomData = hodl_scratchbuf;
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
//retreive target
std::stringstream s;
for (int i = 7; i>=0; i--)
s << strprintf("%08x", ptarget[i]);
//retreive preveios hash
std::stringstream p;
for (int i = 0; i < 8; i++)
p << strprintf("%08x", swab32(pdata[8 - i]));
//retreive merkleroot
std::stringstream m;
for (int i = 0; i < 8; i++)
m << strprintf("%08x", swab32(pdata[16 - i]));
CBlock pblock;
pblock.SetNull();
pblock.nVersion=swab32(pdata[0]);
pblock.nNonce=swab32(pdata[19]);
pblock.nTime=swab32(pdata[17]);
pblock.nBits=swab32(pdata[18]);
pblock.hashPrevBlock=uint256S(p.str());
pblock.hashMerkleRoot=uint256S(m.str());
uint256 hashTarget=uint256S(s.str());
int collisions=0;
uint256 hash;
//Begin AES Search
//Allocate temporary memory
uint32_t cacheMemorySize = (1<<L2CACHE_TARGET); //2^12 = 4096 bytes
uint32_t comparisonSize=(1<<(PSUEDORANDOM_DATA_SIZE-L2CACHE_TARGET)); //2^(30-12) = 256K
unsigned char *cacheMemoryOperatingData;
unsigned char *cacheMemoryOperatingData2;
cacheMemoryOperatingData=new unsigned char[cacheMemorySize+16];
cacheMemoryOperatingData2=new unsigned char[cacheMemorySize];
//Create references to data as 32 bit arrays
uint32_t* cacheMemoryOperatingData32 = (uint32_t*)cacheMemoryOperatingData;
uint32_t* cacheMemoryOperatingData322 = (uint32_t*)cacheMemoryOperatingData2;
//Search for pattern in psuedorandom data
unsigned char key[32] = {0};
unsigned char iv[AES_BLOCK_SIZE];
int outlen1, outlen2;
//Iterate over the data
// int searchNumber=comparisonSize/totalThreads;
int searchNumber = comparisonSize / opt_n_threads;
int startLoc=threadNumber*searchNumber;
EVP_CIPHER_CTX ctx;
for(int32_t k = startLoc;k<startLoc+searchNumber && !work_restart[threadNumber].restart;k++){
//copy data to first l2 cache
memcpy((char*)&cacheMemoryOperatingData[0], (char*)&mainMemoryPsuedoRandomData[k*cacheMemorySize], cacheMemorySize);
for(int j=0;j<AES_ITERATIONS;j++){
//use last 4 bytes of first cache as next location
uint32_t nextLocation = cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
//Copy data from indicated location to second l2 cache -
memcpy((char*)&cacheMemoryOperatingData2[0], (char*)&mainMemoryPsuedoRandomData[nextLocation*cacheMemorySize], cacheMemorySize);
//XOR location data into second cache
for(uint32_t i = 0; i < cacheMemorySize/4; i++)
cacheMemoryOperatingData322[i] = cacheMemoryOperatingData32[i] ^ cacheMemoryOperatingData322[i];
memcpy(key,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-32],32);
memcpy(iv,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-AES_BLOCK_SIZE],AES_BLOCK_SIZE);
EVP_EncryptInit(&ctx, EVP_aes_256_cbc(), key, iv);
EVP_EncryptUpdate(&ctx, cacheMemoryOperatingData, &outlen1, cacheMemoryOperatingData2, cacheMemorySize);
EVP_EncryptFinal(&ctx, cacheMemoryOperatingData + outlen1, &outlen2);
EVP_CIPHER_CTX_cleanup(&ctx);
}
//use last X bits as solution
uint32_t solution=cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
if(solution<1000){
uint32_t proofOfCalculation=cacheMemoryOperatingData32[(cacheMemorySize/4)-2];
pblock.nStartLocation = k;
pblock.nFinalCalculation = proofOfCalculation;
hash = Hash(BEGIN(pblock.nVersion), END(pblock.nFinalCalculation));
collisions++;
if (UintToArith256(hash) <= UintToArith256(hashTarget) && !work_restart[threadNumber].restart){
pdata[21] = swab32(pblock.nFinalCalculation);
pdata[20] = swab32(pblock.nStartLocation);
*hashes_done = collisions;
//free memory
delete [] cacheMemoryOperatingData;
delete [] cacheMemoryOperatingData2;
return 1;
}
}
}
//free memory
delete [] cacheMemoryOperatingData;
delete [] cacheMemoryOperatingData2;
*hashes_done = collisions;
return 0;
}
extern "C"
void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData, uint32_t *pdata,
int thr_id )
{
//retreive preveios hash
std::stringstream p;
for (int i = 0; i < 8; i++)
p << strprintf("%08x", swab32(pdata[8 - i]));
//retreive merkleroot
std::stringstream m;
for (int i = 0; i < 8; i++)
m << strprintf("%08x", swab32(pdata[16 - i]));
CBlock pblock;
pblock.SetNull();
pblock.nVersion=swab32(pdata[0]);
pblock.nTime=swab32(pdata[17]);
pblock.nBits=swab32(pdata[18]);
pblock.hashPrevBlock= uint256S(p.str());
pblock.hashMerkleRoot= uint256S(m.str());
pblock.nNonce=swab32(pdata[19]);
uint256 midHash = Hash(BEGIN(pblock.nVersion), END(pblock.nNonce));
SHA512Filler( mainMemoryPsuedoRandomData, thr_id, midHash);
}

11
algo/hodl/hodl.h Normal file
View File

@@ -0,0 +1,11 @@
extern int scanhash_hodl( int thr_id, struct work* work, uint32_t max_nonce,
uint64_t *hashes_done );
extern void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData,
uint32_t *pdata, int thr_id );
void hodl_set_target( struct work* work, double diff );
void hodl_copy_workdata( struct work* work, struct work* g_work );

View File

@@ -0,0 +1,258 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hodl_arith_uint256.h"
#include "hodl_uint256.h"
#include "utilstrencodings.h"
#include "common.h"
#include <stdio.h>
#include <string.h>
template <unsigned int BITS>
base_uint<BITS>::base_uint(const std::string& str)
{
SetHex(str);
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i + k + 1 < WIDTH && shift != 0)
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
if (i + k < WIDTH)
pn[i + k] |= (a.pn[i] << shift);
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
{
base_uint<BITS> a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++) {
if (i - k - 1 >= 0 && shift != 0)
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
if (i - k >= 0)
pn[i - k] |= (a.pn[i] >> shift);
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++) {
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
{
base_uint<BITS> a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
template <unsigned int BITS>
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
{
base_uint<BITS> div = b; // make a copy, so we can shift.
base_uint<BITS> num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and num align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
template <unsigned int BITS>
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
{
for (int i = WIDTH - 1; i >= 0; i--) {
if (pn[i] < b.pn[i])
return -1;
if (pn[i] > b.pn[i])
return 1;
}
return 0;
}
template <unsigned int BITS>
bool base_uint<BITS>::EqualTo(uint64_t b) const
{
for (int i = WIDTH - 1; i >= 2; i--) {
if (pn[i])
return false;
}
if (pn[1] != (b >> 32))
return false;
if (pn[0] != (b & 0xfffffffful))
return false;
return true;
}
template <unsigned int BITS>
double base_uint<BITS>::getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
template <unsigned int BITS>
std::string base_uint<BITS>::GetHex() const
{
return ArithToUint256(*this).GetHex();
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const char* psz)
{
*this = UintToArith256(uint256S(psz));
}
template <unsigned int BITS>
void base_uint<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template <unsigned int BITS>
std::string base_uint<BITS>::ToString() const
{
return (GetHex());
}
template <unsigned int BITS>
unsigned int base_uint<BITS>::bits() const
{
for (int pos = WIDTH - 1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1 << bits)
return 32 * pos + bits + 1;
}
return 32 * pos + 1;
}
}
return 0;
}
// Explicit instantiations for base_uint<256>
template base_uint<256>::base_uint(const std::string&);
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
template bool base_uint<256>::EqualTo(uint64_t) const;
template double base_uint<256>::getdouble() const;
template std::string base_uint<256>::GetHex() const;
template std::string base_uint<256>::ToString() const;
template void base_uint<256>::SetHex(const char*);
template void base_uint<256>::SetHex(const std::string&);
template unsigned int base_uint<256>::bits() const;
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3) {
nWord >>= 8 * (3 - nSize);
*this = nWord;
} else {
*this = nWord;
*this <<= 8 * (nSize - 3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t arith_uint256::GetCompact(bool fNegative) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3) {
nCompact = GetLow64() << 8 * (3 - nSize);
} else {
arith_uint256 bn = *this >> 8 * (nSize - 3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000) {
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
uint256 ArithToUint256(const arith_uint256 &a)
{
uint256 b;
for(int x=0; x<a.WIDTH; ++x)
WriteLE32(b.begin() + x*4, a.pn[x]);
return b;
}
arith_uint256 UintToArith256(const uint256 &a)
{
arith_uint256 b;
for(int x=0; x<b.WIDTH; ++x)
b.pn[x] = ReadLE32(a.begin() + x*4);
return b;
}

View File

@@ -0,0 +1,290 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_ARITH_UINT256_H
#define BITCOIN_ARITH_UINT256_H
#include <assert.h>
#include <cstring>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <vector>
class uint256;
class uint_error : public std::runtime_error {
public:
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
};
/** Template base class for unsigned big integers. */
template<unsigned int BITS>
class base_uint
{
protected:
enum { WIDTH=BITS/32 };
uint32_t pn[WIDTH];
public:
base_uint()
{
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
}
base_uint(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
}
base_uint& operator=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
return *this;
}
base_uint(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
}
explicit base_uint(const std::string& str);
bool operator!() const
{
for (int i = 0; i < WIDTH; i++)
if (pn[i] != 0)
return false;
return true;
}
const base_uint operator~() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
return ret;
}
const base_uint operator-() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
ret++;
return ret;
}
double getdouble() const;
base_uint& operator=(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
return *this;
}
base_uint& operator^=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] ^= b.pn[i];
return *this;
}
base_uint& operator&=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] &= b.pn[i];
return *this;
}
base_uint& operator|=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] |= b.pn[i];
return *this;
}
base_uint& operator^=(uint64_t b)
{
pn[0] ^= (unsigned int)b;
pn[1] ^= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator|=(uint64_t b)
{
pn[0] |= (unsigned int)b;
pn[1] |= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator<<=(unsigned int shift);
base_uint& operator>>=(unsigned int shift);
base_uint& operator+=(const base_uint& b)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + pn[i] + b.pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator-=(const base_uint& b)
{
*this += -b;
return *this;
}
base_uint& operator+=(uint64_t b64)
{
base_uint b;
b = b64;
*this += b;
return *this;
}
base_uint& operator-=(uint64_t b64)
{
base_uint b;
b = b64;
*this += -b;
return *this;
}
base_uint& operator*=(uint32_t b32);
base_uint& operator*=(const base_uint& b);
base_uint& operator/=(const base_uint& b);
base_uint& operator++()
{
// prefix operator
int i = 0;
while (++pn[i] == 0 && i < WIDTH-1)
i++;
return *this;
}
const base_uint operator++(int)
{
// postfix operator
const base_uint ret = *this;
++(*this);
return ret;
}
base_uint& operator--()
{
// prefix operator
int i = 0;
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
i++;
return *this;
}
const base_uint operator--(int)
{
// postfix operator
const base_uint ret = *this;
--(*this);
return ret;
}
int CompareTo(const base_uint& b) const;
bool EqualTo(uint64_t b) const;
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
std::string GetHex() const;
void SetHex(const char* psz);
void SetHex(const std::string& str);
std::string ToString() const;
unsigned int size() const
{
return sizeof(pn);
}
/**
* Returns the position of the highest bit set plus one, or zero if the
* value is zero.
*/
unsigned int bits() const;
uint64_t GetLow64() const
{
assert(WIDTH >= 2);
return pn[0] | (uint64_t)pn[1] << 32;
}
};
/** 256-bit unsigned big integer. */
class arith_uint256 : public base_uint<256> {
public:
arith_uint256() {}
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
arith_uint256(uint64_t b) : base_uint<256>(b) {}
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
/**
* The "compact" format is a representation of a whole
* number N using an unsigned 32bit number similar to a
* floating point format.
* The most significant 8 bits are the unsigned exponent of base 256.
* This exponent can be thought of as "number of bytes of N".
* The lower 23 bits are the mantissa.
* Bit number 24 (0x800000) represents the sign of N.
* N = (-1^sign) * mantissa * 256^(exponent-3)
*
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
* MPI uses the most significant bit of the first byte as sign.
* Thus 0x1234560000 is compact (0x05123456)
* and 0xc0de000000 is compact (0x0600c0de)
*
* Bitcoin only uses this "compact" format for encoding difficulty
* targets, which are unsigned 256bit quantities. Thus, all the
* complexities of the sign bit and using base 256 are probably an
* implementation accident.
*/
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
uint32_t GetCompact(bool fNegative = false) const;
friend uint256 ArithToUint256(const arith_uint256 &);
friend arith_uint256 UintToArith256(const uint256 &);
};
uint256 ArithToUint256(const arith_uint256 &);
arith_uint256 UintToArith256(const uint256 &);
#endif // BITCOIN_ARITH_UINT256_H

