mirror of
https://github.com/JayDDee/cpuminer-opt.git
synced 2025-09-17 23:44:27 +00:00
Initial upload v3.4.7
This commit is contained in:
0
algo/hodl/.dirstamp
Normal file
0
algo/hodl/.dirstamp
Normal file
181
algo/hodl/aes.c
Normal file
181
algo/hodl/aes.c
Normal file
@@ -0,0 +1,181 @@
|
||||
#include <stdint.h>
|
||||
#include <x86intrin.h>
|
||||
#include "wolf-aes.h"
|
||||
#include "miner.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
|
||||
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
|
||||
{
|
||||
__m128i tmp4;
|
||||
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
|
||||
tmp4 = _mm_slli_si128(*tmp1, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
|
||||
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
|
||||
}
|
||||
|
||||
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
|
||||
{
|
||||
__m128i tmp2, tmp4;
|
||||
|
||||
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
|
||||
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
|
||||
tmp4 = _mm_slli_si128(*tmp3, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
|
||||
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
|
||||
}
|
||||
|
||||
// Special thanks to Intel for helping me
|
||||
// with ExpandAESKey256() and its subroutines
|
||||
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf)
|
||||
{
|
||||
__m128i tmp1, tmp2, tmp3;
|
||||
|
||||
tmp1 = keys[0] = KeyBuf[0];
|
||||
tmp3 = keys[1] = KeyBuf[1];
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[2] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[3] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[4] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[5] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[6] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[7] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[8] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[9] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[10] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[11] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[12] = tmp1;
|
||||
ExpandAESKey256_sub2(&tmp1, &tmp3);
|
||||
keys[13] = tmp3;
|
||||
|
||||
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
|
||||
ExpandAESKey256_sub1(&tmp1, &tmp2);
|
||||
keys[14] = tmp1;
|
||||
}
|
||||
|
||||
#ifdef __AVX__
|
||||
|
||||
#define AESENC(i,j) \
|
||||
State[j] = _mm_aesenc_si128(State[j], ExpandedKey[j][i]);
|
||||
|
||||
#define AESENC_N(i) \
|
||||
AESENC(i,0) \
|
||||
AESENC(i,1) \
|
||||
AESENC(i,2) \
|
||||
AESENC(i,3) \
|
||||
AESENC(i,4) \
|
||||
AESENC(i,5) \
|
||||
AESENC(i,6) \
|
||||
AESENC(i,7) \
|
||||
|
||||
|
||||
static inline void AES256Core(__m128i* State, __m128i ExpandedKey[][16])
|
||||
{
|
||||
const uint32_t N = AES_PARALLEL_N;
|
||||
|
||||
for(int j=0; j<N; ++j) {
|
||||
State[j] = _mm_xor_si128(State[j], ExpandedKey[j][0]);
|
||||
}
|
||||
|
||||
AESENC_N(1)
|
||||
AESENC_N(2)
|
||||
AESENC_N(3)
|
||||
AESENC_N(4)
|
||||
AESENC_N(5)
|
||||
AESENC_N(6)
|
||||
AESENC_N(7)
|
||||
AESENC_N(8)
|
||||
AESENC_N(9)
|
||||
AESENC_N(10)
|
||||
AESENC_N(11)
|
||||
AESENC_N(12)
|
||||
AESENC_N(13)
|
||||
|
||||
for(int j=0; j<N; ++j) {
|
||||
State[j] = _mm_aesenclast_si128(State[j], ExpandedKey[j][14]);
|
||||
}
|
||||
}
|
||||
|
||||
void AES256CBC(__m128i** data, const __m128i** next, __m128i ExpandedKey[][16], __m128i* IV)
|
||||
{
|
||||
const uint32_t N = AES_PARALLEL_N;
|
||||
__m128i State[N];
|
||||
for(int j=0; j<N; ++j) {
|
||||
State[j] = _mm_xor_si128( _mm_xor_si128(data[j][0], next[j][0]), IV[j]);
|
||||
}
|
||||
|
||||
AES256Core(State, ExpandedKey);
|
||||
for(int j=0; j<N; ++j) {
|
||||
data[j][0] = State[j];
|
||||
}
|
||||
|
||||
for(int i = 1; i < BLOCK_COUNT; ++i) {
|
||||
for(int j=0; j<N; ++j) {
|
||||
State[j] = _mm_xor_si128( _mm_xor_si128(data[j][i], next[j][i]), data[j][i - 1]);
|
||||
}
|
||||
AES256Core(State, ExpandedKey);
|
||||
for(int j=0; j<N; ++j) {
|
||||
data[j][i] = State[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else // NO AVX
|
||||
|
||||
static inline __m128i AES256Core(__m128i State, const __m128i *ExpandedKey)
|
||||
{
|
||||
State = _mm_xor_si128(State, ExpandedKey[0]);
|
||||
|
||||
for(int i = 1; i < 14; ++i) State = _mm_aesenc_si128(State, ExpandedKey[i]);
|
||||
|
||||
return(_mm_aesenclast_si128(State, ExpandedKey[14]));
|
||||
}
|
||||
|
||||
void AES256CBC(__m128i *Ciphertext, const __m128i *Plaintext, const __m128i *ExpandedKey, __m128i IV, uint32_t BlockCount)
|
||||
{
|
||||
__m128i State = _mm_xor_si128(Plaintext[0], IV);
|
||||
State = AES256Core(State, ExpandedKey);
|
||||
Ciphertext[0] = State;
|
||||
|
||||
for(int i = 1; i < BlockCount; ++i)
|
||||
{
|
||||
State = _mm_xor_si128(Plaintext[i], Ciphertext[i - 1]);
|
||||
State = AES256Core(State, ExpandedKey);
|
||||
Ciphertext[i] = State;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
171
algo/hodl/block.h
Normal file
171
algo/hodl/block.h
Normal file
@@ -0,0 +1,171 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_PRIMITIVES_BLOCK_H
|
||||
#define BITCOIN_PRIMITIVES_BLOCK_H
|
||||
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
|
||||
/** Nodes collect new transactions into a block, hash them into a hash tree,
|
||||
* and scan through nonce values to make the block's hash satisfy proof-of-work
|
||||
* requirements. When they solve the proof-of-work, they broadcast the block
|
||||
* to everyone and the block is added to the block chain. The first transaction
|
||||
* in the block is a special one that creates a new coin owned by the creator
|
||||
* of the block.
|
||||
*/
|
||||
class CBlockHeader
|
||||
{
|
||||
public:
|
||||
// header
|
||||
static const int32_t CURRENT_VERSION=4;
|
||||
int32_t nVersion;
|
||||
uint256 hashPrevBlock;
|
||||
uint256 hashMerkleRoot;
|
||||
uint32_t nTime;
|
||||
uint32_t nBits;
|
||||
uint32_t nNonce;
|
||||
uint32_t nStartLocation;
|
||||
uint32_t nFinalCalculation;
|
||||
|
||||
CBlockHeader()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(this->nVersion);
|
||||
nVersion = this->nVersion;
|
||||
READWRITE(hashPrevBlock);
|
||||
READWRITE(hashMerkleRoot);
|
||||
READWRITE(nTime);
|
||||
READWRITE(nBits);
|
||||
READWRITE(nNonce);
|
||||
READWRITE(nStartLocation);
|
||||
READWRITE(nFinalCalculation);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
nVersion = CBlockHeader::CURRENT_VERSION;
|
||||
hashPrevBlock.SetNull();
|
||||
hashMerkleRoot.SetNull();
|
||||
nTime = 0;
|
||||
nBits = 0;
|
||||
nNonce = 0;
|
||||
nStartLocation = 0;
|
||||
nFinalCalculation = 0;
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return (nBits == 0);
|
||||
}
|
||||
|
||||
uint256 GetHash() const;
|
||||
uint256 GetMidHash() const;
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad,int nThreads);
|
||||
uint256 FindBestPatternHash(int& collisions,char *scratchpad);
|
||||
|
||||
int64_t GetBlockTime() const
|
||||
{
|
||||
return (int64_t)nTime;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class CBlock : public CBlockHeader
|
||||
{
|
||||
public:
|
||||
// network and disk
|
||||
//std::vector<CTransaction> vtx;
|
||||
std::vector<int> vtx;
|
||||
|
||||
// memory only
|
||||
mutable std::vector<uint256> vMerkleTree;
|
||||
|
||||
CBlock()
|
||||
{
|
||||
SetNull();
|
||||
}
|
||||
|
||||
CBlock(const CBlockHeader &header)
|
||||
{
|
||||
SetNull();
|
||||
*((CBlockHeader*)this) = header;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
READWRITE(*(CBlockHeader*)this);
|
||||
READWRITE(vtx);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
CBlockHeader::SetNull();
|
||||
vtx.clear();
|
||||
vMerkleTree.clear();
|
||||
}
|
||||
|
||||
CBlockHeader GetBlockHeader() const
|
||||
{
|
||||
CBlockHeader block;
|
||||
block.nVersion = nVersion;
|
||||
block.hashPrevBlock = hashPrevBlock;
|
||||
block.hashMerkleRoot = hashMerkleRoot;
|
||||
block.nTime = nTime;
|
||||
block.nBits = nBits;
|
||||
block.nNonce = nNonce;
|
||||
block.nStartLocation = nStartLocation;
|
||||
block.nFinalCalculation = nFinalCalculation;
|
||||
return block;
|
||||
}
|
||||
|
||||
std::string ToString() const;
|
||||
};
|
||||
|
||||
|
||||
/** Describes a place in the block chain to another node such that if the
|
||||
* other node doesn't have the same branch, it can find a recent common trunk.
|
||||
* The further back it is, the further before the fork it may be.