145
algo/hodl/hodl_uint256.cpp Normal file
View File

@@ -0,0 +1,145 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "hodl_uint256.h"
#include "utilstrencodings.h"
#include <stdio.h>
#include <string.h>
template <unsigned int BITS>
base_blob<BITS>::base_blob(const std::vector<unsigned char>& vch)
{
assert(vch.size() == sizeof(data));
memcpy(data, &vch[0], sizeof(data));
}
template <unsigned int BITS>
std::string base_blob<BITS>::GetHex() const
{
char psz[sizeof(data) * 2 + 1];
for (unsigned int i = 0; i < sizeof(data); i++)
sprintf(psz + i * 2, "%02x", data[sizeof(data) - i - 1]);
return std::string(psz, psz + sizeof(data) * 2);
}
template <unsigned int BITS>
void base_blob<BITS>::SetHex(const char* psz)
{
memset(data, 0, sizeof(data));
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
psz++;
psz--;
unsigned char* p1 = (unsigned char*)data;
unsigned char* pend = p1 + WIDTH;
while (psz >= pbegin && p1 < pend) {
*p1 = ::HexDigit(*psz--);
if (psz >= pbegin) {
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
p1++;
}
}
}
template <unsigned int BITS>
void base_blob<BITS>::SetHex(const std::string& str)
{
SetHex(str.c_str());
}
template <unsigned int BITS>
std::string base_blob<BITS>::ToString() const
{
return (GetHex());
}
// Explicit instantiations for base_blob<160>
template base_blob<160>::base_blob(const std::vector<unsigned char>&);
template std::string base_blob<160>::GetHex() const;
template std::string base_blob<160>::ToString() const;
template void base_blob<160>::SetHex(const char*);
template void base_blob<160>::SetHex(const std::string&);
// Explicit instantiations for base_blob<256>
template base_blob<256>::base_blob(const std::vector<unsigned char>&);
template std::string base_blob<256>::GetHex() const;
template std::string base_blob<256>::ToString() const;
template void base_blob<256>::SetHex(const char*);
template void base_blob<256>::SetHex(const std::string&);
static void inline HashMix(uint32_t& a, uint32_t& b, uint32_t& c)
{
// Taken from lookup3, by Bob Jenkins.
a -= c;
a ^= ((c << 4) | (c >> 28));
c += b;
b -= a;
b ^= ((a << 6) | (a >> 26));
a += c;
c -= b;
c ^= ((b << 8) | (b >> 24));
b += a;
a -= c;
a ^= ((c << 16) | (c >> 16));
c += b;
b -= a;
b ^= ((a << 19) | (a >> 13));
a += c;
c -= b;
c ^= ((b << 4) | (b >> 28));
b += a;
}
static void inline HashFinal(uint32_t& a, uint32_t& b, uint32_t& c)
{
// Taken from lookup3, by Bob Jenkins.
c ^= b;
c -= ((b << 14) | (b >> 18));
a ^= c;
a -= ((c << 11) | (c >> 21));
b ^= a;
b -= ((a << 25) | (a >> 7));
c ^= b;
c -= ((b << 16) | (b >> 16));
a ^= c;
a -= ((c << 4) | (c >> 28));
b ^= a;
b -= ((a << 14) | (a >> 18));
c ^= b;
c -= ((b << 24) | (b >> 8));
}
uint64_t uint256::GetHash(const uint256& salt) const
{
uint32_t a, b, c;
const uint32_t *pn = (const uint32_t*)data;
const uint32_t *salt_pn = (const uint32_t*)salt.data;
a = b = c = 0xdeadbeef + WIDTH;
a += pn[0] ^ salt_pn[0];
b += pn[1] ^ salt_pn[1];
c += pn[2] ^ salt_pn[2];
HashMix(a, b, c);
a += pn[3] ^ salt_pn[3];
b += pn[4] ^ salt_pn[4];
c += pn[5] ^ salt_pn[5];
HashMix(a, b, c);
a += pn[6] ^ salt_pn[6];
b += pn[7] ^ salt_pn[7];
HashFinal(a, b, c);
return ((((uint64_t)b) << 32) | c);
}

158
algo/hodl/hodl_uint256.h Normal file
View File

@@ -0,0 +1,158 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <assert.h>
#include <cstring>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <vector>
/** Template base class for fixed-sized opaque blobs. */
template<unsigned int BITS>
class base_blob
{
protected:
enum { WIDTH=BITS/8 };
uint8_t data[WIDTH];
public:
base_blob()
{
memset(data, 0, sizeof(data));
}
explicit base_blob(const std::vector<unsigned char>& vch);
bool IsNull() const
{
for (int i = 0; i < WIDTH; i++)
if (data[i] != 0)
return false;
return true;
}
void SetNull()
{
memset(data, 0, sizeof(data));
}
friend inline bool operator==(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) == 0; }
friend inline bool operator!=(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) != 0; }
friend inline bool operator<(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) < 0; }
std::string GetHex() const;
void SetHex(const char* psz);
void SetHex(const std::string& str);
std::string ToString() const;
unsigned char* begin()
{
return &data[0];
}
unsigned char* end()
{
return &data[WIDTH];
}
const unsigned char* begin() const
{
return &data[0];
}
const unsigned char* end() const
{
return &data[WIDTH];
}
unsigned int size() const
{
return sizeof(data);
}
unsigned int GetSerializeSize(int nType, int nVersion) const
{
return sizeof(data);
}
template<typename Stream>
void Serialize(Stream& s, int nType, int nVersion) const
{
s.write((char*)data, sizeof(data));
}
template<typename Stream>
void Unserialize(Stream& s, int nType, int nVersion)
{
s.read((char*)data, sizeof(data));
}
};
/** 160-bit opaque blob.
* @note This type is called uint160 for historical reasons only. It is an opaque
* blob of 160 bits and has no integer operations.
*/
class uint160 : public base_blob<160> {
public:
uint160() {}
uint160(const base_blob<160>& b) : base_blob<160>(b) {}
explicit uint160(const std::vector<unsigned char>& vch) : base_blob<160>(vch) {}
};
/** 256-bit opaque blob.
* @note This type is called uint256 for historical reasons only. It is an
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
* those are required.
*/
class uint256 : public base_blob<256> {
public:
uint256() {}
uint256(const base_blob<256>& b) : base_blob<256>(b) {}
explicit uint256(const std::vector<unsigned char>& vch) : base_blob<256>(vch) {}
/** A cheap hash function that just returns 64 bits from the result, it can be
* used when the contents are considered uniformly random. It is not appropriate
* when the value can easily be influenced from outside as e.g. a network adversary could
* provide values to trigger worst-case behavior.
* @note The result of this function is not stable between little and big endian.
*/
uint64_t GetCheapHash() const
{
uint64_t result;
memcpy((void*)&result, (void*)data, 8);
return result;
}
/** A more secure, salted hash function.
* @note This hash is not stable between little and big endian.
*/
uint64_t GetHash(const uint256& salt) const;
};
/* uint256 from const char *.
* This is a separate function because the constructor uint256(const char*) can result
* in dangerously catching uint256(0).
*/
inline uint256 uint256S(const char *str)
{
uint256 rv;
rv.SetHex(str);
return rv;
}
/* uint256 from std::string.
* This is a separate function because the constructor uint256(const std::string &str) can result
* in dangerously catching uint256(0) via std::string(const char*).
*/
inline uint256 uint256S(const std::string& str)
{
uint256 rv;
rv.SetHex(str);
return rv;
}
#endif // BITCOIN_UINT256_H

208
algo/hodl/hodlminer.1 Normal file
View File

@@ -0,0 +1,208 @@
.TH MINERD 1 "March 2016" "cpuminer 2.4.3"
.SH NAME
hodlminer \- CPU miner for Hodlcoin
.SH SYNOPSIS
.B hodlminer
[\fIOPTION\fR]...
.SH DESCRIPTION
.B hodlminer
is a multi-threaded CPU miner for Hodlcoin.
It supports the getwork and getblocktemplate (BIP 22) methods,
as well as the Stratum mining protocol.
.PP
In its normal mode of operation, \fBhodlminer\fR connects to a mining server
(specified with the \fB\-o\fR option), receives work from it and starts hashing.
As soon as a solution is found, it is submitted to the same mining server,
which can accept or reject it.
When using getwork or getblocktemplate,
\fBhodlminer\fR can take advantage of long polling, if the server supports it;
in any case, fresh work is fetched as needed.
When using the Stratum protocol this is not possible,
and the server is responsible for sending fresh work at least every minute;
if it fails to do so,
\fBhodlminer\fR may drop the connection and try reconnecting again.
.PP
By default, \fBhodlminer\fR writes all its messages to standard error.
On systems that have a syslog, the \fB\-\-syslog\fR option can be used
to write to it instead.
.PP
On start, the nice value of all miner threads is set to 19.
On Linux, the scheduling policy is also changed to SCHED_IDLE,
or to SCHED_BATCH if that fails.
On multiprocessor systems, \fBhodlminer\fR
automatically sets the CPU affinity of miner threads
if the number of threads is a multiple of the number of processors.
.SH EXAMPLES
To connect to the Hodlcoin mining pool that provides a Stratum server
at hodl.blockquarry.com on port 8332, authenticating as worker "user.worker" with password "x":
.PP
.nf
.RS
hodlminer \-o stratum+tcp://hodl.blockquarry.com:8332 \-u user.worker -p x -q
.RE
.fi
.PP
To mine to a local Hodlcoin instance running on port 18332,
authenticating with username "rpcuser" and password "rpcpass":
.PP
.nf
.RS
hodlminer \-a hodl \-o http://localhost:18332 \-O rpcuser:rpcpass \\
\-\-coinbase\-addr=mpXwg4jMtRhuSpVq4xS3HFHmCmWp9NyGKt
.RE
.fi
.PP
.SH OPTIONS
.TP
\fB\-a\fR, \fB\-\-algo\fR=\fIALGORITHM\fR
Set the hashing algorithm to use.
Default is hodl.
Possible values are:
.RS 11
.TP 10
.B hodl
.TP
\fB\-\-benchmark\fR
Run in offline benchmark mode.
.TP
\fB\-B\fR, \fB\-\-background\fR
Run in the background as a daemon.
.TP
\fB\-\-cert\fR=\fIFILE\fR
Set an SSL certificate to use with the mining server.
Only supported when using the HTTPS protocol.
.TP
\fB\-\-coinbase\-addr\fR=\fIADDRESS\fR
Set a payout address for solo mining.
This is only used in getblocktemplate mode,
and only if the server does not provide a coinbase transaction.
.TP
\fB\-\-coinbase\-sig\fR=\fITEXT\fR
Set a string to be included in the coinbase (if allowed by the server).
This is only used in getblocktemplate mode.
.TP
\fB\-c\fR, \fB\-\-config\fR=\fIFILE\fR
Load options from a configuration file.
\fIFILE\fR must contain a JSON object
mapping long options to their arguments (as strings),
or to \fBtrue\fR if no argument is required.
Sample configuration file:
.nf
{
"url": "stratum+tcp://hodl.blockquarry.com:8332",
"userpass": "foo:bar",
"retry-pause": "10",
"quiet": true
}
.fi
.TP
\fB\-D\fR, \fB\-\-debug\fR
Enable debug output.
.TP
\fB\-h\fR, \fB\-\-help\fR
Print a help message and exit.
.TP
\fB\-\-no\-gbt\fR
Do not use the getblocktemplate RPC method.
.TP
\fB\-\-no\-getwork\fR
Do not use the getwork RPC method.
.TP
\fB\-\-no\-longpoll\fR
Do not use long polling.
.TP
\fB\-\-no\-redirect\fR
Ignore requests from the server to switch to a different URL.
.TP
\fB\-\-no\-stratum\fR
Do not switch to Stratum, even if the server advertises support for it.
.TP
\fB\-o\fR, \fB\-\-url\fR=[\fISCHEME\fR://][\fIUSERNAME\fR[:\fIPASSWORD\fR]@]\fIHOST\fR:\fIPORT\fR[/\fIPATH\fR]
Set the URL of the mining server to connect to.
Supported schemes are \fBhttp\fR, \fBhttps\fR, \fBstratum+tcp\fR
and \fBstratum+tcps\fR.
If no scheme is specified, http is assumed.
Specifying a \fIPATH\fR is only supported for HTTP and HTTPS.
Specifying credentials has the same effect as using the \fB\-O\fR option.
By default, on HTTP and HTTPS,
the miner tries to use the getblocktemplate RPC method,
and falls back to using getwork if getblocktemplate is unavailable.
This behavior can be modified by using the \fB\-\-no\-gbt\fR
and \fB\-\-no\-getwork\fR options.
.TP
\fB\-O\fR, \fB\-\-userpass\fR=\fIUSERNAME\fR:\fIPASSWORD\fR
Set the credentials to use for connecting to the mining server.
Any value previously set with \fB\-u\fR or \fB\-p\fR is discarded.
.TP
\fB\-p\fR, \fB\-\-pass\fR=\fIPASSWORD\fR
Set the password to use for connecting to the mining server.
Any password previously set with \fB\-O\fR is discarded.
.TP
\fB\-P\fR, \fB\-\-protocol\-dump\fR
Enable output of all protocol-level activities.
.TP
\fB\-q\fR, \fB\-\-quiet\fR
Disable per-thread hashmeter output.
.TP
\fB\-r\fR, \fB\-\-retries\fR=\fIN\fR
Set the maximum number of times to retry if a network call fails.
If not specified, the miner will retry indefinitely.
.TP
\fB\-R\fR, \fB\-\-retry\-pause\fR=\fISECONDS\fR
Set how long to wait between retries. Default is 30 seconds.
.TP
\fB\-s\fR, \fB\-\-scantime\fR=\fISECONDS\fR
Set an upper bound on the time the miner can go without fetching fresh work.
This setting has no effect in Stratum mode or when long polling is activated.
Default is 5 seconds.
.TP
\fB\-S\fR, \fB\-\-syslog\fR
Log to the syslog facility instead of standard error.
.TP
\fB\-t\fR, \fB\-\-threads\fR=\fIN\fR
Set the number of miner threads.
If not specified, the miner will try to detect the number of available processors
and use that.
.TP
\fB\-T\fR, \fB\-\-timeout\fR=\fISECONDS\fR
Set a timeout for long polling.
.TP
\fB\-u\fR, \fB\-\-user\fR=\fIUSERNAME\fR
Set the username to use for connecting to the mining server.
Any username previously set with \fB\-O\fR is discarded.
.TP
\fB\-V\fR, \fB\-\-version\fR
Display version information and quit.
.TP
\fB\-x\fR, \fB\-\-proxy\fR=[\fISCHEME\fR://][\fIUSERNAME\fR:\fIPASSWORD\fR@]\fIHOST\fR:\fIPORT\fR
Connect to the mining server through a proxy.
Supported schemes are: \fBhttp\fR, \fBsocks4\fR, \fBsocks5\fR.
Since libcurl 7.18.0, the following are also supported:
\fBsocks4a\fR, \fBsocks5h\fR (SOCKS5 with remote name resolving).
If no scheme is specified, the proxy is treated as an HTTP proxy.
.SH ENVIRONMENT
The following environment variables can be specified in lower case or upper case;
the lower-case version has precedence. \fBhttp_proxy\fR is an exception
as it is only available in lower case.
.PP
.RS
.TP
\fBhttp_proxy\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
Sets the proxy server to use for HTTP.
.TP
\fBHTTPS_PROXY\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
Sets the proxy server to use for HTTPS.
.TP
\fBALL_PROXY\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
Sets the proxy server to use if no protocol-specific proxy is set.
.RE
.PP
Using an environment variable to set the proxy has the same effect as
using the \fB\-x\fR option.
.SH AUTHOR
Most of the code in the current version of minerd was written by
Pooler <pooler@litecoinpool.org> with contributions from others.
The original minerd was written by Jeff Garzik <jeff@garzik.org>.

155
algo/hodl/my-byteswap.h Normal file
View File

@@ -0,0 +1,155 @@
/* Macros to swap the order of bytes in integer values.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#if !defined _BYTESWAP_H && !defined _NETINET_IN_H && !defined _ENDIAN_H
# error "Never use <bits/byteswap.h> directly; include <byteswap.h> instead."
#endif
#ifndef _BITS_BYTESWAP_H
#define _BITS_BYTESWAP_H 1
#include <features.h>
#include <bits/types.h>
#include <bits/wordsize.h>
/* Swap bytes in 16 bit value. */
#define __bswap_constant_16(x) \
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
/* Get __bswap_16. */
#include <bits/byteswap-16.h>
/* Swap bytes in 32 bit value. */
#define __bswap_constant_32(x) \
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
#ifdef __GNUC__
# if __GNUC_PREREQ (4, 3)
static __inline unsigned int
__bswap_32 (unsigned int __bsx)
{
return __builtin_bswap32 (__bsx);
}
# elif __GNUC__ >= 2
# if __WORDSIZE == 64 || (defined __i486__ || defined __pentium__ \
|| defined __pentiumpro__ || defined __pentium4__ \
|| defined __k8__ || defined __athlon__ \
|| defined __k6__ || defined __nocona__ \
|| defined __core2__ || defined __geode__ \
|| defined __amdfam10__)
/* To swap the bytes in a word the i486 processors and up provide the
`bswap' opcode. On i386 we have to use three instructions. */
# define __bswap_32(x) \
(__extension__ \
({ unsigned int __v, __x = (x); \
if (__builtin_constant_p (__x)) \
__v = __bswap_constant_32 (__x); \
else \
__asm__ ("bswap %0" : "=r" (__v) : "0" (__x)); \
__v; }))
# else
# define __bswap_32(x) \
(__extension__ \
({ unsigned int __v, __x = (x); \
if (__builtin_constant_p (__x)) \
__v = __bswap_constant_32 (__x); \
else \
__asm__ ("rorw $8, %w0;" \
"rorl $16, %0;" \
"rorw $8, %w0" \
: "=r" (__v) \
: "0" (__x) \
: "cc"); \
__v; }))
# endif
# else
# define __bswap_32(x) \
(__extension__ \
({ unsigned int __x = (x); __bswap_constant_32 (__x); }))
# endif
#else
static __inline unsigned int
__bswap_32 (unsigned int __bsx)
{
return __bswap_constant_32 (__bsx);
}
#endif
#if __GNUC_PREREQ (2, 0)
/* Swap bytes in 64 bit value. */
# define __bswap_constant_64(x) \
(__extension__ ((((x) & 0xff00000000000000ull) >> 56) \
| (((x) & 0x00ff000000000000ull) >> 40) \
| (((x) & 0x0000ff0000000000ull) >> 24) \
| (((x) & 0x000000ff00000000ull) >> 8) \
| (((x) & 0x00000000ff000000ull) << 8) \
| (((x) & 0x0000000000ff0000ull) << 24) \
| (((x) & 0x000000000000ff00ull) << 40) \
| (((x) & 0x00000000000000ffull) << 56)))
# if __GNUC_PREREQ (4, 3)
static __inline __uint64_t
__bswap_64 (__uint64_t __bsx)
{
return __builtin_bswap64 (__bsx);
}
# elif __WORDSIZE == 64
# define __bswap_64(x) \
(__extension__ \
({ __uint64_t __v, __x = (x); \
if (__builtin_constant_p (__x)) \
__v = __bswap_constant_64 (__x); \
else \
__asm__ ("bswap %q0" : "=r" (__v) : "0" (__x)); \
__v; }))
# else
# define __bswap_64(x) \
(__extension__ \
({ union { __extension__ __uint64_t __ll; \
unsigned int __l[2]; } __w, __r; \
if (__builtin_constant_p (x)) \
__r.__ll = __bswap_constant_64 (x); \
else \
{ \
__w.__ll = (x); \
__r.__l[0] = __bswap_32 (__w.__l[1]); \
__r.__l[1] = __bswap_32 (__w.__l[0]); \
} \
__r.__ll; }))
# endif
#else
# define __bswap_constant_64(x) \
((((x) & 0xff00000000000000ull) >> 56) \
| (((x) & 0x00ff000000000000ull) >> 40) \
| (((x) & 0x0000ff0000000000ull) >> 24) \
| (((x) & 0x000000ff00000000ull) >> 8) \
| (((x) & 0x00000000ff000000ull) << 8) \
| (((x) & 0x0000000000ff0000ull) << 24) \
| (((x) & 0x000000000000ff00ull) << 40) \
| (((x) & 0x00000000000000ffull) << 56))
static __inline __uint64_t
__bswap_64 (__uint64_t __bsx)
{
return __bswap_constant_64 (__bsx);
}
#endif
#endif /* _BITS_BYTESWAP_H */

103
algo/hodl/my-endian.h Normal file
View File

@@ -0,0 +1,103 @@
/* Copyright (C) 1992-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
// cloned from /usr/endian.h and modified
#ifndef _ENDIAN_H
#define _ENDIAN_H 1
//#include <features.h>
/* Definitions for byte order, according to significance of bytes,
from low addresses to high addresses. The value is what you get by
putting '4' in the most significant byte, '3' in the second most
significant byte, '2' in the second least significant byte, and '1'
in the least significant byte, and then writing down one digit for
each byte, starting with the byte at the lowest address at the left,
and proceeding to the byte with the highest address at the right. */
#define __LITTLE_ENDIAN 1234
#define __BIG_ENDIAN 4321
#define __PDP_ENDIAN 3412
/* This file defines `__BYTE_ORDER' for the particular machine. */
//#include <bits/endian.h>
#define __BYTE_ORDER __LITTLE_ENDIAN
/* Some machines may need to use a different endianness for floating point
values. */
#ifndef __FLOAT_WORD_ORDER
# define __FLOAT_WORD_ORDER __BYTE_ORDER
#endif
#ifdef __USE_BSD
# define LITTLE_ENDIAN __LITTLE_ENDIAN
# define BIG_ENDIAN __BIG_ENDIAN
# define PDP_ENDIAN __PDP_ENDIAN
# define BYTE_ORDER __BYTE_ORDER
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
# define __LONG_LONG_PAIR(HI, LO) LO, HI
#elif __BYTE_ORDER == __BIG_ENDIAN
# define __LONG_LONG_PAIR(HI, LO) HI, LO
#endif
#if defined __USE_BSD && !defined __ASSEMBLER__
/* Conversion interfaces. */
//# include <bits/byteswap.h>
#include "my-byteswap.h"
# if __BYTE_ORDER == __LITTLE_ENDIAN
# define htobe16(x) __bswap_16 (x)
# define htole16(x) (x)
# define be16toh(x) __bswap_16 (x)
# define le16toh(x) (x)
# define htobe32(x) __bswap_32 (x)
# define htole32(x) (x)
# define be32toh(x) __bswap_32 (x)
# define le32toh(x) (x)
# define htobe64(x) __bswap_64 (x)
# define htole64(x) (x)
# define be64toh(x) __bswap_64 (x)
# define le64toh(x) (x)
# else
# define htobe16(x) (x)
# define htole16(x) __bswap_16 (x)
# define be16toh(x) (x)
# define le16toh(x) __bswap_16 (x)
# define htobe32(x) (x)
# define htole32(x) __bswap_32 (x)
# define be32toh(x) (x)
# define le32toh(x) __bswap_32 (x)
# define htobe64(x) (x)
# define htole64(x) __bswap_64 (x)
# define be64toh(x) (x)
# define le64toh(x) __bswap_64 (x)
# endif
#endif
#endif /* endian.h */