|
||||
*/
|
||||
struct CBlockLocator
|
||||
{
|
||||
std::vector<uint256> vHave;
|
||||
|
||||
CBlockLocator() {}
|
||||
|
||||
CBlockLocator(const std::vector<uint256>& vHaveIn)
|
||||
{
|
||||
vHave = vHaveIn;
|
||||
}
|
||||
|
||||
ADD_SERIALIZE_METHODS;
|
||||
|
||||
template <typename Stream, typename Operation>
|
||||
inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) {
|
||||
if (!(nType & SER_GETHASH))
|
||||
READWRITE(nVersion);
|
||||
READWRITE(vHave);
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
vHave.clear();
|
||||
}
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
return vHave.empty();
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_PRIMITIVES_BLOCK_H
|
||||
70
algo/hodl/common.h
Normal file
70
algo/hodl/common.h
Normal file
@@ -0,0 +1,70 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_COMMON_H
|
||||
#define BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
#if defined(HAVE_CONFIG_H)
|
||||
#include "bitcoin-config.h"
|
||||
#endif
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
uint16_t static inline ReadLE16(const unsigned char* ptr)
|
||||
{
|
||||
return le16toh(*((uint16_t*)ptr));
|
||||
}
|
||||
|
||||
uint32_t static inline ReadLE32(const unsigned char* ptr)
|
||||
{
|
||||
return le32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadLE64(const unsigned char* ptr)
|
||||
{
|
||||
return le64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteLE16(unsigned char* ptr, uint16_t x)
|
||||
{
|
||||
*((uint16_t*)ptr) = htole16(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htole32(x);
|
||||
}
|
||||
|
||||
void static inline WriteLE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htole64(x);
|
||||
}
|
||||
|
||||
uint32_t static inline ReadBE32(const unsigned char* ptr)
|
||||
{
|
||||
return be32toh(*((uint32_t*)ptr));
|
||||
}
|
||||
|
||||
uint64_t static inline ReadBE64(const unsigned char* ptr)
|
||||
{
|
||||
return be64toh(*((uint64_t*)ptr));
|
||||
}
|
||||
|
||||
void static inline WriteBE32(unsigned char* ptr, uint32_t x)
|
||||
{
|
||||
*((uint32_t*)ptr) = htobe32(x);
|
||||
}
|
||||
|
||||
void static inline WriteBE64(unsigned char* ptr, uint64_t x)
|
||||
{
|
||||
*((uint64_t*)ptr) = htobe64(x);
|
||||
}
|
||||
|
||||
#endif // BITCOIN_CRYPTO_COMMON_H
|
||||
|
||||
//#endif
|
||||
83
algo/hodl/hash.cpp
Normal file
83
algo/hodl/hash.cpp
Normal file
@@ -0,0 +1,83 @@
|
||||
// Copyright (c) 2013-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hash.h"
|
||||
#include "common.h"
|
||||
#include "hmac_sha512.h"
|
||||
|
||||
|
||||
inline uint32_t ROTL32(uint32_t x, int8_t r)
|
||||
{
|
||||
return (x << r) | (x >> (32 - r));
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash)
|
||||
{
|
||||
// The following is MurmurHash3 (x86_32), see http://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
|
||||
uint32_t h1 = nHashSeed;
|
||||
if (vDataToHash.size() > 0)
|
||||
{
|
||||
const uint32_t c1 = 0xcc9e2d51;
|
||||
const uint32_t c2 = 0x1b873593;
|
||||
|
||||
const int nblocks = vDataToHash.size() / 4;
|
||||
|
||||
//----------
|
||||
// body
|
||||
const uint8_t* blocks = &vDataToHash[0] + nblocks * 4;
|
||||
|
||||
for (int i = -nblocks; i; i++) {
|
||||
uint32_t k1 = ReadLE32(blocks + i*4);
|
||||
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
|
||||
h1 ^= k1;
|
||||
h1 = ROTL32(h1, 13);
|
||||
h1 = h1 * 5 + 0xe6546b64;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
const uint8_t* tail = (const uint8_t*)(&vDataToHash[0] + nblocks * 4);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
|
||||
switch (vDataToHash.size() & 3) {
|
||||
case 3:
|
||||
k1 ^= tail[2] << 16;
|
||||
case 2:
|
||||
k1 ^= tail[1] << 8;
|
||||
case 1:
|
||||
k1 ^= tail[0];
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1, 15);
|
||||
k1 *= c2;
|
||||
h1 ^= k1;
|
||||
};
|
||||
}
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
h1 ^= vDataToHash.size();
|
||||
h1 ^= h1 >> 16;
|
||||
h1 *= 0x85ebca6b;
|
||||
h1 ^= h1 >> 13;
|
||||
h1 *= 0xc2b2ae35;
|
||||
h1 ^= h1 >> 16;
|
||||
|
||||
return h1;
|
||||
}
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64])
|
||||
{
|
||||
unsigned char num[4];
|
||||
num[0] = (nChild >> 24) & 0xFF;
|
||||
num[1] = (nChild >> 16) & 0xFF;
|
||||
num[2] = (nChild >> 8) & 0xFF;
|
||||
num[3] = (nChild >> 0) & 0xFF;
|
||||
CHMAC_SHA512(chainCode.begin(), chainCode.size()).Write(&header, 1).Write(data, 32).Write(num, 4).Finalize(output);
|
||||
}
|
||||
|
||||
176
algo/hodl/hash.h
Normal file
176
algo/hodl/hash.h
Normal file
@@ -0,0 +1,176 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2013 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_HASH_H
|
||||
#define BITCOIN_HASH_H
|
||||
|
||||
#include <iostream>
|
||||
//#include "ripemd160.h"
|
||||
#include "sha256.h"
|
||||
#include "serialize.h"
|
||||
#include "hodl_uint256.h"
|
||||
//#include "version.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
static const int PROTOCOL_VERSION = 70002;
|
||||
|
||||
typedef uint256 ChainCode;
|
||||
|
||||
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
|
||||
class CHash256 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
sha.Reset().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash256& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash256& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
|
||||
/*
|
||||
class CHash160 {
|
||||
private:
|
||||
CSHA256 sha;
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
|
||||
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]) {
|
||||
unsigned char buf[sha.OUTPUT_SIZE];
|
||||
sha.Finalize(buf);
|
||||
CRIPEMD160().Write(buf, sha.OUTPUT_SIZE).Finalize(hash);
|
||||
}
|
||||
|
||||
CHash160& Write(const unsigned char *data, size_t len) {
|
||||
sha.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
|
||||
CHash160& Reset() {
|
||||
sha.Reset();
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
*/
|
||||
|
||||
/** Compute the 256-bit hash of an object. */
|
||||
template<typename T1>
|
||||
inline uint256 Hash(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of two objects. */
|
||||
template<typename T1, typename T2>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** Compute the 256-bit hash of the concatenation of three objects. */
|
||||
template<typename T1, typename T2, typename T3>
|
||||
inline uint256 Hash(const T1 p1begin, const T1 p1end,
|
||||
const T2 p2begin, const T2 p2end,
|
||||
const T3 p3begin, const T3 p3end) {
|
||||
static const unsigned char pblank[1] = {};
|
||||
uint256 result;
|
||||
CHash256().Write(p1begin == p1end ? pblank : (const unsigned char*)&p1begin[0], (p1end - p1begin) * sizeof(p1begin[0]))
|
||||
.Write(p2begin == p2end ? pblank : (const unsigned char*)&p2begin[0], (p2end - p2begin) * sizeof(p2begin[0]))
|
||||
.Write(p3begin == p3end ? pblank : (const unsigned char*)&p3begin[0], (p3end - p3begin) * sizeof(p3begin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/** Compute the 160-bit hash an object. */
|
||||
/*
|
||||
template<typename T1>
|
||||
inline uint160 Hash160(const T1 pbegin, const T1 pend)
|
||||
{
|
||||
static unsigned char pblank[1] = {};
|
||||
uint160 result;
|
||||
CHash160().Write(pbegin == pend ? pblank : (const unsigned char*)&pbegin[0], (pend - pbegin) * sizeof(pbegin[0]))
|
||||
.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
*/
|
||||
/** Compute the 160-bit hash of a vector. */
|
||||
/*
|
||||
inline uint160 Hash160(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
return Hash160(vch.begin(), vch.end());
|
||||
}
|
||||
*/
|
||||
|
||||
/** A writer stream (for serialization) that computes a 256-bit hash. */
|
||||
class CHashWriter
|
||||
{
|
||||
private:
|
||||
CHash256 ctx;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CHashWriter& write(const char *pch, size_t size) {
|
||||
ctx.Write((const unsigned char*)pch, size);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
// invalidates the object
|
||||
uint256 GetHash() {
|
||||
uint256 result;
|
||||
ctx.Finalize((unsigned char*)&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CHashWriter& operator<<(const T& obj) {
|
||||
// Serialize to this stream
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
};
|
||||
|
||||
/** Compute the 256-bit hash of an object's serialization. */
|
||||
template<typename T>
|
||||
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
|
||||
{
|
||||
CHashWriter ss(nType, nVersion);
|
||||
ss << obj;
|
||||
return ss.GetHash();
|
||||
}
|
||||
|
||||
unsigned int MurmurHash3(unsigned int nHashSeed, const std::vector<unsigned char>& vDataToHash);
|
||||
|
||||
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
|
||||
|
||||
#endif // BITCOIN_HASH_H
|
||||
33
algo/hodl/hmac_sha512.cpp
Normal file
33
algo/hodl/hmac_sha512.cpp
Normal file
@@ -0,0 +1,33 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hmac_sha512.h"
|
||||
#include <string.h>
|
||||
|
||||
CHMAC_SHA512::CHMAC_SHA512(const unsigned char* key, size_t keylen)
|
||||
{
|
||||
unsigned char rkey[128];
|
||||
if (keylen <= 128) {
|
||||
memcpy(rkey, key, keylen);
|
||||
memset(rkey + keylen, 0, 128 - keylen);
|
||||
} else {
|
||||
CSHA512().Write(key, keylen).Finalize(rkey);
|
||||
memset(rkey + 64, 0, 64);
|
||||
}
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c;
|
||||
outer.Write(rkey, 128);
|
||||
|
||||
for (int n = 0; n < 128; n++)
|
||||
rkey[n] ^= 0x5c ^ 0x36;
|
||||
inner.Write(rkey, 128);
|
||||
}
|
||||
|
||||
void CHMAC_SHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
unsigned char temp[64];
|
||||
inner.Finalize(temp);
|
||||
outer.Write(temp, 64).Finalize(hash);
|
||||
}
|
||||
32
algo/hodl/hmac_sha512.h
Normal file
32
algo/hodl/hmac_sha512.h
Normal file
@@ -0,0 +1,32 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
#define BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
|
||||
#include "sha512.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for HMAC-SHA-512. */
|
||||
class CHMAC_SHA512
|
||||
{
|
||||
private:
|
||||
CSHA512 outer;
|
||||
CSHA512 inner;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CHMAC_SHA512(const unsigned char* key, size_t keylen);
|
||||
CHMAC_SHA512& Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
inner.Write(data, len);
|
||||
return *this;
|
||||
}
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_HMAC_SHA512_H
|
||||
75
algo/hodl/hodl-endian.h
Normal file
75
algo/hodl/hodl-endian.h
Normal file
@@ -0,0 +1,75 @@
|
||||
#ifndef HODL_BYTESWAP_H
|
||||
#define HODL_BYTESWAP_H 1
|
||||
|
||||
#define __bswap_constant_16(x) \
|
||||
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
|
||||
|
||||
static __inline unsigned short int
|
||||
__bswap_16 (unsigned short int __bsx)
|
||||
{
|
||||
return __bswap_constant_16 (__bsx);
|
||||
}
|
||||
|
||||
// LE
|
||||
# define htobe16(x) __bswap_16 (x)
|
||||
# define htole16(x) (x)
|
||||
# define be16toh(x) __bswap_16 (x)
|
||||
# define le16toh(x) (x)
|
||||
|
||||
// BE
|
||||
//# define htole16(x) __bswap_16 (x)
|
||||
//# define htobe16(x) (x)
|
||||
//# define le16toh(x) __bswap_16 (x)
|
||||
//# define be16toh(x) (x)
|
||||
|
||||
#define __bswap_constant_32(x) \
|
||||
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
|
||||
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
|
||||
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __builtin_bswap32 (__bsx);
|
||||
}
|
||||
|
||||
// LE
|
||||
# define htobe32(x) __bswap_32 (x)
|
||||
# define htole32(x) (x)
|
||||
# define be32toh(x) __bswap_32 (x)
|
||||
# define le32toh(x) (x)
|
||||
|
||||
// BE
|
||||
//# define htole32(x) __bswap_32 (x)
|
||||
//# define htobe32(x) (x)
|
||||
//# define le32toh(x) __bswap_32 (x)
|
||||
//# define be32toh(x) (x)
|
||||
|
||||
# define __bswap_constant_64(x) \
|
||||
((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56))
|
||||
|
||||
static __inline uint64_t
|
||||
__bswap_64 (uint64_t __bsx)
|
||||
{
|
||||
return __bswap_constant_64 (__bsx);
|
||||
}
|
||||
|
||||
// LE
|
||||
# define htobe64(x) __bswap_64 (x)
|
||||
# define htole64(x) (x)
|
||||
# define be64toh(x) __bswap_64 (x)
|
||||
# define le64toh(x) (x)
|
||||
|
||||
// BE
|
||||
//# define htole64(x) __bswap_64 (x)
|
||||
//# define htobe64(x) (x)
|
||||
//# define le64toh(x) __bswap_64 (x)
|
||||
//# define be64toh(x) (x)
|
||||
|
||||
#endif
|
||||
112
algo/hodl/hodl-gate.c
Normal file
112
algo/hodl/hodl-gate.c
Normal file
@@ -0,0 +1,112 @@
|
||||
#include <memory.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "miner.h"
|
||||
//#include "algo-gate-api.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl.h"
|
||||
#include "hodl-wolf.h"
|
||||
|
||||
#define HODL_NSTARTLOC_INDEX 20
|
||||
#define HODL_NFINALCALC_INDEX 21
|
||||
|
||||
static struct work hodl_work;
|
||||
|
||||
pthread_barrier_t hodl_barrier;
|
||||
|
||||
// All references to this buffer are local to this file, so no args
|
||||
// need to be passed.