862
algo/hodl/serialize.h Normal file
View File

@@ -0,0 +1,862 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H
#if ((defined(_WIN64) || defined(__WINDOWS__)))
#include "hodl-endian.h"
#endif
#include <algorithm>
#include <assert.h>
#include <ios>
#include <limits>
#include <map>
#include <set>
#include <stdint.h>
#include <string>
#include <string.h>
#include <utility>
#include <vector>
class CScript;
static const unsigned int MAX_SIZE = 0x02000000;
/**
* Used to bypass the rule against non-const reference to temporary
* where it makes sense with wrappers such as CFlatData or CTxDB
*/
template<typename T>
inline T& REF(const T& val)
{
return const_cast<T&>(val);
}
/**
* Used to acquire a non-const pointer "this" to generate bodies
* of const serialization operations from a template
*/
template<typename T>
inline T* NCONST_PTR(const T* val)
{
return const_cast<T*>(val);
}
/**
* Get begin pointer of vector (non-const version).
* @note These functions avoid the undefined case of indexing into an empty
* vector, as well as that of indexing after the end of the vector.
*/
template <class T, class TAl>
inline T* begin_ptr(std::vector<T,TAl>& v)
{
return v.empty() ? NULL : &v[0];
}
/** Get begin pointer of vector (const version) */
template <class T, class TAl>
inline const T* begin_ptr(const std::vector<T,TAl>& v)
{
return v.empty() ? NULL : &v[0];
}
/** Get end pointer of vector (non-const version) */
template <class T, class TAl>
inline T* end_ptr(std::vector<T,TAl>& v)
{
return v.empty() ? NULL : (&v[0] + v.size());
}
/** Get end pointer of vector (const version) */
template <class T, class TAl>
inline const T* end_ptr(const std::vector<T,TAl>& v)
{
return v.empty() ? NULL : (&v[0] + v.size());
}
/*
* Lowest-level serialization and conversion.
* @note Sizes of these types are verified in the tests
*/
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
s.write((char*)&obj, 1);
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
obj = htole16(obj);
s.write((char*)&obj, 2);
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
obj = htole32(obj);
s.write((char*)&obj, 4);
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
obj = htole64(obj);
s.write((char*)&obj, 8);
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
uint8_t obj;
s.read((char*)&obj, 1);
return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
uint16_t obj;
s.read((char*)&obj, 2);
return le16toh(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
uint32_t obj;
s.read((char*)&obj, 4);
return le32toh(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
uint64_t obj;
s.read((char*)&obj, 8);
return le64toh(obj);
}
inline uint64_t ser_double_to_uint64(double x)
{
union { double x; uint64_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline uint32_t ser_float_to_uint32(float x)
{
union { float x; uint32_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline double ser_uint64_to_double(uint64_t y)
{
union { double x; uint64_t y; } tmp;
tmp.y = y;
return tmp.x;
}
inline float ser_uint32_to_float(uint32_t y)
{
union { float x; uint32_t y; } tmp;
tmp.y = y;
return tmp.x;
}
/////////////////////////////////////////////////////////////////
//
// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
//
enum
{
// primary actions
SER_NETWORK = (1 << 0),
SER_DISK = (1 << 1),
SER_GETHASH = (1 << 2),
};
#define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action))
/**
* Implement three methods for serializable objects. These are actually wrappers over
* "SerializationOp" template, which implements the body of each class' serialization
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
* added as members.
*/
#define ADD_SERIALIZE_METHODS \
size_t GetSerializeSize(int nType, int nVersion) const { \
CSizeComputer s(nType, nVersion); \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
return s.size(); \
} \
template<typename Stream> \
void Serialize(Stream& s, int nType, int nVersion) const { \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
} \
template<typename Stream> \
void Unserialize(Stream& s, int nType, int nVersion) { \
SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \
}
/*
* Basic Types
*/
inline unsigned int GetSerializeSize(char a, int, int=0) { return 1; }
inline unsigned int GetSerializeSize(int8_t a, int, int=0) { return 1; }
inline unsigned int GetSerializeSize(uint8_t a, int, int=0) { return 1; }
inline unsigned int GetSerializeSize(int16_t a, int, int=0) { return 2; }
inline unsigned int GetSerializeSize(uint16_t a, int, int=0) { return 2; }
inline unsigned int GetSerializeSize(int32_t a, int, int=0) { return 4; }
inline unsigned int GetSerializeSize(uint32_t a, int, int=0) { return 4; }
inline unsigned int GetSerializeSize(int64_t a, int, int=0) { return 8; }
inline unsigned int GetSerializeSize(uint64_t a, int, int=0) { return 8; }
inline unsigned int GetSerializeSize(float a, int, int=0) { return 4; }
inline unsigned int GetSerializeSize(double a, int, int=0) { return 8; }
template<typename Stream> inline void Serialize(Stream& s, char a, int, int=0) { ser_writedata8(s, a); } // TODO Get rid of bare char
template<typename Stream> inline void Serialize(Stream& s, int8_t a, int, int=0) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a, int, int=0) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a, int, int=0) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a, int, int=0) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a, int, int=0) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a, int, int=0) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a, int, int=0) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a, int, int=0) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, float a, int, int=0) { ser_writedata32(s, ser_float_to_uint32(a)); }
template<typename Stream> inline void Serialize(Stream& s, double a, int, int=0) { ser_writedata64(s, ser_double_to_uint64(a)); }
template<typename Stream> inline void Unserialize(Stream& s, char& a, int, int=0) { a = ser_readdata8(s); } // TODO Get rid of bare char
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a, int, int=0) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a, int, int=0) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a, int, int=0) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a, int, int=0) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a, int, int=0) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a, int, int=0) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a, int, int=0) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a, int, int=0) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, float& a, int, int=0) { a = ser_uint32_to_float(ser_readdata32(s)); }
template<typename Stream> inline void Unserialize(Stream& s, double& a, int, int=0) { a = ser_uint64_to_double(ser_readdata64(s)); }
inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); }
template<typename Stream> inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; ser_writedata8(s, f); }
template<typename Stream> inline void Unserialize(Stream& s, bool& a, int, int=0) { char f=ser_readdata8(s); a=f; }
/**
* Compact Size
* size < 253 -- 1 byte
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
*/
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
if (nSize < 253) return sizeof(unsigned char);
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
else return sizeof(unsigned char) + sizeof(uint64_t);
}
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
{
ser_writedata8(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned short>::max())
{
ser_writedata8(os, 253);
ser_writedata16(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned int>::max())
{
ser_writedata8(os, 254);
ser_writedata32(os, nSize);
}
else
{
ser_writedata8(os, 255);
ser_writedata64(os, nSize);
}
return;
}
template<typename Stream>
uint64_t ReadCompactSize(Stream& is)
{
uint8_t chSize = ser_readdata8(is);
uint64_t nSizeRet = 0;
if (chSize < 253)
{
nSizeRet = chSize;
}
else if (chSize == 253)
{
nSizeRet = ser_readdata16(is);
if (nSizeRet < 253)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else if (chSize == 254)
{
nSizeRet = ser_readdata32(is);
if (nSizeRet < 0x10000u)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else
{
nSizeRet = ser_readdata64(is);
if (nSizeRet < 0x100000000ULL)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
if (nSizeRet > (uint64_t)MAX_SIZE)
throw std::ios_base::failure("ReadCompactSize(): size too large");
return nSizeRet;
}
/**
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
* The high bit in each byte signifies whether another digit follows. To make
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
* Thus, the byte sequence a[] with length len, where all but the last byte
* has bit 128 set, encodes the number:
*
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
*
* Properties:
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* * Every integer has exactly one encoding
* * Encoding does not depend on size of original integer type
* * No redundancy: every (infinite) byte sequence corresponds to a list
* of encoded integers.
*
* 0: [0x00] 256: [0x81 0x00]
* 1: [0x01] 16383: [0xFE 0x7F]
* 127: [0x7F] 16384: [0xFF 0x00]
* 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F]
* 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F]
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
*/
template<typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
int nRet = 0;
while(true) {
nRet++;
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
}
return nRet;
}
template<typename Stream, typename I>
void WriteVarInt(Stream& os, I n)
{
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
while(true) {
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
len++;
}
do {
ser_writedata8(os, tmp[len]);
} while(len--);
}
template<typename Stream, typename I>
I ReadVarInt(Stream& is)
{
I n = 0;
while(true) {
unsigned char chData = ser_readdata8(is);
n = (n << 7) | (chData & 0x7F);
if (chData & 0x80)
n++;
else
return n;
}
}
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
/**
* Wrapper for serializing arrays and POD.
*/
class CFlatData
{
protected:
char* pbegin;
char* pend;
public:
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
template <class T, class TAl>
explicit CFlatData(std::vector<T,TAl> &v)
{
pbegin = (char*)begin_ptr(v);
pend = (char*)end_ptr(v);
}
char* begin() { return pbegin; }
const char* begin() const { return pbegin; }
char* end() { return pend; }
const char* end() const { return pend; }
unsigned int GetSerializeSize(int, int=0) const
{
return pend - pbegin;
}
template<typename Stream>
void Serialize(Stream& s, int, int=0) const
{
s.write(pbegin, pend - pbegin);
}
template<typename Stream>
void Unserialize(Stream& s, int, int=0)
{
s.read(pbegin, pend - pbegin);
}
};
template<typename I>
class CVarInt
{
protected:
I &n;
public:
CVarInt(I& nIn) : n(nIn) { }
unsigned int GetSerializeSize(int, int) const {
return GetSizeOfVarInt<I>(n);
}
template<typename Stream>
void Serialize(Stream &s, int, int) const {
WriteVarInt<Stream,I>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s, int, int) {
n = ReadVarInt<Stream,I>(s);
}
};
template<size_t Limit>
class LimitedString
{
protected:
std::string& string;
public:
LimitedString(std::string& string) : string(string) {}
template<typename Stream>
void Unserialize(Stream& s, int, int=0)
{
size_t size = ReadCompactSize(s);
if (size > Limit) {
throw std::ios_base::failure("String length limit exceeded");
}
string.resize(size);
if (size != 0)
s.read((char*)&string[0], size);
}
template<typename Stream>
void Serialize(Stream& s, int, int=0) const
{
WriteCompactSize(s, string.size());
if (!string.empty())
s.write((char*)&string[0], string.size());
}
unsigned int GetSerializeSize(int, int=0) const
{
return GetSizeOfCompactSize(string.size()) + string.size();
}
};
template<typename I>
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
/**
* Forward declarations
*/
/**
* string
*/
template<typename C> unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int=0);
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str, int, int=0);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str, int, int=0);
/**
* vector
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
*/
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
template<typename T, typename A, typename V> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&);
template<typename T, typename A> inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion);
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&);
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion);
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion);
/**
* others derived from vector
*/
extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion);
template<typename Stream> void Serialize(Stream& os, const CScript& v, int nType, int nVersion);
template<typename Stream> void Unserialize(Stream& is, CScript& v, int nType, int nVersion);
/**
* pair
*/
template<typename K, typename T> unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion);
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion);
/**
* map
*/
template<typename K, typename T, typename Pred, typename A> unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion);
/**
* set
*/
template<typename K, typename Pred, typename A> unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion);
/**
* If none of the specialized versions above matched, default to calling member function.
* "int nType" is changed to "long nType" to keep from getting an ambiguous overload error.
* The compiler will only cast int to long if none of the other templates matched.
* Thanks to Boost serialization for this idea.
*/
template<typename T>
inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion)
{
return a.GetSerializeSize((int)nType, nVersion);
}
template<typename Stream, typename T>
inline void Serialize(Stream& os, const T& a, long nType, int nVersion)
{
a.Serialize(os, (int)nType, nVersion);
}
template<typename Stream, typename T>
inline void Unserialize(Stream& is, T& a, long nType, int nVersion)
{
a.Unserialize(is, (int)nType, nVersion);
}
/**
* string
*/
template<typename C>
unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int)
{
return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]);
}
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str, int, int)
{
WriteCompactSize(os, str.size());
if (!str.empty())
os.write((char*)&str[0], str.size() * sizeof(str[0]));
}
template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str, int, int)
{
unsigned int nSize = ReadCompactSize(is);
str.resize(nSize);
if (nSize != 0)
is.read((char*)&str[0], nSize * sizeof(str[0]));
}
/**
* vector
*/
template<typename T, typename A>
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
{
return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T));
}
template<typename T, typename A, typename V>
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&)
{
unsigned int nSize = GetSizeOfCompactSize(v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
nSize += GetSerializeSize((*vi), nType, nVersion);
return nSize;
}
template<typename T, typename A>
inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion)
{
return GetSerializeSize_impl(v, nType, nVersion, T());
}
template<typename Stream, typename T, typename A>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)&v[0], v.size() * sizeof(T));
}
template<typename Stream, typename T, typename A, typename V>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&)
{
WriteCompactSize(os, v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi), nType, nVersion);
}
template<typename Stream, typename T, typename A>
inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion)
{
Serialize_impl(os, v, nType, nVersion, T());
}
template<typename Stream, typename T, typename A>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, typename T, typename A, typename V>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i], nType, nVersion);
}
}
template<typename Stream, typename T, typename A>
inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion)
{
Unserialize_impl(is, v, nType, nVersion, T());
}
/**
* others derived from vector
*/
inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion)
{
return GetSerializeSize((const std::vector<unsigned char>&)v, nType, nVersion);
}
template<typename Stream>
void Serialize(Stream& os, const CScript& v, int nType, int nVersion)
{
Serialize(os, (const std::vector<unsigned char>&)v, nType, nVersion);
}
template<typename Stream>
void Unserialize(Stream& is, CScript& v, int nType, int nVersion)
{
Unserialize(is, (std::vector<unsigned char>&)v, nType, nVersion);
}
/**
* pair
*/
template<typename K, typename T>
unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion)
{
return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion);
}
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion)
{
Serialize(os, item.first, nType, nVersion);
Serialize(os, item.second, nType, nVersion);
}
template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion)
{
Unserialize(is, item.first, nType, nVersion);
Unserialize(is, item.second, nType, nVersion);
}
/**
* map
*/
template<typename K, typename T, typename Pred, typename A>
unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
unsigned int nSize = GetSizeOfCompactSize(m.size());
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
nSize += GetSerializeSize((*mi), nType, nVersion);
return nSize;
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
WriteCompactSize(os, m.size());
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
Serialize(os, (*mi), nType, nVersion);
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
std::pair<K, T> item;
Unserialize(is, item, nType, nVersion);
mi = m.insert(mi, item);
}
}
/**
* set
*/
template<typename K, typename Pred, typename A>
unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion)
{
unsigned int nSize = GetSizeOfCompactSize(m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
nSize += GetSerializeSize((*it), nType, nVersion);
return nSize;
}
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion)
{
WriteCompactSize(os, m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
Serialize(os, (*it), nType, nVersion);
}
template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::set<K, Pred, A>::iterator it = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
K key;
Unserialize(is, key, nType, nVersion);
it = m.insert(it, key);
}
}
/**
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
*/
struct CSerActionSerialize
{
bool ForRead() const { return false; }
};
struct CSerActionUnserialize
{
bool ForRead() const { return true; }
};
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action)
{
::Serialize(s, obj, nType, nVersion);
}
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action)
{
::Unserialize(s, obj, nType, nVersion);
}
class CSizeComputer
{
protected:
size_t nSize;
public:
int nType;
int nVersion;
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
CSizeComputer& write(const char *psz, size_t nSize)
{
this->nSize += nSize;
return *this;
}
template<typename T>
CSizeComputer& operator<<(const T& obj)
{
::Serialize(*this, obj, nType, nVersion);
return (*this);
}
size_t size() const {
return nSize;
}
};
#endif // BITCOIN_SERIALIZE_H

187
algo/hodl/sha256.cpp Normal file
View File

@@ -0,0 +1,187 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "sha256.h"
#include "common.h"
#include <string.h>
// Internal implementation code.
namespace
{
/// Internal SHA-256 implementation.
namespace sha256
{
uint32_t inline Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); }
uint32_t inline Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); }
uint32_t inline Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); }
uint32_t inline Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); }
uint32_t inline sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); }
uint32_t inline sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); }
/** One round of SHA-256. */
void inline Round(uint32_t a, uint32_t b, uint32_t c, uint32_t& d, uint32_t e, uint32_t f, uint32_t g, uint32_t& h, uint32_t k, uint32_t w)
{
uint32_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
}
/** Initialize SHA-256 state. */
void inline Initialize(uint32_t* s)
{
s[0] = 0x6a09e667ul;
s[1] = 0xbb67ae85ul;
s[2] = 0x3c6ef372ul;
s[3] = 0xa54ff53aul;
s[4] = 0x510e527ful;
s[5] = 0x9b05688cul;
s[6] = 0x1f83d9abul;
s[7] = 0x5be0cd19ul;
}
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
void Transform(uint32_t* s, const unsigned char* chunk)
{
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = ReadBE32(chunk + 0));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = ReadBE32(chunk + 4));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = ReadBE32(chunk + 8));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = ReadBE32(chunk + 12));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = ReadBE32(chunk + 16));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = ReadBE32(chunk + 20));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = ReadBE32(chunk + 24));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = ReadBE32(chunk + 28));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = ReadBE32(chunk + 32));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = ReadBE32(chunk + 36));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = ReadBE32(chunk + 40));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = ReadBE32(chunk + 44));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = ReadBE32(chunk + 48));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = ReadBE32(chunk + 52));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = ReadBE32(chunk + 56));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = ReadBE32(chunk + 60));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
} // namespace sha256
} // namespace
////// SHA-256
CSHA256::CSHA256() : bytes(0)
{
sha256::Initialize(s);
}
CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
{
const unsigned char* end = data + len;
size_t bufsize = bytes % 64;
if (bufsize && bufsize + len >= 64) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 64 - bufsize);
bytes += 64 - bufsize;
data += 64 - bufsize;
sha256::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 64) {
// Process full chunks directly from the source.
sha256::Transform(s, data);
bytes += 64;
data += 64;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
{
static const unsigned char pad[64] = {0x80};
unsigned char sizedesc[8];
WriteBE64(sizedesc, bytes << 3);
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
Write(sizedesc, 8);
WriteBE32(hash, s[0]);
WriteBE32(hash + 4, s[1]);
WriteBE32(hash + 8, s[2]);
WriteBE32(hash + 12, s[3]);
WriteBE32(hash + 16, s[4]);
WriteBE32(hash + 20, s[5]);
WriteBE32(hash + 24, s[6]);
WriteBE32(hash + 28, s[7]);
}
CSHA256& CSHA256::Reset()
{
bytes = 0;
sha256::Initialize(s);
return *this;
}

28
algo/hodl/sha256.h Normal file
View File

@@ -0,0 +1,28 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_SHA256_H
#define BITCOIN_CRYPTO_SHA256_H
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for SHA-256. */
class CSHA256
{
private:
uint32_t s[8];
unsigned char buf[64];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 32;
CSHA256();
CSHA256& Write(const unsigned char* data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA256& Reset();
};
#endif // BITCOIN_CRYPTO_SHA256_H

44
algo/hodl/sha512-avx.h Normal file
View File

@@ -0,0 +1,44 @@
#ifndef _SHA512_H
#define _SHA512_H
#include <stdint.h>
#include "emmintrin.h"
//SHA-512 block size
#define SHA512_BLOCK_SIZE 128
//SHA-512 digest size
#define SHA512_DIGEST_SIZE 64
/*
#ifndef __AVX2__
#ifndef __AVX__
#error "Either AVX or AVX2 supported needed"
#endif // __AVX__
#endif // __AVX2__
*/
typedef struct
{
#ifdef __AVX2__
__m256i h[8];
__m256i w[80];
#else // AVX
__m128i h[8];
__m128i w[80];
#endif
} Sha512Context;
#ifdef __AVX2__
#define SHA512_PARALLEL_N 8
#else // AVX
#define SHA512_PARALLEL_N 4
#endif
//SHA-512 related functions
void sha512Compute32b_parallel(
uint64_t *data[SHA512_PARALLEL_N],
uint64_t *digest[SHA512_PARALLEL_N]);
void sha512ProcessBlock(Sha512Context *context);
#endif

205
algo/hodl/sha512.cpp Normal file
View File

@@ -0,0 +1,205 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "sha512.h"
#include "common.h"
#include <string.h>
// Internal implementation code.
namespace
{
/// Internal SHA-512 implementation.
namespace sha512
{
uint64_t inline Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); }
uint64_t inline Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); }
uint64_t inline Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); }
uint64_t inline Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); }
uint64_t inline sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); }
uint64_t inline sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); }
/** One round of SHA-512. */
void inline Round(uint64_t a, uint64_t b, uint64_t c, uint64_t& d, uint64_t e, uint64_t f, uint64_t g, uint64_t& h, uint64_t k, uint64_t w)
{
uint64_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
uint64_t t2 = Sigma0(a) + Maj(a, b, c);
d += t1;
h = t1 + t2;
}
/** Initialize SHA-256 state. */
void inline Initialize(uint64_t* s)
{
s[0] = 0x6a09e667f3bcc908ull;
s[1] = 0xbb67ae8584caa73bull;
s[2] = 0x3c6ef372fe94f82bull;
s[3] = 0xa54ff53a5f1d36f1ull;
s[4] = 0x510e527fade682d1ull;
s[5] = 0x9b05688c2b3e6c1full;
s[6] = 0x1f83d9abfb41bd6bull;
s[7] = 0x5be0cd19137e2179ull;
}
/** Perform one SHA-512 transformation, processing a 128-byte chunk. */
void Transform(uint64_t* s, const unsigned char* chunk)
{
uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98d728ae22ull, w0 = ReadBE64(chunk + 0));
Round(h, a, b, c, d, e, f, g, 0x7137449123ef65cdull, w1 = ReadBE64(chunk + 8));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcfec4d3b2full, w2 = ReadBE64(chunk + 16));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba58189dbbcull, w3 = ReadBE64(chunk + 24));
Round(e, f, g, h, a, b, c, d, 0x3956c25bf348b538ull, w4 = ReadBE64(chunk + 32));
Round(d, e, f, g, h, a, b, c, 0x59f111f1b605d019ull, w5 = ReadBE64(chunk + 40));
Round(c, d, e, f, g, h, a, b, 0x923f82a4af194f9bull, w6 = ReadBE64(chunk + 48));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5da6d8118ull, w7 = ReadBE64(chunk + 56));
Round(a, b, c, d, e, f, g, h, 0xd807aa98a3030242ull, w8 = ReadBE64(chunk + 64));
Round(h, a, b, c, d, e, f, g, 0x12835b0145706fbeull, w9 = ReadBE64(chunk + 72));
Round(g, h, a, b, c, d, e, f, 0x243185be4ee4b28cull, w10 = ReadBE64(chunk + 80));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3d5ffb4e2ull, w11 = ReadBE64(chunk + 88));
Round(e, f, g, h, a, b, c, d, 0x72be5d74f27b896full, w12 = ReadBE64(chunk + 96));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe3b1696b1ull, w13 = ReadBE64(chunk + 104));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a725c71235ull, w14 = ReadBE64(chunk + 112));
Round(b, c, d, e, f, g, h, a, 0xc19bf174cf692694ull, w15 = ReadBE64(chunk + 120));
Round(a, b, c, d, e, f, g, h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc77ac9c65ull, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f592b0275ull, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa6ea6e483ull, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da831153b5ull, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152ee66dfabull, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d2db43210ull, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c898fb213full, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7beef0ee4ull, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc5ac42aedull, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d139d95b3dfull, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a73548baf63deull, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb3c77b2a8ull, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e47edaee6ull, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c851482353bull, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a14cf10364ull, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664bbc423001ull, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70d0f89791ull, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a30654be30ull, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774cdf8eeb99ull, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5e19b48a8ull, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3c5c95a63ull, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4ae3418acbull, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f7763e373ull, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee5defb2fcull, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f43172f60ull, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814a1f0ab72ull, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc702081a6439ecull, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0xeada7dd6cde0eb1eull, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0xf57d4f7fee6ed178ull, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x06f067aa72176fbaull, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x0a637dc5a2c898a6ull, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x113f9804bef90daeull, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x1b710b35131c471bull, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x28db77f523047d84ull, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x32caab7b40c72493ull, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x3c9ebe0a15c9bebcull, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x431d67c49c100d4cull, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x5fcb6fab3ad6faecull, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x6c44198c4a475817ull, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
} // namespace sha512
} // namespace
////// SHA-512
CSHA512::CSHA512() : bytes(0)
{
sha512::Initialize(s);
}
CSHA512& CSHA512::Write(const unsigned char* data, size_t len)
{
const unsigned char* end = data + len;
size_t bufsize = bytes % 128;
if (bufsize && bufsize + len >= 128) {
// Fill the buffer, and process it.
memcpy(buf + bufsize, data, 128 - bufsize);
bytes += 128 - bufsize;
data += 128 - bufsize;
sha512::Transform(s, buf);
bufsize = 0;
}
while (end >= data + 128) {
// Process full chunks directly from the source.
sha512::Transform(s, data);
data += 128;
bytes += 128;
}
if (end > data) {
// Fill the buffer with what remains.
memcpy(buf + bufsize, data, end - data);
bytes += end - data;
}
return *this;
}
void CSHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
{
static const unsigned char pad[128] = {0x80};
unsigned char sizedesc[16] = {0x00};
WriteBE64(sizedesc + 8, bytes << 3);
Write(pad, 1 + ((239 - (bytes % 128)) % 128));
Write(sizedesc, 16);
WriteBE64(hash, s[0]);
WriteBE64(hash + 8, s[1]);
WriteBE64(hash + 16, s[2]);
WriteBE64(hash + 24, s[3]);
WriteBE64(hash + 32, s[4]);
WriteBE64(hash + 40, s[5]);
WriteBE64(hash + 48, s[6]);
WriteBE64(hash + 56, s[7]);
}
CSHA512& CSHA512::Reset()
{
bytes = 0;
sha512::Initialize(s);
return *this;
}