|
||||
unsigned char *hodl_scratchbuf = NULL;
|
||||
|
||||
void hodl_set_target( struct work* work, double diff )
|
||||
{
|
||||
diff_to_target(work->target, diff / 8388608.0 );
|
||||
}
|
||||
|
||||
void hodl_le_build_stratum_request( char* req, struct work* work,
|
||||
struct stratum_ctx *sctx )
|
||||
{
|
||||
uint32_t ntime, nonce, nstartloc, nfinalcalc;
|
||||
char ntimestr[9], noncestr[9], nstartlocstr[9], nfinalcalcstr[9];
|
||||
unsigned char *xnonce2str;
|
||||
|
||||
le32enc( &ntime, work->data[ algo_gate.ntime_index ] );
|
||||
le32enc( &nonce, work->data[ algo_gate.nonce_index ] );
|
||||
bin2hex( ntimestr, (char*)(&ntime), sizeof(uint32_t) );
|
||||
bin2hex( noncestr, (char*)(&nonce), sizeof(uint32_t) );
|
||||
xnonce2str = abin2hex(work->xnonce2, work->xnonce2_len );
|
||||
le32enc( &nstartloc, work->data[ HODL_NSTARTLOC_INDEX ] );
|
||||
le32enc( &nfinalcalc, work->data[ HODL_NFINALCALC_INDEX ] );
|
||||
bin2hex( nstartlocstr, (char*)(&nstartloc), sizeof(uint32_t) );
|
||||
bin2hex( nfinalcalcstr, (char*)(&nfinalcalc), sizeof(uint32_t) );
|
||||
sprintf( req, "{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}",
|
||||
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr,
|
||||
nstartlocstr, nfinalcalcstr );
|
||||
free( xnonce2str );
|
||||
}
|
||||
|
||||
void hodl_build_extraheader( struct work* g_work, struct stratum_ctx *sctx )
|
||||
{
|
||||
g_work->data[ algo_gate.ntime_index ] = le32dec( sctx->job.ntime );
|
||||
g_work->data[ algo_gate.nbits_index ] = le32dec( sctx->job.nbits );
|
||||
g_work->data[22] = 0x80000000;
|
||||
g_work->data[31] = 0x00000280;
|
||||
}
|
||||
|
||||
// called only by thread 0, saves a backup of g_work
|
||||
void hodl_get_new_work( struct work* work, struct work* g_work)
|
||||
{
|
||||
work_free( &hodl_work );
|
||||
work_copy( &hodl_work, g_work );
|
||||
hodl_work.data[ algo_gate.nonce_index ] = ( clock() + rand() ) % 9999;
|
||||
}
|
||||
|
||||
// called by every thread, copies the backup to each thread's work.
|
||||
void hodl_resync_threads( struct work* work )
|
||||
{
|
||||
int nonce_index = algo_gate.nonce_index;
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
if ( memcmp( work->data, hodl_work.data, algo_gate.work_cmp_size ) )
|
||||
{
|
||||
work_free( work );
|
||||
work_copy( work, &hodl_work );
|
||||
}
|
||||
work->data[ nonce_index ] = swab32( hodl_work.data[ nonce_index ] );
|
||||
}
|
||||
|
||||
bool hodl_do_this_thread( int thr_id )
|
||||
{
|
||||
return ( thr_id == 0 );
|
||||
}
|
||||
|
||||
int hodl_scanhash( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifdef NO_AES_NI
|
||||
GetPsuedoRandomData( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl( thr_id, work, max_nonce, hashes_done );
|
||||
#else
|
||||
GenRandomGarbage( hodl_scratchbuf, work->data, thr_id );
|
||||
pthread_barrier_wait( &hodl_barrier );
|
||||
return scanhash_hodl_wolf( thr_id, work, max_nonce, hashes_done );
|
||||
#endif
|
||||
}
|
||||
|
||||
bool register_hodl_algo( algo_gate_t* gate )
|
||||
{
|
||||
pthread_barrier_init( &hodl_barrier, NULL, opt_n_threads );
|
||||
gate->optimizations = SSE2_OPT | AES_OPT | AVX_OPT | AVX2_OPT;
|
||||
gate->scanhash = (void*)&hodl_scanhash;
|
||||
gate->get_new_work = (void*)&hodl_get_new_work;
|
||||
gate->set_target = (void*)&hodl_set_target;
|
||||
gate->build_stratum_request = (void*)&hodl_le_build_stratum_request;
|
||||
gate->build_extraheader = (void*)&hodl_build_extraheader;
|
||||
gate->resync_threads = (void*)&hodl_resync_threads;
|
||||
gate->do_this_thread = (void*)&hodl_do_this_thread;
|
||||
gate->work_cmp_size = 76;
|
||||
hodl_scratchbuf = (unsigned char*)malloc( 1 << 30 );
|
||||
return ( hodl_scratchbuf != NULL );
|
||||
}
|
||||
|
||||
|
||||
6
algo/hodl/hodl-gate.h
Normal file
6
algo/hodl/hodl-gate.h
Normal file
@@ -0,0 +1,6 @@
|
||||
#include "algo-gate-api.h"
|
||||
|
||||
extern unsigned char *hodl_scratchbuf;
|
||||
|
||||
bool register_hodl_algo ( algo_gate_t* gate );
|
||||
|
||||
210
algo/hodl/hodl-wolf.c
Normal file
210
algo/hodl/hodl-wolf.c
Normal file
@@ -0,0 +1,210 @@
|
||||
#include <string.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/sha.h>
|
||||
#include <x86intrin.h>
|
||||
#include "sha512-avx.h"
|
||||
#include "wolf-aes.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl-wolf.h"
|
||||
#include "miner.h"
|
||||
|
||||
#ifndef NO_AES_NI
|
||||
|
||||
void GenerateGarbageCore(CacheEntry *Garbage, int ThreadID, int ThreadCount, void *MidHash)
|
||||
{
|
||||
#ifdef __AVX__
|
||||
uint64_t* TempBufs[SHA512_PARALLEL_N];
|
||||
uint64_t* desination[SHA512_PARALLEL_N];
|
||||
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
TempBufs[i] = (uint64_t*)malloc(32);
|
||||
memcpy(TempBufs[i], MidHash, 32);
|
||||
}
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); i+= SHA512_PARALLEL_N) {
|
||||
for(int j=0; j<SHA512_PARALLEL_N; ++j) {
|
||||
((uint32_t*)TempBufs[j])[0] = i + j;
|
||||
desination[j] = (uint64_t*)((uint8_t *)Garbage + ((i+j) * GARBAGE_CHUNK_SIZE));
|
||||
}
|
||||
sha512Compute32b_parallel(TempBufs, desination);
|
||||
}
|
||||
|
||||
for (int i=0; i<SHA512_PARALLEL_N; ++i) {
|
||||
free(TempBufs[i]);
|
||||
}
|
||||
#else
|
||||
uint32_t TempBuf[8];
|
||||
memcpy(TempBuf, MidHash, 32);
|
||||
|
||||
uint32_t StartChunk = ThreadID * (TOTAL_CHUNKS / ThreadCount);
|
||||
for(uint32_t i = StartChunk; i < StartChunk + (TOTAL_CHUNKS / ThreadCount); ++i)
|
||||
{
|
||||
TempBuf[0] = i;
|
||||
SHA512((uint8_t *)TempBuf, 32, ((uint8_t *)Garbage) + (i * GARBAGE_CHUNK_SIZE));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
void Rev256(uint32_t *Dest, const uint32_t *Src)
|
||||
{
|
||||
for(int i = 0; i < 8; ++i) Dest[i] = swab32(Src[i]);
|
||||
}
|
||||
*/
|
||||
|
||||
int scanhash_hodl_wolf( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
#ifdef __AVX__
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
|
||||
CacheEntry Cache[AES_PARALLEL_N];
|
||||
__m128i* data[AES_PARALLEL_N];
|
||||
const __m128i* next[AES_PARALLEL_N];
|
||||
uint32_t CollisionCount = 0;
|
||||
|
||||
for ( int n=0; n<AES_PARALLEL_N; ++n )
|
||||
{
|
||||
data[n] = Cache[n].dqwords;
|
||||
}
|
||||
|
||||
// Search for pattern in psuedorandom data
|
||||
int searchNumber = COMPARE_SIZE / opt_n_threads;
|
||||
int startLoc = threadNumber * searchNumber;
|
||||
|
||||
for ( int32_t k = startLoc; k < startLoc + searchNumber && !work_restart[threadNumber].restart; k += AES_PARALLEL_N )
|
||||
{
|
||||
// copy data to first l2 cache
|
||||
for ( int n=0; n<AES_PARALLEL_N; ++n )
|
||||
{
|
||||
memcpy(Cache[n].dwords, Garbage + k + n, GARBAGE_SLICE_SIZE);
|
||||
}
|
||||
|
||||
for(int j = 0; j < AES_ITERATIONS; ++j)
|
||||
{
|
||||
__m128i ExpKey[AES_PARALLEL_N][16];
|
||||
__m128i ivs[AES_PARALLEL_N];
|
||||
|
||||
// use last 4 bytes of first cache as next location
|
||||
for(int n=0; n<AES_PARALLEL_N; ++n) {
|
||||
uint32_t nextLocation = Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 1] & (COMPARE_SIZE - 1); //% COMPARE_SIZE;
|
||||
next[n] = Garbage[nextLocation].dqwords;
|
||||
|
||||
__m128i last[2];
|
||||
last[0] = _mm_xor_si128(Cache[n].dqwords[254], next[n][254]);
|
||||
last[1] = _mm_xor_si128(Cache[n].dqwords[255], next[n][255]);
|
||||
|
||||
// Key is last 32b of Cache
|
||||
// IV is last 16b of Cache
|
||||
ExpandAESKey256(ExpKey[n], last);
|
||||
ivs[n] = last[1];
|
||||
}
|
||||
AES256CBC(data, next, ExpKey, ivs);
|
||||
}
|
||||
|
||||
for(int n=0; n<AES_PARALLEL_N; ++n)
|
||||
if((Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 1] & (COMPARE_SIZE - 1)) < 1000)
|
||||
{
|
||||
uint32_t BlockHdr[22], FinalPoW[8];
|
||||
|
||||
swab32_array( BlockHdr, pdata, 20 );
|
||||
|
||||
BlockHdr[20] = k + n;
|
||||
BlockHdr[21] = Cache[n].dwords[(GARBAGE_SLICE_SIZE >> 2) - 2];
|
||||
|
||||
sha256d( (uint8_t *)FinalPoW, (uint8_t *)BlockHdr, 88 );
|
||||
CollisionCount++;
|
||||
if( FinalPoW[7] <= ptarget[7] )
|
||||
{
|
||||
pdata[20] = swab32( BlockHdr[20] );
|
||||
pdata[21] = swab32( BlockHdr[21] );
|
||||
*hashes_done = CollisionCount;
|
||||
return(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*hashes_done = CollisionCount;
|
||||
return(0);
|
||||
|
||||
|
||||
#else // no AVX
|
||||
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t BlockHdr[22], FinalPoW[8];
|
||||