28
algo/hodl/sha512.h Normal file
View File

@@ -0,0 +1,28 @@
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_SHA512_H
#define BITCOIN_CRYPTO_SHA512_H
#include <stdint.h>
#include <stdlib.h>
/** A hasher class for SHA-512. */
class CSHA512
{
private:
uint64_t s[8];
unsigned char buf[128];
size_t bytes;
public:
static const size_t OUTPUT_SIZE = 64;
CSHA512();
CSHA512& Write(const unsigned char* data, size_t len);
void Finalize(unsigned char hash[OUTPUT_SIZE]);
CSHA512& Reset();
};
#endif // BITCOIN_CRYPTO_SHA512_H

224
algo/hodl/sha512_avx.c Normal file
View File

@@ -0,0 +1,224 @@
#ifndef __AVX2__
#ifdef __AVX__
//Dependencies
#include <string.h>
#include <stdlib.h>
#include "tmmintrin.h"
#include "smmintrin.h"
#include "sha512-avx.h"
#if ((defined(_WIN64) || defined(__WINDOWS__)))
#include "hodl-endian.h"
#endif
//SHA-512 auxiliary functions
#define Ch(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define SIGMA1(x) (ROR64(x, 28) ^ ROR64(x, 34) ^ ROR64(x, 39))
#define SIGMA2(x) (ROR64(x, 14) ^ ROR64(x, 18) ^ ROR64(x, 41))
#define SIGMA3(x) (ROR64(x, 1) ^ ROR64(x, 8) ^ SHR64(x, 7))
#define SIGMA4(x) (ROR64(x, 19) ^ ROR64(x, 61) ^ SHR64(x, 6))
//Rotate right operation
#define ROR64(a, n) _mm_or_si128(_mm_srli_epi64(a, n), _mm_slli_epi64(a, 64 - n))
//Shift right operation
#define SHR64(a, n) _mm_srli_epi64(a, n)
__m128i mm_htobe_epi64(__m128i a) {
__m128i mask = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
return _mm_shuffle_epi8(a, mask);
}
__m128i mm_betoh_epi64(__m128i a) {
return mm_htobe_epi64(a);
}
//SHA-512 padding
static const uint8_t padding[128] =
{
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
//SHA-512 constants
static const uint64_t k[80] =
{
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
0x72BE5D74F27B896F, 0x80DEB1FE3B1696B1, 0x9BDC06A725C71235, 0xC19BF174CF692694,
0xE49B69C19EF14AD2, 0xEFBE4786384F25E3, 0x0FC19DC68B8CD5B5, 0x240CA1CC77AC9C65,
0x2DE92C6F592B0275, 0x4A7484AA6EA6E483, 0x5CB0A9DCBD41FBD4, 0x76F988DA831153B5,
0x983E5152EE66DFAB, 0xA831C66D2DB43210, 0xB00327C898FB213F, 0xBF597FC7BEEF0EE4,
0xC6E00BF33DA88FC2, 0xD5A79147930AA725, 0x06CA6351E003826F, 0x142929670A0E6E70,
0x27B70A8546D22FFC, 0x2E1B21385C26C926, 0x4D2C6DFC5AC42AED, 0x53380D139D95B3DF,
0x650A73548BAF63DE, 0x766A0ABB3C77B2A8, 0x81C2C92E47EDAEE6, 0x92722C851482353B,
0xA2BFE8A14CF10364, 0xA81A664BBC423001, 0xC24B8B70D0F89791, 0xC76C51A30654BE30,
0xD192E819D6EF5218, 0xD69906245565A910, 0xF40E35855771202A, 0x106AA07032BBD1B8,
0x19A4C116B8D2D0C8, 0x1E376C085141AB53, 0x2748774CDF8EEB99, 0x34B0BCB5E19B48A8,
0x391C0CB3C5C95A63, 0x4ED8AA4AE3418ACB, 0x5B9CCA4F7763E373, 0x682E6FF3D6B2B8A3,
0x748F82EE5DEFB2FC, 0x78A5636F43172F60, 0x84C87814A1F0AB72, 0x8CC702081A6439EC,
0x90BEFFFA23631E28, 0xA4506CEBDE82BDE9, 0xBEF9A3F7B2C67915, 0xC67178F2E372532B,
0xCA273ECEEA26619C, 0xD186B8C721C0C207, 0xEADA7DD6CDE0EB1E, 0xF57D4F7FEE6ED178,
0x06F067AA72176FBA, 0x0A637DC5A2C898A6, 0x113F9804BEF90DAE, 0x1B710B35131C471B,
0x28DB77F523047D84, 0x32CAAB7B40C72493, 0x3C9EBE0A15C9BEBC, 0x431D67C49C100D4C,
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
};
void sha512Compute32b_parallel(uint64_t *data[SHA512_PARALLEL_N], uint64_t *digest[SHA512_PARALLEL_N]) {
Sha512Context context[2];
context[0].h[0] = _mm_set1_epi64x(0x6A09E667F3BCC908);
context[0].h[1] = _mm_set1_epi64x(0xBB67AE8584CAA73B);
context[0].h[2] = _mm_set1_epi64x(0x3C6EF372FE94F82B);
context[0].h[3] = _mm_set1_epi64x(0xA54FF53A5F1D36F1);
context[0].h[4] = _mm_set1_epi64x(0x510E527FADE682D1);
context[0].h[5] = _mm_set1_epi64x(0x9B05688C2B3E6C1F);
context[0].h[6] = _mm_set1_epi64x(0x1F83D9ABFB41BD6B);
context[0].h[7] = _mm_set1_epi64x(0x5BE0CD19137E2179);
context[1].h[0] = _mm_set1_epi64x(0x6A09E667F3BCC908);
context[1].h[1] = _mm_set1_epi64x(0xBB67AE8584CAA73B);
context[1].h[2] = _mm_set1_epi64x(0x3C6EF372FE94F82B);
context[1].h[3] = _mm_set1_epi64x(0xA54FF53A5F1D36F1);
context[1].h[4] = _mm_set1_epi64x(0x510E527FADE682D1);
context[1].h[5] = _mm_set1_epi64x(0x9B05688C2B3E6C1F);
context[1].h[6] = _mm_set1_epi64x(0x1F83D9ABFB41BD6B);
context[1].h[7] = _mm_set1_epi64x(0x5BE0CD19137E2179);
for(int i=0; i<4; ++i) {
context[0].w[i] = _mm_set_epi64x ( data[1][i], data[0][i] );
context[1].w[i] = _mm_set_epi64x ( data[3][i], data[2][i] );
}
for(int i=0; i<10; ++i) {
context[0].w[i+4] = _mm_set1_epi64x( ((uint64_t*)padding)[i] );
context[1].w[i+4] = _mm_set1_epi64x( ((uint64_t*)padding)[i] );
}
//Length of the original message (before padding)
uint64_t totalSize = 32 * 8;
//Append the length of the original message
context[0].w[14] = _mm_set1_epi64x(0);
context[0].w[15] = _mm_set1_epi64x(htobe64(totalSize));
context[1].w[14] = _mm_set1_epi64x(0);
context[1].w[15] = _mm_set1_epi64x(htobe64(totalSize));
//Calculate the message digest
sha512ProcessBlock(context);
//Convert from host byte order to big-endian byte order
for (int i = 0; i < 8; i++) {
context[0].h[i] = mm_htobe_epi64(context[0].h[i]);
context[1].h[i] = mm_htobe_epi64(context[1].h[i]);
}
//Copy the resulting digest
for(int i=0; i<8; ++i) {
digest[0][i] = _mm_extract_epi64(context[0].h[i], 0);
digest[1][i] = _mm_extract_epi64(context[0].h[i], 1);
digest[2][i] = _mm_extract_epi64(context[1].h[i], 0);
digest[3][i] = _mm_extract_epi64(context[1].h[i], 1);
}
}
#define blk0(n, i) (block[n][i] = mm_betoh_epi64(block[n][i]))
#define blk(n, i) (block[n][i] = block[n][i - 16] + SIGMA3(block[n][i - 15]) + \
SIGMA4(block[n][i - 2]) + block[n][i - 7])
#define ROUND512(a,b,c,d,e,f,g,h) \
T0 += (h[0]) + SIGMA2(e[0]) + Ch((e[0]), (f[0]), (g[0])) + k[i]; \
T1 += (h[1]) + SIGMA2(e[1]) + Ch((e[1]), (f[1]), (g[1])) + k[i]; \
(d[0]) += T0; \
(d[1]) += T1; \
(h[0]) = T0 + SIGMA1(a[0]) + Maj((a[0]), (b[0]), (c[0])); \
(h[1]) = T1 + SIGMA1(a[1]) + Maj((a[1]), (b[1]), (c[1])); \
i++
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T0 = blk0(0, i); \
T1 = blk0(1, i); \
ROUND512(a,b,c,d,e,f,g,h)
#define ROUND512_16_TO_80(a,b,c,d,e,f,g,h) \
T0 = blk(0, i); \
T1 = blk(1, i); \
ROUND512(a,b,c,d,e,f,g,h)
#define R512_0 \
ROUND512_0_TO_15(a, b, c, d, e, f, g, h); \
ROUND512_0_TO_15(h, a, b, c, d, e, f, g); \
ROUND512_0_TO_15(g, h, a, b, c, d, e, f); \
ROUND512_0_TO_15(f, g, h, a, b, c, d, e); \
ROUND512_0_TO_15(e, f, g, h, a, b, c, d); \
ROUND512_0_TO_15(d, e, f, g, h, a, b, c); \
ROUND512_0_TO_15(c, d, e, f, g, h, a, b); \
ROUND512_0_TO_15(b, c, d, e, f, g, h, a)
#define R512_16 \
ROUND512_16_TO_80(a, b, c, d, e, f, g, h); \
ROUND512_16_TO_80(h, a, b, c, d, e, f, g); \
ROUND512_16_TO_80(g, h, a, b, c, d, e, f); \
ROUND512_16_TO_80(f, g, h, a, b, c, d, e); \
ROUND512_16_TO_80(e, f, g, h, a, b, c, d); \
ROUND512_16_TO_80(d, e, f, g, h, a, b, c); \
ROUND512_16_TO_80(c, d, e, f, g, h, a, b); \
ROUND512_16_TO_80(b, c, d, e, f, g, h, a)
#define INIT(x,n) \
x[0] = context[0].h[n]; \
x[1] = context[1].h[n]; \
void sha512ProcessBlock(Sha512Context context[2])
{
__m128i* block[2];
block[0] = context[0].w;
block[1] = context[1].w;
__m128i T0, T1;
__m128i a[2], b[2], c[2], d[2], e[2], f[2], g[2], h[2];
INIT(a, 0)
INIT(b, 1)
INIT(c, 2)
INIT(d, 3)
INIT(e, 4)
INIT(f, 5)
INIT(g, 6)
INIT(h, 7)
int i = 0;
R512_0; R512_0;
for(int j=0; j<8; ++j) {
R512_16;
}
context[0].h[0] += a[0];
context[0].h[1] += b[0];
context[0].h[2] += c[0];
context[0].h[3] += d[0];
context[0].h[4] += e[0];
context[0].h[5] += f[0];
context[0].h[6] += g[0];
context[0].h[7] += h[0];
context[1].h[0] += a[1];
context[1].h[1] += b[1];
context[1].h[2] += c[1];
context[1].h[3] += d[1];
context[1].h[4] += e[1];
context[1].h[5] += f[1];
context[1].h[6] += g[1];
context[1].h[7] += h[1];
}
#endif // __AVX__
#endif // __AVX2__

232
algo/hodl/sha512_avx2.c Normal file
View File

@@ -0,0 +1,232 @@
#ifdef __AVX2__
//Dependencies
#include <string.h>
#include <stdlib.h>
#include "tmmintrin.h"
#include "smmintrin.h"
#include "immintrin.h"
#include "sha512-avx.h"
#if ((defined(_WIN64) || defined(__WINDOWS__)))
#include "hodl-endian.h"
#endif
//SHA-512 auxiliary functions
#define Ch(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define SIGMA1(x) (ROR64(x, 28) ^ ROR64(x, 34) ^ ROR64(x, 39))
#define SIGMA2(x) (ROR64(x, 14) ^ ROR64(x, 18) ^ ROR64(x, 41))
#define SIGMA3(x) (ROR64(x, 1) ^ ROR64(x, 8) ^ SHR64(x, 7))
#define SIGMA4(x) (ROR64(x, 19) ^ ROR64(x, 61) ^ SHR64(x, 6))
//Rotate right operation
#define ROR64(a, n) _mm256_or_si256(_mm256_srli_epi64(a, n), _mm256_slli_epi64(a, 64 - n))
//Shift right operation
#define SHR64(a, n) _mm256_srli_epi64(a, n)
__m256i mm256_htobe_epi64(__m256i a) {
__m256i mask = _mm256_set_epi8(
24,25,26,27,28,29,30,31,
16,17,18,19,20,21,22,23,
8, 9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7);
return _mm256_shuffle_epi8(a, mask);
}
__m256i mm256_betoh_epi64(__m256i a) {
return mm256_htobe_epi64(a);
}
//SHA-512 padding
static const uint8_t padding[128] =
{
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
//SHA-512 constants
static const uint64_t k[80] =
{
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
0x72BE5D74F27B896F, 0x80DEB1FE3B1696B1, 0x9BDC06A725C71235, 0xC19BF174CF692694,
0xE49B69C19EF14AD2, 0xEFBE4786384F25E3, 0x0FC19DC68B8CD5B5, 0x240CA1CC77AC9C65,
0x2DE92C6F592B0275, 0x4A7484AA6EA6E483, 0x5CB0A9DCBD41FBD4, 0x76F988DA831153B5,
0x983E5152EE66DFAB, 0xA831C66D2DB43210, 0xB00327C898FB213F, 0xBF597FC7BEEF0EE4,
0xC6E00BF33DA88FC2, 0xD5A79147930AA725, 0x06CA6351E003826F, 0x142929670A0E6E70,
0x27B70A8546D22FFC, 0x2E1B21385C26C926, 0x4D2C6DFC5AC42AED, 0x53380D139D95B3DF,
0x650A73548BAF63DE, 0x766A0ABB3C77B2A8, 0x81C2C92E47EDAEE6, 0x92722C851482353B,
0xA2BFE8A14CF10364, 0xA81A664BBC423001, 0xC24B8B70D0F89791, 0xC76C51A30654BE30,
0xD192E819D6EF5218, 0xD69906245565A910, 0xF40E35855771202A, 0x106AA07032BBD1B8,
0x19A4C116B8D2D0C8, 0x1E376C085141AB53, 0x2748774CDF8EEB99, 0x34B0BCB5E19B48A8,
0x391C0CB3C5C95A63, 0x4ED8AA4AE3418ACB, 0x5B9CCA4F7763E373, 0x682E6FF3D6B2B8A3,
0x748F82EE5DEFB2FC, 0x78A5636F43172F60, 0x84C87814A1F0AB72, 0x8CC702081A6439EC,
0x90BEFFFA23631E28, 0xA4506CEBDE82BDE9, 0xBEF9A3F7B2C67915, 0xC67178F2E372532B,
0xCA273ECEEA26619C, 0xD186B8C721C0C207, 0xEADA7DD6CDE0EB1E, 0xF57D4F7FEE6ED178,
0x06F067AA72176FBA, 0x0A637DC5A2C898A6, 0x113F9804BEF90DAE, 0x1B710B35131C471B,
0x28DB77F523047D84, 0x32CAAB7B40C72493, 0x3C9EBE0A15C9BEBC, 0x431D67C49C100D4C,
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
};
void sha512Compute32b_parallel(uint64_t *data[SHA512_PARALLEL_N], uint64_t *digest[SHA512_PARALLEL_N]) {
Sha512Context context[2];
context[0].h[0] = _mm256_set1_epi64x(0x6A09E667F3BCC908);
context[0].h[1] = _mm256_set1_epi64x(0xBB67AE8584CAA73B);
context[0].h[2] = _mm256_set1_epi64x(0x3C6EF372FE94F82B);
context[0].h[3] = _mm256_set1_epi64x(0xA54FF53A5F1D36F1);
context[0].h[4] = _mm256_set1_epi64x(0x510E527FADE682D1);
context[0].h[5] = _mm256_set1_epi64x(0x9B05688C2B3E6C1F);
context[0].h[6] = _mm256_set1_epi64x(0x1F83D9ABFB41BD6B);
context[0].h[7] = _mm256_set1_epi64x(0x5BE0CD19137E2179);
context[1].h[0] = _mm256_set1_epi64x(0x6A09E667F3BCC908);
context[1].h[1] = _mm256_set1_epi64x(0xBB67AE8584CAA73B);
context[1].h[2] = _mm256_set1_epi64x(0x3C6EF372FE94F82B);
context[1].h[3] = _mm256_set1_epi64x(0xA54FF53A5F1D36F1);
context[1].h[4] = _mm256_set1_epi64x(0x510E527FADE682D1);
context[1].h[5] = _mm256_set1_epi64x(0x9B05688C2B3E6C1F);
context[1].h[6] = _mm256_set1_epi64x(0x1F83D9ABFB41BD6B);
context[1].h[7] = _mm256_set1_epi64x(0x5BE0CD19137E2179);
for(int i=0; i<4; ++i) {
context[0].w[i] = _mm256_set_epi64x ( data[3][i], data[2][i], data[1][i], data[0][i] );
context[1].w[i] = _mm256_set_epi64x ( data[7][i], data[6][i], data[5][i], data[4][i] );
}
for(int i=0; i<10; ++i) {
context[0].w[i+4] = _mm256_set1_epi64x( ((uint64_t*)padding)[i] );
context[1].w[i+4] = _mm256_set1_epi64x( ((uint64_t*)padding)[i] );
}
//Length of the original message (before padding)
uint64_t totalSize = 32 * 8;
//Append the length of the original message
context[0].w[14] = _mm256_set1_epi64x(0);
context[0].w[15] = _mm256_set1_epi64x(htobe64(totalSize));
context[1].w[14] = _mm256_set1_epi64x(0);
context[1].w[15] = _mm256_set1_epi64x(htobe64(totalSize));
//Calculate the message digest
sha512ProcessBlock(context);
//Convert from host byte order to big-endian byte order
for (int i = 0; i < 8; i++) {
context[0].h[i] = mm256_htobe_epi64(context[0].h[i]);
context[1].h[i] = mm256_htobe_epi64(context[1].h[i]);
}
//Copy the resulting digest
for(int i=0; i<8; ++i) {
digest[0][i] = _mm256_extract_epi64(context[0].h[i], 0);
digest[1][i] = _mm256_extract_epi64(context[0].h[i], 1);
digest[2][i] = _mm256_extract_epi64(context[0].h[i], 2);
digest[3][i] = _mm256_extract_epi64(context[0].h[i], 3);
digest[4][i] = _mm256_extract_epi64(context[1].h[i], 0);
digest[5][i] = _mm256_extract_epi64(context[1].h[i], 1);
digest[6][i] = _mm256_extract_epi64(context[1].h[i], 2);
digest[7][i] = _mm256_extract_epi64(context[1].h[i], 3);
}
}
#define blk0(n, i) (block[n][i] = mm256_betoh_epi64(block[n][i]))
#define blk(n, i) (block[n][i] = block[n][i - 16] + SIGMA3(block[n][i - 15]) + \
SIGMA4(block[n][i - 2]) + block[n][i - 7])
#define ROUND512(a,b,c,d,e,f,g,h) \
T0 += (h[0]) + SIGMA2(e[0]) + Ch((e[0]), (f[0]), (g[0])) + k[i]; \
T1 += (h[1]) + SIGMA2(e[1]) + Ch((e[1]), (f[1]), (g[1])) + k[i]; \
(d[0]) += T0; \
(d[1]) += T1; \
(h[0]) = T0 + SIGMA1(a[0]) + Maj((a[0]), (b[0]), (c[0])); \
(h[1]) = T1 + SIGMA1(a[1]) + Maj((a[1]), (b[1]), (c[1])); \
i++
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
T0 = blk0(0, i); \
T1 = blk0(1, i); \
ROUND512(a,b,c,d,e,f,g,h)
#define ROUND512_16_TO_80(a,b,c,d,e,f,g,h) \
T0 = blk(0, i); \
T1 = blk(1, i); \
ROUND512(a,b,c,d,e,f,g,h)
#define R512_0 \
ROUND512_0_TO_15(a, b, c, d, e, f, g, h); \
ROUND512_0_TO_15(h, a, b, c, d, e, f, g); \
ROUND512_0_TO_15(g, h, a, b, c, d, e, f); \
ROUND512_0_TO_15(f, g, h, a, b, c, d, e); \
ROUND512_0_TO_15(e, f, g, h, a, b, c, d); \
ROUND512_0_TO_15(d, e, f, g, h, a, b, c); \
ROUND512_0_TO_15(c, d, e, f, g, h, a, b); \
ROUND512_0_TO_15(b, c, d, e, f, g, h, a)
#define R512_16 \
ROUND512_16_TO_80(a, b, c, d, e, f, g, h); \
ROUND512_16_TO_80(h, a, b, c, d, e, f, g); \
ROUND512_16_TO_80(g, h, a, b, c, d, e, f); \
ROUND512_16_TO_80(f, g, h, a, b, c, d, e); \
ROUND512_16_TO_80(e, f, g, h, a, b, c, d); \
ROUND512_16_TO_80(d, e, f, g, h, a, b, c); \
ROUND512_16_TO_80(c, d, e, f, g, h, a, b); \
ROUND512_16_TO_80(b, c, d, e, f, g, h, a)
#define INIT(x,n) \
x[0] = context[0].h[n]; \
x[1] = context[1].h[n]; \
void sha512ProcessBlock(Sha512Context context[2])
{
__m256i* block[2];
block[0] = context[0].w;
block[1] = context[1].w;
__m256i T0, T1;
__m256i a[2], b[2], c[2], d[2], e[2], f[2], g[2], h[2];
INIT(a, 0)
INIT(b, 1)
INIT(c, 2)
INIT(d, 3)
INIT(e, 4)
INIT(f, 5)
INIT(g, 6)
INIT(h, 7)
int i = 0;
R512_0; R512_0;
for(int j=0; j<8; ++j) {
R512_16;
}
context[0].h[0] += a[0];
context[0].h[1] += b[0];
context[0].h[2] += c[0];
context[0].h[3] += d[0];
context[0].h[4] += e[0];
context[0].h[5] += f[0];
context[0].h[6] += g[0];
context[0].h[7] += h[0];
context[1].h[0] += a[1];
context[1].h[1] += b[1];
context[1].h[2] += c[1];
context[1].h[3] += d[1];
context[1].h[4] += e[1];
context[1].h[5] += f[1];
context[1].h[6] += g[1];
context[1].h[7] += h[1];
}
#endif // __AVX2__