CacheEntry *Garbage = (CacheEntry*)hodl_scratchbuf;
|
||||
CacheEntry Cache;
|
||||
uint32_t CollisionCount = 0;
|
||||
|
||||
swab32_array( BlockHdr, pdata, 20 );
|
||||
// Search for pattern in psuedorandom data
|
||||
int searchNumber = COMPARE_SIZE / opt_n_threads;
|
||||
int startLoc = threadNumber * searchNumber;
|
||||
|
||||
for(int32_t k = startLoc; k < startLoc + searchNumber && !work_restart[threadNumber].restart; k++)
|
||||
{
|
||||
// copy data to first l2 cache
|
||||
memcpy(Cache.dwords, Garbage + k, GARBAGE_SLICE_SIZE);
|
||||
#ifndef NO_AES_NI
|
||||
for(int j = 0; j < AES_ITERATIONS; j++)
|
||||
{
|
||||
CacheEntry TmpXOR;
|
||||
__m128i ExpKey[16];
|
||||
|
||||
// use last 4 bytes of first cache as next location
|
||||
uint32_t nextLocation = Cache.dwords[(GARBAGE_SLICE_SIZE >> 2)
|
||||
- 1] & (COMPARE_SIZE - 1); //% COMPARE_SIZE;
|
||||
|
||||
// Copy data from indicated location to second l2 cache -
|
||||
memcpy(&TmpXOR, Garbage + nextLocation, GARBAGE_SLICE_SIZE);
|
||||
//XOR location data into second cache
|
||||
for( int i = 0; i < (GARBAGE_SLICE_SIZE >> 4); ++i )
|
||||
TmpXOR.dqwords[i] = _mm_xor_si128( Cache.dqwords[i],
|
||||
TmpXOR.dqwords[i] );
|
||||
// Key is last 32b of TmpXOR
|
||||
// IV is last 16b of TmpXOR
|
||||
|
||||
ExpandAESKey256( ExpKey, TmpXOR.dqwords +
|
||||
(GARBAGE_SLICE_SIZE / sizeof(__m128i)) - 2 );
|
||||
AES256CBC( Cache.dqwords, TmpXOR.dqwords, ExpKey,
|
||||
TmpXOR.dqwords[ (GARBAGE_SLICE_SIZE / sizeof(__m128i))
|
||||
- 1 ], 256 ); }
|
||||
#endif
|
||||
// use last X bits as solution
|
||||
if( ( Cache.dwords[ (GARBAGE_SLICE_SIZE >> 2) - 1 ]
|
||||
& (COMPARE_SIZE - 1) ) < 1000 )
|
||||
{
|
||||
BlockHdr[20] = k;
|
||||
BlockHdr[21] = Cache.dwords[ (GARBAGE_SLICE_SIZE >> 2) - 2 ];
|
||||
sha256d( (uint8_t *)FinalPoW, (uint8_t *)BlockHdr, 88 );
|
||||
CollisionCount++;
|
||||
if( FinalPoW[7] <= ptarget[7] )
|
||||
{
|
||||
pdata[20] = swab32( BlockHdr[20] );
|
||||
pdata[21] = swab32( BlockHdr[21] );
|
||||
*hashes_done = CollisionCount;
|
||||
return(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*hashes_done = CollisionCount;
|
||||
return(0);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void GenRandomGarbage(CacheEntry *Garbage, uint32_t *pdata, int thr_id)
|
||||
{
|
||||
uint32_t BlockHdr[20], MidHash[8];
|
||||
swab32_array( BlockHdr, pdata, 20 );
|
||||
sha256d((uint8_t *)MidHash, (uint8_t *)BlockHdr, 80);
|
||||
GenerateGarbageCore(Garbage, thr_id, opt_n_threads, MidHash);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
27
algo/hodl/hodl-wolf.h
Normal file
27
algo/hodl/hodl-wolf.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#ifndef __HODL_H
|
||||
#define __HODL_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <x86intrin.h>
|
||||
#include "miner.h"
|
||||
|
||||
#define AES_ITERATIONS 15
|
||||
|
||||
#define GARBAGE_SIZE (1 << 30)
|
||||
#define GARBAGE_CHUNK_SIZE (1 << 6)
|
||||
#define GARBAGE_SLICE_SIZE (1 << 12)
|
||||
#define TOTAL_CHUNKS (1 << 24) // GARBAGE_SIZE / GARBAGE_CHUNK_SIZE
|
||||
#define COMPARE_SIZE (1 << 18) // GARBAGE_SIZE / GARBAGE_SLICE_SIZE
|
||||
|
||||
typedef union _CacheEntry
|
||||
{
|
||||
uint32_t dwords[GARBAGE_SLICE_SIZE >> 2] __attribute__((aligned(16)));
|
||||
__m128i dqwords[GARBAGE_SLICE_SIZE >> 4] __attribute__((aligned(16)));
|
||||
} CacheEntry;
|
||||
|
||||
int scanhash_hodl_wolf( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
void GenRandomGarbage( CacheEntry *Garbage, uint32_t *pdata, int thr_id);
|
||||
|
||||
#endif // __HODL_H
|
||||
168
algo/hodl/hodl.cpp
Normal file
168
algo/hodl/hodl.cpp
Normal file
@@ -0,0 +1,168 @@
|
||||
#include "miner.h"
|
||||
#include "hodl-gate.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "block.h"
|
||||
#include <sstream>
|
||||
#include "tinyformat.h"
|
||||
#include <unordered_map>
|
||||
#include "hash.h"
|
||||
#include <openssl/aes.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/sha.h>
|
||||
|
||||
#define BEGIN(a) ((char*)&(a))
|
||||
#define END(a) ((char*)&((&(a))[1]))
|
||||
#define PSUEDORANDOM_DATA_SIZE 30 //2^30 = 1GB
|
||||
#define PSUEDORANDOM_DATA_CHUNK_SIZE 6 //2^6 = 64 bytes //must be same as SHA512_DIGEST_LENGTH 64
|
||||
#define L2CACHE_TARGET 12 // 2^12 = 4096 bytes
|
||||
#define AES_ITERATIONS 15
|
||||
|
||||
void SHA512Filler(char *mainMemoryPsuedoRandomData, int threadNumber, uint256 midHash){
|
||||
//Generate psuedo random data to store in main memory
|
||||
uint32_t chunks=(1<<(PSUEDORANDOM_DATA_SIZE-PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^(30-6) = 16 mil
|
||||
uint32_t chunkSize=(1<<(PSUEDORANDOM_DATA_CHUNK_SIZE)); //2^6 = 64 bytes
|
||||
unsigned char hash_tmp[sizeof(midHash)];
|
||||
memcpy((char*)&hash_tmp[0], (char*)&midHash, sizeof(midHash) );
|
||||
uint32_t* index = (uint32_t*)hash_tmp;
|
||||
// uint32_t chunksToProcess=chunks/totalThreads;
|
||||
uint32_t chunksToProcess = chunks / opt_n_threads;
|
||||
uint32_t startChunk=threadNumber*chunksToProcess;
|
||||
for( uint32_t i = startChunk; i < startChunk+chunksToProcess; i++){
|
||||
//This changes the first character of hash_tmp
|
||||
*index = i;
|
||||
SHA512((unsigned char*)hash_tmp, sizeof(hash_tmp), (unsigned char*)&(mainMemoryPsuedoRandomData[i*chunkSize]));
|
||||
}
|
||||
}
|
||||
|
||||
extern "C"
|
||||
// max_nonce is not used by this function
|
||||
int scanhash_hodl( int threadNumber, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done )
|
||||
{
|
||||
unsigned char *mainMemoryPsuedoRandomData = hodl_scratchbuf;
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
|
||||
//retreive target
|
||||
std::stringstream s;
|
||||
for (int i = 7; i>=0; i--)
|
||||
s << strprintf("%08x", ptarget[i]);
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock=uint256S(p.str());
|
||||
pblock.hashMerkleRoot=uint256S(m.str());
|
||||
uint256 hashTarget=uint256S(s.str());
|
||||
int collisions=0;
|
||||
uint256 hash;
|
||||
|
||||
//Begin AES Search
|
||||
//Allocate temporary memory
|
||||
uint32_t cacheMemorySize = (1<<L2CACHE_TARGET); //2^12 = 4096 bytes
|
||||
uint32_t comparisonSize=(1<<(PSUEDORANDOM_DATA_SIZE-L2CACHE_TARGET)); //2^(30-12) = 256K
|
||||
unsigned char *cacheMemoryOperatingData;
|
||||
unsigned char *cacheMemoryOperatingData2;
|
||||
cacheMemoryOperatingData=new unsigned char[cacheMemorySize+16];
|
||||
cacheMemoryOperatingData2=new unsigned char[cacheMemorySize];
|
||||
//Create references to data as 32 bit arrays
|
||||
uint32_t* cacheMemoryOperatingData32 = (uint32_t*)cacheMemoryOperatingData;
|
||||
uint32_t* cacheMemoryOperatingData322 = (uint32_t*)cacheMemoryOperatingData2;
|
||||
|
||||
//Search for pattern in psuedorandom data
|
||||
unsigned char key[32] = {0};
|
||||
unsigned char iv[AES_BLOCK_SIZE];
|
||||
int outlen1, outlen2;
|
||||
|
||||
//Iterate over the data
|
||||
// int searchNumber=comparisonSize/totalThreads;
|
||||
int searchNumber = comparisonSize / opt_n_threads;
|
||||
int startLoc=threadNumber*searchNumber;
|
||||
EVP_CIPHER_CTX ctx;
|
||||
for(int32_t k = startLoc;k<startLoc+searchNumber && !work_restart[threadNumber].restart;k++){
|
||||
//copy data to first l2 cache
|
||||
memcpy((char*)&cacheMemoryOperatingData[0], (char*)&mainMemoryPsuedoRandomData[k*cacheMemorySize], cacheMemorySize);
|
||||
for(int j=0;j<AES_ITERATIONS;j++){
|
||||
//use last 4 bytes of first cache as next location
|
||||
uint32_t nextLocation = cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
//Copy data from indicated location to second l2 cache -
|
||||
memcpy((char*)&cacheMemoryOperatingData2[0], (char*)&mainMemoryPsuedoRandomData[nextLocation*cacheMemorySize], cacheMemorySize);
|
||||
//XOR location data into second cache
|
||||
for(uint32_t i = 0; i < cacheMemorySize/4; i++)
|
||||
cacheMemoryOperatingData322[i] = cacheMemoryOperatingData32[i] ^ cacheMemoryOperatingData322[i];
|
||||
memcpy(key,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-32],32);
|
||||
memcpy(iv,(unsigned char*)&cacheMemoryOperatingData2[cacheMemorySize-AES_BLOCK_SIZE],AES_BLOCK_SIZE);
|
||||
EVP_EncryptInit(&ctx, EVP_aes_256_cbc(), key, iv);
|
||||
EVP_EncryptUpdate(&ctx, cacheMemoryOperatingData, &outlen1, cacheMemoryOperatingData2, cacheMemorySize);
|
||||
EVP_EncryptFinal(&ctx, cacheMemoryOperatingData + outlen1, &outlen2);
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
}
|
||||
//use last X bits as solution
|
||||
uint32_t solution=cacheMemoryOperatingData32[(cacheMemorySize/4)-1]%comparisonSize;
|
||||
if(solution<1000){
|
||||
uint32_t proofOfCalculation=cacheMemoryOperatingData32[(cacheMemorySize/4)-2];
|
||||
pblock.nStartLocation = k;
|
||||
pblock.nFinalCalculation = proofOfCalculation;
|
||||
hash = Hash(BEGIN(pblock.nVersion), END(pblock.nFinalCalculation));
|
||||
collisions++;
|
||||
if (UintToArith256(hash) <= UintToArith256(hashTarget) && !work_restart[threadNumber].restart){
|
||||
pdata[21] = swab32(pblock.nFinalCalculation);
|
||||
pdata[20] = swab32(pblock.nStartLocation);
|
||||
*hashes_done = collisions;
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//free memory
|
||||
delete [] cacheMemoryOperatingData;
|
||||
delete [] cacheMemoryOperatingData2;
|
||||
*hashes_done = collisions;
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern "C"
|
||||
void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData, uint32_t *pdata,
|
||||
int thr_id )
|
||||
{
|
||||
|
||||
//retreive preveios hash
|
||||
std::stringstream p;
|
||||
for (int i = 0; i < 8; i++)
|
||||
p << strprintf("%08x", swab32(pdata[8 - i]));
|
||||
|
||||
//retreive merkleroot
|
||||
std::stringstream m;
|
||||
for (int i = 0; i < 8; i++)
|
||||
m << strprintf("%08x", swab32(pdata[16 - i]));
|
||||
|
||||
CBlock pblock;
|
||||
pblock.SetNull();
|
||||
|
||||
pblock.nVersion=swab32(pdata[0]);
|
||||
pblock.nTime=swab32(pdata[17]);
|
||||
pblock.nBits=swab32(pdata[18]);
|
||||
pblock.hashPrevBlock= uint256S(p.str());
|
||||
pblock.hashMerkleRoot= uint256S(m.str());
|
||||
pblock.nNonce=swab32(pdata[19]);
|
||||
uint256 midHash = Hash(BEGIN(pblock.nVersion), END(pblock.nNonce));
|
||||
SHA512Filler( mainMemoryPsuedoRandomData, thr_id, midHash);
|
||||
}
|
||||
11
algo/hodl/hodl.h
Normal file
11
algo/hodl/hodl.h
Normal file
@@ -0,0 +1,11 @@
|
||||
extern int scanhash_hodl( int thr_id, struct work* work, uint32_t max_nonce,
|
||||
uint64_t *hashes_done );
|
||||
|
||||
extern void GetPsuedoRandomData( char* mainMemoryPsuedoRandomData,
|
||||
uint32_t *pdata, int thr_id );
|
||||
|
||||
void hodl_set_target( struct work* work, double diff );
|
||||
|
||||
void hodl_copy_workdata( struct work* work, struct work* g_work );
|
||||
|
||||
|
||||
258
algo/hodl/hodl_arith_uint256.cpp
Normal file
258
algo/hodl/hodl_arith_uint256.cpp
Normal file
@@ -0,0 +1,258 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_arith_uint256.h"
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include "common.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>::base_uint(const std::string& str)
|
||||
{
|
||||
SetHex(str);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator<<=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i + k + 1 < WIDTH && shift != 0)
|
||||
pn[i + k + 1] |= (a.pn[i] >> (32 - shift));
|
||||
if (i + k < WIDTH)
|
||||
pn[i + k] |= (a.pn[i] << shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator>>=(unsigned int shift)
|
||||
{
|
||||
base_uint<BITS> a(*this);
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
int k = shift / 32;
|
||||
shift = shift % 32;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
if (i - k - 1 >= 0 && shift != 0)
|
||||
pn[i - k - 1] |= (a.pn[i] << (32 - shift));
|
||||
if (i - k >= 0)
|
||||
pn[i - k] |= (a.pn[i] >> shift);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(uint32_t b32)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
uint64_t n = carry + (uint64_t)b32 * pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator*=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> a = *this;
|
||||
*this = 0;
|
||||
for (int j = 0; j < WIDTH; j++) {
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i + j < WIDTH; i++) {
|
||||
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
|
||||
pn[i + j] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_uint<BITS>& base_uint<BITS>::operator/=(const base_uint& b)
|
||||
{
|
||||
base_uint<BITS> div = b; // make a copy, so we can shift.
|
||||
base_uint<BITS> num = *this; // make a copy, so we can subtract.
|
||||
*this = 0; // the quotient.
|
||||
int num_bits = num.bits();
|
||||
int div_bits = div.bits();
|
||||
if (div_bits == 0)
|
||||
throw uint_error("Division by zero");
|
||||
if (div_bits > num_bits) // the result is certainly 0.
|
||||
return *this;
|
||||
int shift = num_bits - div_bits;
|
||||
div <<= shift; // shift so that div and num align.
|
||||
while (shift >= 0) {
|
||||
if (num >= div) {
|
||||
num -= div;
|
||||
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
|
||||
}
|
||||
div >>= 1; // shift back.
|
||||
shift--;
|
||||
}
|
||||
// num now contains the remainder of the division.
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
int base_uint<BITS>::CompareTo(const base_uint<BITS>& b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 0; i--) {
|
||||
if (pn[i] < b.pn[i])
|
||||
return -1;
|
||||
if (pn[i] > b.pn[i])
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
bool base_uint<BITS>::EqualTo(uint64_t b) const
|
||||
{
|
||||
for (int i = WIDTH - 1; i >= 2; i--) {
|
||||
if (pn[i])
|
||||
return false;
|
||||
}
|
||||
if (pn[1] != (b >> 32))
|
||||
return false;
|
||||
if (pn[0] != (b & 0xfffffffful))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
double base_uint<BITS>::getdouble() const
|
||||
{
|
||||
double ret = 0.0;
|
||||
double fact = 1.0;
|
||||
for (int i = 0; i < WIDTH; i++) {
|
||||
ret += fact * pn[i];
|
||||
fact *= 4294967296.0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::GetHex() const
|
||||
{
|
||||
return ArithToUint256(*this).GetHex();
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
*this = UintToArith256(uint256S(psz));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_uint<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_uint<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
unsigned int base_uint<BITS>::bits() const
|
||||
{
|
||||
for (int pos = WIDTH - 1; pos >= 0; pos--) {
|
||||
if (pn[pos]) {
|
||||
for (int bits = 31; bits > 0; bits--) {
|
||||
if (pn[pos] & 1 << bits)
|
||||
return 32 * pos + bits + 1;
|
||||
}
|
||||
return 32 * pos + 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_uint<256>
|
||||
template base_uint<256>::base_uint(const std::string&);
|
||||
template base_uint<256>& base_uint<256>::operator<<=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator>>=(unsigned int);
|
||||
template base_uint<256>& base_uint<256>::operator*=(uint32_t b32);
|
||||
template base_uint<256>& base_uint<256>::operator*=(const base_uint<256>& b);
|
||||
template base_uint<256>& base_uint<256>::operator/=(const base_uint<256>& b);
|
||||
template int base_uint<256>::CompareTo(const base_uint<256>&) const;
|
||||
template bool base_uint<256>::EqualTo(uint64_t) const;
|
||||
template double base_uint<256>::getdouble() const;
|
||||
template std::string base_uint<256>::GetHex() const;
|
||||
template std::string base_uint<256>::ToString() const;
|
||||
template void base_uint<256>::SetHex(const char*);
|
||||
template void base_uint<256>::SetHex(const std::string&);
|
||||
template unsigned int base_uint<256>::bits() const;
|
||||
|
||||
// This implementation directly uses shifts instead of going
|
||||
// through an intermediate MPI representation.
|
||||
arith_uint256& arith_uint256::SetCompact(uint32_t nCompact, bool* pfNegative, bool* pfOverflow)
|
||||
{
|
||||
int nSize = nCompact >> 24;
|
||||
uint32_t nWord = nCompact & 0x007fffff;
|
||||
if (nSize <= 3) {
|
||||
nWord >>= 8 * (3 - nSize);
|
||||
*this = nWord;
|
||||
} else {
|
||||
*this = nWord;
|
||||
*this <<= 8 * (nSize - 3);
|
||||
}
|
||||
if (pfNegative)
|
||||
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
|
||||
if (pfOverflow)
|
||||
*pfOverflow = nWord != 0 && ((nSize > 34) ||
|
||||
(nWord > 0xff && nSize > 33) ||
|
||||
(nWord > 0xffff && nSize > 32));
|
||||
return *this;
|
||||
}
|
||||
|
||||
uint32_t arith_uint256::GetCompact(bool fNegative) const
|
||||
{
|
||||
int nSize = (bits() + 7) / 8;
|
||||
uint32_t nCompact = 0;
|
||||
if (nSize <= 3) {
|
||||
nCompact = GetLow64() << 8 * (3 - nSize);
|
||||
} else {
|
||||
arith_uint256 bn = *this >> 8 * (nSize - 3);
|
||||
nCompact = bn.GetLow64();
|
||||
}
|
||||
// The 0x00800000 bit denotes the sign.