1013
algo/hodl/tinyformat.h Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,497 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "utilstrencodings.h"
#include "tinyformat.h"
#include <cstdlib>
#include <cstring>
#include <errno.h>
#include <limits>
using namespace std;
string SanitizeString(const string& str)
{
/**
* safeChars chosen to allow simple messages/URLs/email addresses, but avoid anything
* even possibly remotely dangerous like & or >
*/
static string safeChars("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890 .,;_/:?@()");
string strResult;
for (std::string::size_type i = 0; i < str.size(); i++)
{
if (safeChars.find(str[i]) != std::string::npos)
strResult.push_back(str[i]);
}
return strResult;
}
const signed char p_util_hexdigit[256] =
{ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
0,1,2,3,4,5,6,7,8,9,-1,-1,-1,-1,-1,-1,
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, };
signed char HexDigit(char c)
{
return p_util_hexdigit[(unsigned char)c];
}
bool IsHex(const string& str)
{
for(std::string::const_iterator it(str.begin()); it != str.end(); ++it)
{
if (HexDigit(*it) < 0)
return false;
}
return (str.size() > 0) && (str.size()%2 == 0);
}
vector<unsigned char> ParseHex(const char* psz)
{
// convert hex dump to vector
vector<unsigned char> vch;
while (true)
{
while (isspace(*psz))
psz++;
signed char c = HexDigit(*psz++);
if (c == (signed char)-1)
break;
unsigned char n = (c << 4);
c = HexDigit(*psz++);
if (c == (signed char)-1)
break;
n |= c;
vch.push_back(n);
}
return vch;
}
vector<unsigned char> ParseHex(const string& str)
{
return ParseHex(str.c_str());
}
string EncodeBase64(const unsigned char* pch, size_t len)
{
static const char *pbase64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
string strRet="";
strRet.reserve((len+2)/3*4);
int mode=0, left=0;
const unsigned char *pchEnd = pch+len;
while (pch<pchEnd)
{
int enc = *(pch++);
switch (mode)
{
case 0: // we have no bits
strRet += pbase64[enc >> 2];
left = (enc & 3) << 4;
mode = 1;
break;
case 1: // we have two bits
strRet += pbase64[left | (enc >> 4)];
left = (enc & 15) << 2;
mode = 2;
break;
case 2: // we have four bits
strRet += pbase64[left | (enc >> 6)];
strRet += pbase64[enc & 63];
mode = 0;
break;
}
}
if (mode)
{
strRet += pbase64[left];
strRet += '=';
if (mode == 1)
strRet += '=';
}
return strRet;
}
string EncodeBase64(const string& str)
{
return EncodeBase64((const unsigned char*)str.c_str(), str.size());
}
vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid)
{
static const int decode64_table[256] =
{
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 62, -1, -1, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1,
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
if (pfInvalid)
*pfInvalid = false;
vector<unsigned char> vchRet;
vchRet.reserve(strlen(p)*3/4);
int mode = 0;
int left = 0;
while (1)
{
int dec = decode64_table[(unsigned char)*p];
if (dec == -1) break;
p++;
switch (mode)
{
case 0: // we have no bits and get 6
left = dec;
mode = 1;
break;
case 1: // we have 6 bits and keep 4
vchRet.push_back((left<<2) | (dec>>4));
left = dec & 15;
mode = 2;
break;
case 2: // we have 4 bits and get 6, we keep 2
vchRet.push_back((left<<4) | (dec>>2));
left = dec & 3;
mode = 3;
break;
case 3: // we have 2 bits and get 6
vchRet.push_back((left<<6) | dec);
mode = 0;
break;
}
}
if (pfInvalid)
switch (mode)
{
case 0: // 4n base64 characters processed: ok
break;
case 1: // 4n+1 base64 character processed: impossible
*pfInvalid = true;
break;
case 2: // 4n+2 base64 characters processed: require '=='
if (left || p[0] != '=' || p[1] != '=' || decode64_table[(unsigned char)p[2]] != -1)
*pfInvalid = true;
break;
case 3: // 4n+3 base64 characters processed: require '='
if (left || p[0] != '=' || decode64_table[(unsigned char)p[1]] != -1)
*pfInvalid = true;
break;
}
return vchRet;
}
string DecodeBase64(const string& str)
{
vector<unsigned char> vchRet = DecodeBase64(str.c_str());
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
}
string EncodeBase32(const unsigned char* pch, size_t len)
{
static const char *pbase32 = "abcdefghijklmnopqrstuvwxyz234567";
string strRet="";
strRet.reserve((len+4)/5*8);
int mode=0, left=0;
const unsigned char *pchEnd = pch+len;
while (pch<pchEnd)
{
int enc = *(pch++);
switch (mode)
{
case 0: // we have no bits
strRet += pbase32[enc >> 3];
left = (enc & 7) << 2;
mode = 1;
break;
case 1: // we have three bits
strRet += pbase32[left | (enc >> 6)];
strRet += pbase32[(enc >> 1) & 31];
left = (enc & 1) << 4;
mode = 2;
break;
case 2: // we have one bit
strRet += pbase32[left | (enc >> 4)];
left = (enc & 15) << 1;
mode = 3;
break;
case 3: // we have four bits
strRet += pbase32[left | (enc >> 7)];
strRet += pbase32[(enc >> 2) & 31];
left = (enc & 3) << 3;
mode = 4;
break;
case 4: // we have two bits
strRet += pbase32[left | (enc >> 5)];
strRet += pbase32[enc & 31];
mode = 0;
}
}
static const int nPadding[5] = {0, 6, 4, 3, 1};
if (mode)
{
strRet += pbase32[left];
for (int n=0; n<nPadding[mode]; n++)
strRet += '=';
}
return strRet;
}
string EncodeBase32(const string& str)
{
return EncodeBase32((const unsigned char*)str.c_str(), str.size());
}
vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid)
{
static const int decode32_table[256] =
{
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 26, 27, 28, 29, 30, 31, -1, -1, -1, -1,
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
if (pfInvalid)
*pfInvalid = false;
vector<unsigned char> vchRet;
vchRet.reserve((strlen(p))*5/8);
int mode = 0;
int left = 0;
while (1)
{
int dec = decode32_table[(unsigned char)*p];
if (dec == -1) break;
p++;
switch (mode)
{
case 0: // we have no bits and get 5
left = dec;
mode = 1;
break;
case 1: // we have 5 bits and keep 2
vchRet.push_back((left<<3) | (dec>>2));
left = dec & 3;
mode = 2;
break;
case 2: // we have 2 bits and keep 7
left = left << 5 | dec;
mode = 3;
break;
case 3: // we have 7 bits and keep 4
vchRet.push_back((left<<1) | (dec>>4));
left = dec & 15;
mode = 4;
break;
case 4: // we have 4 bits, and keep 1
vchRet.push_back((left<<4) | (dec>>1));
left = dec & 1;
mode = 5;
break;
case 5: // we have 1 bit, and keep 6
left = left << 5 | dec;
mode = 6;
break;
case 6: // we have 6 bits, and keep 3
vchRet.push_back((left<<2) | (dec>>3));
left = dec & 7;
mode = 7;
break;
case 7: // we have 3 bits, and keep 0
vchRet.push_back((left<<5) | dec);
mode = 0;
break;
}
}
if (pfInvalid)
switch (mode)
{
case 0: // 8n base32 characters processed: ok
break;
case 1: // 8n+1 base32 characters processed: impossible
case 3: // +3
case 6: // +6
*pfInvalid = true;
break;
case 2: // 8n+2 base32 characters processed: require '======'
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || p[4] != '=' || p[5] != '=' || decode32_table[(unsigned char)p[6]] != -1)
*pfInvalid = true;
break;
case 4: // 8n+4 base32 characters processed: require '===='
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || decode32_table[(unsigned char)p[4]] != -1)
*pfInvalid = true;
break;
case 5: // 8n+5 base32 characters processed: require '==='
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || decode32_table[(unsigned char)p[3]] != -1)
*pfInvalid = true;
break;
case 7: // 8n+7 base32 characters processed: require '='
if (left || p[0] != '=' || decode32_table[(unsigned char)p[1]] != -1)
*pfInvalid = true;
break;
}
return vchRet;
}
string DecodeBase32(const string& str)
{
vector<unsigned char> vchRet = DecodeBase32(str.c_str());
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
}
bool ParseInt32(const std::string& str, int32_t *out)
{
char *endp = NULL;
errno = 0; // strtol will not set errno if valid
long int n = strtol(str.c_str(), &endp, 10);
if(out) *out = (int)n;
// Note that strtol returns a *long int*, so even if strtol doesn't report a over/underflow
// we still have to check that the returned value is within the range of an *int32_t*. On 64-bit
// platforms the size of these types may be different.
return endp && *endp == 0 && !errno &&
n >= std::numeric_limits<int32_t>::min() &&
n <= std::numeric_limits<int32_t>::max();
}
std::string FormatParagraph(const std::string in, size_t width, size_t indent)
{
std::stringstream out;
size_t col = 0;
size_t ptr = 0;
while(ptr < in.size())
{
// Find beginning of next word
ptr = in.find_first_not_of(' ', ptr);
if (ptr == std::string::npos)
break;
// Find end of next word
size_t endword = in.find_first_of(' ', ptr);
if (endword == std::string::npos)
endword = in.size();
// Add newline and indentation if this wraps over the allowed width
if (col > 0)
{
if ((col + endword - ptr) > width)
{
out << '\n';
for(size_t i=0; i<indent; ++i)
out << ' ';
col = 0;
} else
out << ' ';
}
// Append word
out << in.substr(ptr, endword - ptr);
col += endword - ptr + 1;
ptr = endword;
}
return out.str();
}
std::string i64tostr(int64_t n)
{
return strprintf("%d", n);
}
std::string itostr(int n)
{
return strprintf("%d", n);
}
int64_t atoi64(const char* psz)
{
#ifdef _MSC_VER
return _atoi64(psz);
#else
return strtoll(psz, NULL, 10);
#endif
}
int64_t atoi64(const std::string& str)
{
#ifdef _MSC_VER
return _atoi64(str.c_str());
#else
return strtoll(str.c_str(), NULL, 10);
#endif
}
int atoi(const std::string& str)
{
return atoi(str.c_str());
}

View File

@@ -0,0 +1,98 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
/**
* Utilities for converting data from/to strings.
*/
#ifndef BITCOIN_UTILSTRENCODINGS_H
#define BITCOIN_UTILSTRENCODINGS_H
#include <stdint.h>
#include <string>
#include <vector>
#define BEGIN(a) ((char*)&(a))
#define END(a) ((char*)&((&(a))[1]))
#define UBEGIN(a) ((unsigned char*)&(a))
#define UEND(a) ((unsigned char*)&((&(a))[1]))
#define ARRAYLEN(array) (sizeof(array)/sizeof((array)[0]))
/** This is needed because the foreach macro can't get over the comma in pair<t1, t2> */
#define PAIRTYPE(t1, t2) std::pair<t1, t2>
std::string SanitizeString(const std::string& str);
std::vector<unsigned char> ParseHex(const char* psz);
std::vector<unsigned char> ParseHex(const std::string& str);
signed char HexDigit(char c);
bool IsHex(const std::string& str);
std::vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid = NULL);
std::string DecodeBase64(const std::string& str);
std::string EncodeBase64(const unsigned char* pch, size_t len);
std::string EncodeBase64(const std::string& str);
std::vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid = NULL);
std::string DecodeBase32(const std::string& str);
std::string EncodeBase32(const unsigned char* pch, size_t len);
std::string EncodeBase32(const std::string& str);
std::string i64tostr(int64_t n);
std::string itostr(int n);
int64_t atoi64(const char* psz);
int64_t atoi64(const std::string& str);
int atoi(const std::string& str);
/**
* Convert string to signed 32-bit integer with strict parse error feedback.
* @returns true if the entire string could be parsed as valid integer,
* false if not the entire string could be parsed or when overflow or underflow occurred.
*/
bool ParseInt32(const std::string& str, int32_t *out);
template<typename T>
std::string HexStr(const T itbegin, const T itend, bool fSpaces=false)
{
std::string rv;
static const char hexmap[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
rv.reserve((itend-itbegin)*3);
for(T it = itbegin; it < itend; ++it)
{
unsigned char val = (unsigned char)(*it);
if(fSpaces && it != itbegin)
rv.push_back(' ');
rv.push_back(hexmap[val>>4]);
rv.push_back(hexmap[val&15]);
}
return rv;
}
template<typename T>
inline std::string HexStr(const T& vch, bool fSpaces=false)
{
return HexStr(vch.begin(), vch.end(), fSpaces);
}
/**
* Format a paragraph of text to a fixed width, adding spaces for
* indentation to any added line.
*/
std::string FormatParagraph(const std::string in, size_t width=79, size_t indent=0);
/**
* Timing-attack-resistant comparison.
* Takes time proportional to length
* of first argument.
*/
template <typename T>
bool TimingResistantEqual(const T& a, const T& b)
{
if (b.size() == 0) return a.size() == 0;
size_t accumulator = a.size() ^ b.size();
for (size_t i = 0; i < a.size(); i++)
accumulator |= a[i] ^ b[i%b.size()];
return accumulator == 0;
}
#endif // BITCOIN_UTILSTRENCODINGS_H

24
algo/hodl/wolf-aes.h Normal file
View File

@@ -0,0 +1,24 @@
#ifndef __WOLF_AES_H
#define __WOLF_AES_H
#include <stdint.h>
#include <x86intrin.h>
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf);
#ifdef __AVX__
#define AES_PARALLEL_N 8
#define BLOCK_COUNT 256
void AES256CBC( __m128i** data, const __m128i** next, __m128i ExpandedKey[][16],
__m128i* IV );
#else
void AES256CBC( __m128i *Ciphertext, const __m128i *Plaintext,
const __m128i *ExpandedKey, __m128i IV, uint32_t BlockCount );
#endif
#endif // __WOLF_AES_H