|
||||
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
|
||||
if (nCompact & 0x00800000) {
|
||||
nCompact >>= 8;
|
||||
nSize++;
|
||||
}
|
||||
assert((nCompact & ~0x007fffff) == 0);
|
||||
assert(nSize < 256);
|
||||
nCompact |= nSize << 24;
|
||||
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
|
||||
return nCompact;
|
||||
}
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &a)
|
||||
{
|
||||
uint256 b;
|
||||
for(int x=0; x<a.WIDTH; ++x)
|
||||
WriteLE32(b.begin() + x*4, a.pn[x]);
|
||||
return b;
|
||||
}
|
||||
arith_uint256 UintToArith256(const uint256 &a)
|
||||
{
|
||||
arith_uint256 b;
|
||||
for(int x=0; x<b.WIDTH; ++x)
|
||||
b.pn[x] = ReadLE32(a.begin() + x*4);
|
||||
return b;
|
||||
}
|
||||
290
algo/hodl/hodl_arith_uint256.h
Normal file
290
algo/hodl/hodl_arith_uint256.h
Normal file
@@ -0,0 +1,290 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_ARITH_UINT256_H
|
||||
#define BITCOIN_ARITH_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
class uint256;
|
||||
|
||||
class uint_error : public std::runtime_error {
|
||||
public:
|
||||
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
|
||||
};
|
||||
|
||||
/** Template base class for unsigned big integers. */
|
||||
template<unsigned int BITS>
|
||||
class base_uint
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/32 };
|
||||
uint32_t pn[WIDTH];
|
||||
public:
|
||||
|
||||
base_uint()
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
base_uint(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
}
|
||||
|
||||
base_uint& operator=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] = b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
}
|
||||
|
||||
explicit base_uint(const std::string& str);
|
||||
|
||||
bool operator!() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (pn[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
const base_uint operator~() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
const base_uint operator-() const
|
||||
{
|
||||
base_uint ret;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
ret.pn[i] = ~pn[i];
|
||||
ret++;
|
||||
return ret;
|
||||
}
|
||||
|
||||
double getdouble() const;
|
||||
|
||||
base_uint& operator=(uint64_t b)
|
||||
{
|
||||
pn[0] = (unsigned int)b;
|
||||
pn[1] = (unsigned int)(b >> 32);
|
||||
for (int i = 2; i < WIDTH; i++)
|
||||
pn[i] = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] ^= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator&=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] &= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(const base_uint& b)
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
pn[i] |= b.pn[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator^=(uint64_t b)
|
||||
{
|
||||
pn[0] ^= (unsigned int)b;
|
||||
pn[1] ^= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator|=(uint64_t b)
|
||||
{
|
||||
pn[0] |= (unsigned int)b;
|
||||
pn[1] |= (unsigned int)(b >> 32);
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator<<=(unsigned int shift);
|
||||
base_uint& operator>>=(unsigned int shift);
|
||||
|
||||
base_uint& operator+=(const base_uint& b)
|
||||
{
|
||||
uint64_t carry = 0;
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
{
|
||||
uint64_t n = carry + pn[i] + b.pn[i];
|
||||
pn[i] = n & 0xffffffff;
|
||||
carry = n >> 32;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(const base_uint& b)
|
||||
{
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator+=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator-=(uint64_t b64)
|
||||
{
|
||||
base_uint b;
|
||||
b = b64;
|
||||
*this += -b;
|
||||
return *this;
|
||||
}
|
||||
|
||||
base_uint& operator*=(uint32_t b32);
|
||||
base_uint& operator*=(const base_uint& b);
|
||||
base_uint& operator/=(const base_uint& b);
|
||||
|
||||
base_uint& operator++()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (++pn[i] == 0 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator++(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
++(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
base_uint& operator--()
|
||||
{
|
||||
// prefix operator
|
||||
int i = 0;
|
||||
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
|
||||
i++;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const base_uint operator--(int)
|
||||
{
|
||||
// postfix operator
|
||||
const base_uint ret = *this;
|
||||
--(*this);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int CompareTo(const base_uint& b) const;
|
||||
bool EqualTo(uint64_t b) const;
|
||||
|
||||
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
|
||||
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
|
||||
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
|
||||
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
|
||||
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
|
||||
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
|
||||
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
|
||||
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
|
||||
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
|
||||
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
|
||||
friend inline bool operator==(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; }
|
||||
friend inline bool operator!=(const base_uint& a, const base_uint& b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; }
|
||||
friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; }
|
||||
friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; }
|
||||
friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; }
|
||||
friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; }
|
||||
friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); }
|
||||
friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(pn);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the position of the highest bit set plus one, or zero if the
|
||||
* value is zero.
|
||||
*/
|
||||
unsigned int bits() const;
|
||||
|
||||
uint64_t GetLow64() const
|
||||
{
|
||||
assert(WIDTH >= 2);
|
||||
return pn[0] | (uint64_t)pn[1] << 32;
|
||||
}
|
||||
};
|
||||
|
||||
/** 256-bit unsigned big integer. */
|
||||
class arith_uint256 : public base_uint<256> {
|
||||
public:
|
||||
arith_uint256() {}
|
||||
arith_uint256(const base_uint<256>& b) : base_uint<256>(b) {}
|
||||
arith_uint256(uint64_t b) : base_uint<256>(b) {}
|
||||
explicit arith_uint256(const std::string& str) : base_uint<256>(str) {}
|
||||
|
||||
/**
|
||||
* The "compact" format is a representation of a whole
|
||||
* number N using an unsigned 32bit number similar to a
|
||||
* floating point format.
|
||||
* The most significant 8 bits are the unsigned exponent of base 256.
|
||||
* This exponent can be thought of as "number of bytes of N".
|
||||
* The lower 23 bits are the mantissa.
|
||||
* Bit number 24 (0x800000) represents the sign of N.
|
||||
* N = (-1^sign) * mantissa * 256^(exponent-3)
|
||||
*
|
||||
* Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
|
||||
* MPI uses the most significant bit of the first byte as sign.
|
||||
* Thus 0x1234560000 is compact (0x05123456)
|
||||
* and 0xc0de000000 is compact (0x0600c0de)
|
||||
*
|
||||
* Bitcoin only uses this "compact" format for encoding difficulty
|
||||
* targets, which are unsigned 256bit quantities. Thus, all the
|
||||
* complexities of the sign bit and using base 256 are probably an
|
||||
* implementation accident.
|
||||
*/
|
||||
arith_uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL);
|
||||
uint32_t GetCompact(bool fNegative = false) const;
|
||||
|
||||
friend uint256 ArithToUint256(const arith_uint256 &);
|
||||
friend arith_uint256 UintToArith256(const uint256 &);
|
||||
};
|
||||
|
||||
uint256 ArithToUint256(const arith_uint256 &);
|
||||
arith_uint256 UintToArith256(const uint256 &);
|
||||
|
||||
#endif // BITCOIN_ARITH_UINT256_H
|
||||
145
algo/hodl/hodl_uint256.cpp
Normal file
145
algo/hodl/hodl_uint256.cpp
Normal file
@@ -0,0 +1,145 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "hodl_uint256.h"
|
||||
#include "utilstrencodings.h"
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
template <unsigned int BITS>
|
||||
base_blob<BITS>::base_blob(const std::vector<unsigned char>& vch)
|
||||
{
|
||||
assert(vch.size() == sizeof(data));
|
||||
memcpy(data, &vch[0], sizeof(data));
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::GetHex() const
|
||||
{
|
||||
char psz[sizeof(data) * 2 + 1];
|
||||
for (unsigned int i = 0; i < sizeof(data); i++)
|
||||
sprintf(psz + i * 2, "%02x", data[sizeof(data) - i - 1]);
|
||||
return std::string(psz, psz + sizeof(data) * 2);
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const char* psz)
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
// skip leading spaces
|
||||
while (isspace(*psz))
|
||||
psz++;
|
||||
|
||||
// skip 0x
|
||||
if (psz[0] == '0' && tolower(psz[1]) == 'x')
|
||||
psz += 2;
|
||||
|
||||
// hex string to uint
|
||||
const char* pbegin = psz;
|
||||
while (::HexDigit(*psz) != -1)
|
||||
psz++;
|
||||
psz--;
|
||||
unsigned char* p1 = (unsigned char*)data;
|
||||
unsigned char* pend = p1 + WIDTH;
|
||||
while (psz >= pbegin && p1 < pend) {
|
||||
*p1 = ::HexDigit(*psz--);
|
||||
if (psz >= pbegin) {
|
||||
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
|
||||
p1++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
void base_blob<BITS>::SetHex(const std::string& str)
|
||||
{
|
||||
SetHex(str.c_str());
|
||||
}
|
||||
|
||||
template <unsigned int BITS>
|
||||
std::string base_blob<BITS>::ToString() const
|
||||
{
|
||||
return (GetHex());
|
||||
}
|
||||
|
||||
// Explicit instantiations for base_blob<160>
|
||||
template base_blob<160>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<160>::GetHex() const;
|
||||
template std::string base_blob<160>::ToString() const;
|
||||
template void base_blob<160>::SetHex(const char*);
|
||||
template void base_blob<160>::SetHex(const std::string&);
|
||||
|
||||
// Explicit instantiations for base_blob<256>
|
||||
template base_blob<256>::base_blob(const std::vector<unsigned char>&);
|
||||
template std::string base_blob<256>::GetHex() const;
|
||||
template std::string base_blob<256>::ToString() const;
|
||||
template void base_blob<256>::SetHex(const char*);
|
||||
template void base_blob<256>::SetHex(const std::string&);
|
||||
|
||||
static void inline HashMix(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
a -= c;
|
||||
a ^= ((c << 4) | (c >> 28));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 6) | (a >> 26));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 8) | (b >> 24));
|
||||
b += a;
|
||||
a -= c;
|
||||
a ^= ((c << 16) | (c >> 16));
|
||||
c += b;
|
||||
b -= a;
|
||||
b ^= ((a << 19) | (a >> 13));
|
||||
a += c;
|
||||
c -= b;
|
||||
c ^= ((b << 4) | (b >> 28));
|
||||
b += a;
|
||||
}
|
||||
|
||||
static void inline HashFinal(uint32_t& a, uint32_t& b, uint32_t& c)
|
||||
{
|
||||
// Taken from lookup3, by Bob Jenkins.
|
||||
c ^= b;
|
||||
c -= ((b << 14) | (b >> 18));
|
||||
a ^= c;
|
||||
a -= ((c << 11) | (c >> 21));
|
||||
b ^= a;
|
||||
b -= ((a << 25) | (a >> 7));
|
||||
c ^= b;
|
||||
c -= ((b << 16) | (b >> 16));
|
||||
a ^= c;
|
||||
a -= ((c << 4) | (c >> 28));
|
||||
b ^= a;
|
||||
b -= ((a << 14) | (a >> 18));
|
||||
c ^= b;
|
||||
c -= ((b << 24) | (b >> 8));
|
||||
}
|
||||
|
||||
uint64_t uint256::GetHash(const uint256& salt) const
|
||||
{
|
||||
uint32_t a, b, c;
|
||||
const uint32_t *pn = (const uint32_t*)data;
|
||||
const uint32_t *salt_pn = (const uint32_t*)salt.data;
|
||||
a = b = c = 0xdeadbeef + WIDTH;
|
||||
|
||||
a += pn[0] ^ salt_pn[0];
|
||||
b += pn[1] ^ salt_pn[1];
|
||||
c += pn[2] ^ salt_pn[2];
|
||||
HashMix(a, b, c);
|
||||
a += pn[3] ^ salt_pn[3];
|
||||
b += pn[4] ^ salt_pn[4];
|
||||
c += pn[5] ^ salt_pn[5];
|
||||
HashMix(a, b, c);
|
||||
a += pn[6] ^ salt_pn[6];
|
||||
b += pn[7] ^ salt_pn[7];
|
||||
HashFinal(a, b, c);
|
||||
|
||||
return ((((uint64_t)b) << 32) | c);
|
||||
}
|
||||
|
||||
158
algo/hodl/hodl_uint256.h
Normal file
158
algo/hodl/hodl_uint256.h
Normal file
@@ -0,0 +1,158 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_UINT256_H
|
||||
#define BITCOIN_UINT256_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
/** Template base class for fixed-sized opaque blobs. */
|
||||
template<unsigned int BITS>
|
||||
class base_blob
|
||||
{
|
||||
protected:
|
||||
enum { WIDTH=BITS/8 };
|
||||
uint8_t data[WIDTH];
|
||||
public:
|
||||
base_blob()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
explicit base_blob(const std::vector<unsigned char>& vch);
|
||||
|
||||
bool IsNull() const
|
||||
{
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
if (data[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void SetNull()
|
||||
{
|
||||
memset(data, 0, sizeof(data));
|
||||
}
|
||||
|
||||
friend inline bool operator==(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) == 0; }
|
||||
friend inline bool operator!=(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) != 0; }
|
||||
friend inline bool operator<(const base_blob& a, const base_blob& b) { return memcmp(a.data, b.data, sizeof(a.data)) < 0; }
|
||||
|
||||
std::string GetHex() const;
|
||||
void SetHex(const char* psz);
|
||||
void SetHex(const std::string& str);
|
||||
std::string ToString() const;
|
||||
|
||||
unsigned char* begin()
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
unsigned char* end()
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
const unsigned char* begin() const
|
||||
{
|
||||
return &data[0];
|
||||
}
|
||||
|
||||
const unsigned char* end() const
|
||||
{
|
||||
return &data[WIDTH];
|
||||
}
|
||||
|
||||
unsigned int size() const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int nType, int nVersion) const
|
||||
{
|
||||
return sizeof(data);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int nType, int nVersion) const
|
||||
{
|
||||
s.write((char*)data, sizeof(data));
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int nType, int nVersion)
|
||||
{
|
||||
s.read((char*)data, sizeof(data));
|
||||
}
|
||||
};
|
||||
|
||||
/** 160-bit opaque blob.
|
||||
* @note This type is called uint160 for historical reasons only. It is an opaque
|
||||
* blob of 160 bits and has no integer operations.
|
||||
*/
|
||||
class uint160 : public base_blob<160> {
|
||||
public:
|
||||
uint160() {}
|
||||
uint160(const base_blob<160>& b) : base_blob<160>(b) {}
|
||||
explicit uint160(const std::vector<unsigned char>& vch) : base_blob<160>(vch) {}
|
||||
};
|
||||
|
||||
/** 256-bit opaque blob.
|
||||
* @note This type is called uint256 for historical reasons only. It is an
|
||||
* opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
|
||||
* those are required.
|
||||
*/
|
||||
class uint256 : public base_blob<256> {
|
||||
public:
|
||||
uint256() {}
|
||||
uint256(const base_blob<256>& b) : base_blob<256>(b) {}
|
||||
explicit uint256(const std::vector<unsigned char>& vch) : base_blob<256>(vch) {}
|
||||
|
||||
/** A cheap hash function that just returns 64 bits from the result, it can be
|
||||
* used when the contents are considered uniformly random. It is not appropriate
|
||||
* when the value can easily be influenced from outside as e.g. a network adversary could
|
||||
* provide values to trigger worst-case behavior.
|
||||
* @note The result of this function is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetCheapHash() const
|
||||
{
|
||||
uint64_t result;
|
||||
memcpy((void*)&result, (void*)data, 8);
|
||||
return result;
|
||||
}
|
||||
|
||||
/** A more secure, salted hash function.
|
||||
* @note This hash is not stable between little and big endian.
|
||||
*/
|
||||
uint64_t GetHash(const uint256& salt) const;
|
||||
};
|
||||
|
||||
/* uint256 from const char *.
|
||||
* This is a separate function because the constructor uint256(const char*) can result
|
||||
* in dangerously catching uint256(0).
|
||||
*/
|
||||
inline uint256 uint256S(const char *str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
/* uint256 from std::string.
|
||||
* This is a separate function because the constructor uint256(const std::string &str) can result
|
||||
* in dangerously catching uint256(0) via std::string(const char*).
|
||||
*/
|
||||
inline uint256 uint256S(const std::string& str)
|
||||
{
|
||||
uint256 rv;
|
||||
rv.SetHex(str);
|
||||
return rv;
|
||||
}
|
||||
|
||||
#endif // BITCOIN_UINT256_H
|
||||
208
algo/hodl/hodlminer.1
Normal file
208
algo/hodl/hodlminer.1
Normal file
@@ -0,0 +1,208 @@
|
||||
.TH MINERD 1 "March 2016" "cpuminer 2.4.3"
|
||||
.SH NAME
|
||||
hodlminer \- CPU miner for Hodlcoin
|
||||
.SH SYNOPSIS
|
||||
.B hodlminer
|
||||
[\fIOPTION\fR]...
|
||||
.SH DESCRIPTION
|
||||
.B hodlminer
|
||||
is a multi-threaded CPU miner for Hodlcoin.
|
||||
It supports the getwork and getblocktemplate (BIP 22) methods,
|
||||
as well as the Stratum mining protocol.
|
||||
.PP
|
||||
In its normal mode of operation, \fBhodlminer\fR connects to a mining server
|
||||
(specified with the \fB\-o\fR option), receives work from it and starts hashing.
|
||||
As soon as a solution is found, it is submitted to the same mining server,
|
||||
which can accept or reject it.
|
||||
When using getwork or getblocktemplate,
|
||||
\fBhodlminer\fR can take advantage of long polling, if the server supports it;
|
||||
in any case, fresh work is fetched as needed.
|
||||
When using the Stratum protocol this is not possible,
|
||||
and the server is responsible for sending fresh work at least every minute;
|
||||
if it fails to do so,
|
||||
\fBhodlminer\fR may drop the connection and try reconnecting again.
|
||||
.PP
|
||||
By default, \fBhodlminer\fR writes all its messages to standard error.
|
||||
On systems that have a syslog, the \fB\-\-syslog\fR option can be used
|
||||
to write to it instead.
|
||||
.PP
|
||||
On start, the nice value of all miner threads is set to 19.
|
||||
On Linux, the scheduling policy is also changed to SCHED_IDLE,
|
||||
or to SCHED_BATCH if that fails.
|
||||
On multiprocessor systems, \fBhodlminer\fR
|
||||
automatically sets the CPU affinity of miner threads
|
||||
if the number of threads is a multiple of the number of processors.
|
||||
.SH EXAMPLES
|
||||
To connect to the Hodlcoin mining pool that provides a Stratum server
|
||||
at hodl.blockquarry.com on port 8332, authenticating as worker "user.worker" with password "x":
|
||||
.PP
|
||||
.nf
|
||||
.RS
|
||||
hodlminer \-o stratum+tcp://hodl.blockquarry.com:8332 \-u user.worker -p x -q
|
||||
.RE
|
||||
.fi
|
||||
.PP
|
||||
To mine to a local Hodlcoin instance running on port 18332,
|
||||
authenticating with username "rpcuser" and password "rpcpass":
|
||||
.PP
|
||||
.nf
|
||||
.RS
|
||||
hodlminer \-a hodl \-o http://localhost:18332 \-O rpcuser:rpcpass \\
|
||||
\-\-coinbase\-addr=mpXwg4jMtRhuSpVq4xS3HFHmCmWp9NyGKt
|
||||
.RE
|
||||
.fi
|
||||
.PP
|
||||
.SH OPTIONS
|
||||
.TP
|
||||
\fB\-a\fR, \fB\-\-algo\fR=\fIALGORITHM\fR
|
||||
Set the hashing algorithm to use.
|
||||
Default is hodl.
|
||||
Possible values are:
|
||||
.RS 11
|
||||
.TP 10
|
||||
.B hodl
|
||||
.TP
|
||||
\fB\-\-benchmark\fR
|
||||
Run in offline benchmark mode.
|
||||
.TP
|
||||
\fB\-B\fR, \fB\-\-background\fR
|
||||
Run in the background as a daemon.
|
||||
.TP
|
||||
\fB\-\-cert\fR=\fIFILE\fR
|
||||
Set an SSL certificate to use with the mining server.
|
||||
Only supported when using the HTTPS protocol.
|
||||
.TP
|
||||
\fB\-\-coinbase\-addr\fR=\fIADDRESS\fR
|
||||
Set a payout address for solo mining.
|
||||
This is only used in getblocktemplate mode,
|
||||
and only if the server does not provide a coinbase transaction.
|
||||
.TP
|
||||
\fB\-\-coinbase\-sig\fR=\fITEXT\fR
|
||||
Set a string to be included in the coinbase (if allowed by the server).
|
||||
This is only used in getblocktemplate mode.
|
||||
.TP
|
||||
\fB\-c\fR, \fB\-\-config\fR=\fIFILE\fR
|
||||
Load options from a configuration file.
|
||||
\fIFILE\fR must contain a JSON object
|
||||
mapping long options to their arguments (as strings),
|
||||
or to \fBtrue\fR if no argument is required.
|
||||
Sample configuration file:
|
||||
|
||||
.nf
|
||||
{
|
||||
"url": "stratum+tcp://hodl.blockquarry.com:8332",
|
||||
"userpass": "foo:bar",
|
||||
"retry-pause": "10",
|
||||
"quiet": true
|
||||
}
|
||||
.fi
|
||||
.TP
|
||||
\fB\-D\fR, \fB\-\-debug\fR
|
||||
Enable debug output.
|
||||
.TP
|
||||
\fB\-h\fR, \fB\-\-help\fR
|
||||
Print a help message and exit.
|
||||
.TP
|
||||
\fB\-\-no\-gbt\fR
|
||||
Do not use the getblocktemplate RPC method.
|
||||
.TP
|
||||
\fB\-\-no\-getwork\fR
|
||||
Do not use the getwork RPC method.
|
||||
.TP
|
||||
\fB\-\-no\-longpoll\fR
|
||||
Do not use long polling.
|
||||
.TP
|
||||
\fB\-\-no\-redirect\fR
|
||||
Ignore requests from the server to switch to a different URL.
|
||||
.TP
|
||||
\fB\-\-no\-stratum\fR
|
||||
Do not switch to Stratum, even if the server advertises support for it.
|
||||
.TP
|
||||
\fB\-o\fR, \fB\-\-url\fR=[\fISCHEME\fR://][\fIUSERNAME\fR[:\fIPASSWORD\fR]@]\fIHOST\fR:\fIPORT\fR[/\fIPATH\fR]
|
||||
Set the URL of the mining server to connect to.
|
||||
Supported schemes are \fBhttp\fR, \fBhttps\fR, \fBstratum+tcp\fR
|
||||
and \fBstratum+tcps\fR.
|
||||
If no scheme is specified, http is assumed.
|
||||
Specifying a \fIPATH\fR is only supported for HTTP and HTTPS.
|
||||
Specifying credentials has the same effect as using the \fB\-O\fR option.
|
||||
|
||||
By default, on HTTP and HTTPS,
|
||||
the miner tries to use the getblocktemplate RPC method,
|
||||
and falls back to using getwork if getblocktemplate is unavailable.
|
||||
This behavior can be modified by using the \fB\-\-no\-gbt\fR
|
||||
and \fB\-\-no\-getwork\fR options.
|
||||
.TP
|
||||
\fB\-O\fR, \fB\-\-userpass\fR=\fIUSERNAME\fR:\fIPASSWORD\fR
|
||||
Set the credentials to use for connecting to the mining server.
|
||||
Any value previously set with \fB\-u\fR or \fB\-p\fR is discarded.
|
||||
.TP
|
||||
\fB\-p\fR, \fB\-\-pass\fR=\fIPASSWORD\fR
|
||||
Set the password to use for connecting to the mining server.
|
||||
Any password previously set with \fB\-O\fR is discarded.
|
||||
.TP
|
||||
\fB\-P\fR, \fB\-\-protocol\-dump\fR
|
||||
Enable output of all protocol-level activities.
|
||||
.TP
|
||||
\fB\-q\fR, \fB\-\-quiet\fR
|
||||
Disable per-thread hashmeter output.
|
||||
.TP
|
||||
\fB\-r\fR, \fB\-\-retries\fR=\fIN\fR
|
||||
Set the maximum number of times to retry if a network call fails.
|
||||
If not specified, the miner will retry indefinitely.
|
||||
.TP
|
||||
\fB\-R\fR, \fB\-\-retry\-pause\fR=\fISECONDS\fR
|
||||
Set how long to wait between retries. Default is 30 seconds.
|
||||
.TP
|
||||
\fB\-s\fR, \fB\-\-scantime\fR=\fISECONDS\fR
|
||||
Set an upper bound on the time the miner can go without fetching fresh work.
|
||||
This setting has no effect in Stratum mode or when long polling is activated.
|
||||
Default is 5 seconds.
|
||||
.TP
|
||||
\fB\-S\fR, \fB\-\-syslog\fR
|
||||
Log to the syslog facility instead of standard error.
|
||||
.TP
|
||||
\fB\-t\fR, \fB\-\-threads\fR=\fIN\fR
|
||||
Set the number of miner threads.
|
||||
If not specified, the miner will try to detect the number of available processors
|
||||
and use that.
|
||||
.TP
|
||||
\fB\-T\fR, \fB\-\-timeout\fR=\fISECONDS\fR
|
||||
Set a timeout for long polling.
|
||||
.TP
|
||||
\fB\-u\fR, \fB\-\-user\fR=\fIUSERNAME\fR
|
||||
Set the username to use for connecting to the mining server.
|
||||
Any username previously set with \fB\-O\fR is discarded.
|
||||
.TP
|
||||
\fB\-V\fR, \fB\-\-version\fR
|
||||
Display version information and quit.
|
||||
.TP
|
||||
\fB\-x\fR, \fB\-\-proxy\fR=[\fISCHEME\fR://][\fIUSERNAME\fR:\fIPASSWORD\fR@]\fIHOST\fR:\fIPORT\fR
|
||||
Connect to the mining server through a proxy.
|
||||
Supported schemes are: \fBhttp\fR, \fBsocks4\fR, \fBsocks5\fR.
|
||||
Since libcurl 7.18.0, the following are also supported:
|
||||
\fBsocks4a\fR, \fBsocks5h\fR (SOCKS5 with remote name resolving).
|
||||
If no scheme is specified, the proxy is treated as an HTTP proxy.
|
||||
.SH ENVIRONMENT
|
||||
The following environment variables can be specified in lower case or upper case;
|
||||
the lower-case version has precedence. \fBhttp_proxy\fR is an exception
|
||||
as it is only available in lower case.
|
||||
.PP
|
||||
.RS
|
||||
.TP
|
||||
\fBhttp_proxy\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
|
||||
Sets the proxy server to use for HTTP.
|
||||
.TP
|
||||
\fBHTTPS_PROXY\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
|
||||
Sets the proxy server to use for HTTPS.
|
||||
.TP
|
||||
\fBALL_PROXY\fR [\fISCHEME\fR://]\fIHOST\fR:\fIPORT\fR
|
||||
Sets the proxy server to use if no protocol-specific proxy is set.
|
||||
.RE
|
||||
.PP
|
||||
Using an environment variable to set the proxy has the same effect as
|
||||
using the \fB\-x\fR option.
|
||||
.SH AUTHOR
|
||||
Most of the code in the current version of minerd was written by
|
||||
Pooler <pooler@litecoinpool.org> with contributions from others.
|
||||
|
||||
The original minerd was written by Jeff Garzik <jeff@garzik.org>.
|
||||
155
algo/hodl/my-byteswap.h
Normal file
155
algo/hodl/my-byteswap.h
Normal file
@@ -0,0 +1,155 @@
|
||||
/* Macros to swap the order of bytes in integer values.
|
||||
Copyright (C) 1997-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#if !defined _BYTESWAP_H && !defined _NETINET_IN_H && !defined _ENDIAN_H
|
||||
# error "Never use <bits/byteswap.h> directly; include <byteswap.h> instead."
|
||||
#endif
|
||||
|
||||
#ifndef _BITS_BYTESWAP_H
|
||||
#define _BITS_BYTESWAP_H 1
|
||||
|
||||
#include <features.h>
|
||||
#include <bits/types.h>
|
||||
#include <bits/wordsize.h>
|
||||
|
||||
/* Swap bytes in 16 bit value. */
|
||||
#define __bswap_constant_16(x) \
|
||||
((unsigned short int) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8)))
|
||||
|
||||
/* Get __bswap_16. */
|
||||
#include <bits/byteswap-16.h>
|
||||
|
||||
/* Swap bytes in 32 bit value. */
|
||||
#define __bswap_constant_32(x) \
|
||||
((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \
|
||||
(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
|
||||
|
||||
#ifdef __GNUC__
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __builtin_bswap32 (__bsx);
|
||||
}
|
||||
# elif __GNUC__ >= 2
|
||||
# if __WORDSIZE == 64 || (defined __i486__ || defined __pentium__ \
|
||||
|| defined __pentiumpro__ || defined __pentium4__ \
|
||||
|| defined __k8__ || defined __athlon__ \
|
||||
|| defined __k6__ || defined __nocona__ \
|
||||
|| defined __core2__ || defined __geode__ \
|
||||
|| defined __amdfam10__)
|
||||
/* To swap the bytes in a word the i486 processors and up provide the
|
||||
`bswap' opcode. On i386 we have to use three instructions. */
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_32 (__x); \
|
||||
else \
|
||||
__asm__ ("rorw $8, %w0;" \
|
||||
"rorl $16, %0;" \
|
||||
"rorw $8, %w0" \
|
||||
: "=r" (__v) \
|
||||
: "0" (__x) \
|
||||
: "cc"); \
|
||||
__v; }))
|
||||
# endif
|
||||
# else
|
||||
# define __bswap_32(x) \
|
||||
(__extension__ \
|
||||
({ unsigned int __x = (x); __bswap_constant_32 (__x); }))
|
||||
# endif
|
||||
#else
|
||||
static __inline unsigned int
|
||||
__bswap_32 (unsigned int __bsx)
|
||||
{
|
||||
return __bswap_constant_32 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#if __GNUC_PREREQ (2, 0)
|
||||
/* Swap bytes in 64 bit value. */
|
||||
# define __bswap_constant_64(x) \
|
||||
(__extension__ ((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56)))
|
||||
|
||||
# if __GNUC_PREREQ (4, 3)
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __builtin_bswap64 (__bsx);
|
||||
}
|
||||
# elif __WORDSIZE == 64
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ __uint64_t __v, __x = (x); \
|
||||
if (__builtin_constant_p (__x)) \
|
||||
__v = __bswap_constant_64 (__x); \
|
||||
else \
|
||||
__asm__ ("bswap %q0" : "=r" (__v) : "0" (__x)); \
|
||||
__v; }))
|
||||
# else
|
||||
# define __bswap_64(x) \
|
||||
(__extension__ \
|
||||
({ union { __extension__ __uint64_t __ll; \
|
||||
unsigned int __l[2]; } __w, __r; \
|
||||
if (__builtin_constant_p (x)) \
|
||||
__r.__ll = __bswap_constant_64 (x); \
|
||||
else \
|
||||
{ \
|
||||
__w.__ll = (x); \
|
||||
__r.__l[0] = __bswap_32 (__w.__l[1]); \
|
||||
__r.__l[1] = __bswap_32 (__w.__l[0]); \
|
||||
} \
|
||||
__r.__ll; }))
|
||||
# endif
|
||||
#else
|
||||
# define __bswap_constant_64(x) \
|
||||
((((x) & 0xff00000000000000ull) >> 56) \
|
||||
| (((x) & 0x00ff000000000000ull) >> 40) \
|
||||
| (((x) & 0x0000ff0000000000ull) >> 24) \
|
||||
| (((x) & 0x000000ff00000000ull) >> 8) \
|
||||
| (((x) & 0x00000000ff000000ull) << 8) \
|
||||
| (((x) & 0x0000000000ff0000ull) << 24) \
|
||||
| (((x) & 0x000000000000ff00ull) << 40) \
|
||||
| (((x) & 0x00000000000000ffull) << 56))
|
||||
|
||||
static __inline __uint64_t
|
||||
__bswap_64 (__uint64_t __bsx)
|
||||
{
|
||||
return __bswap_constant_64 (__bsx);
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* _BITS_BYTESWAP_H */
|
||||
103
algo/hodl/my-endian.h
Normal file
103
algo/hodl/my-endian.h
Normal file
@@ -0,0 +1,103 @@
|
||||
/* Copyright (C) 1992-2014 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
// cloned from /usr/endian.h and modified
|
||||
|
||||
|
||||
|
||||
#ifndef _ENDIAN_H
|
||||
#define _ENDIAN_H 1
|
||||
|
||||
//#include <features.h>
|
||||
|
||||
/* Definitions for byte order, according to significance of bytes,
|
||||
from low addresses to high addresses. The value is what you get by
|
||||
putting '4' in the most significant byte, '3' in the second most
|
||||
significant byte, '2' in the second least significant byte, and '1'
|
||||
in the least significant byte, and then writing down one digit for
|
||||
each byte, starting with the byte at the lowest address at the left,
|
||||
and proceeding to the byte with the highest address at the right. */
|
||||
|
||||
#define __LITTLE_ENDIAN 1234
|
||||
#define __BIG_ENDIAN 4321
|
||||
#define __PDP_ENDIAN 3412
|
||||
|
||||
/* This file defines `__BYTE_ORDER' for the particular machine. */
|
||||
//#include <bits/endian.h>
|
||||
#define __BYTE_ORDER __LITTLE_ENDIAN
|
||||
|
||||
/* Some machines may need to use a different endianness for floating point
|
||||
values. */
|
||||
#ifndef __FLOAT_WORD_ORDER
|
||||
# define __FLOAT_WORD_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#ifdef __USE_BSD
|
||||
# define LITTLE_ENDIAN __LITTLE_ENDIAN
|
||||
# define BIG_ENDIAN __BIG_ENDIAN
|
||||
# define PDP_ENDIAN __PDP_ENDIAN
|
||||
# define BYTE_ORDER __BYTE_ORDER
|
||||
#endif
|
||||
|
||||
#if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) LO, HI
|
||||
#elif __BYTE_ORDER == __BIG_ENDIAN
|
||||
# define __LONG_LONG_PAIR(HI, LO) HI, LO
|
||||
#endif
|
||||
|
||||
|
||||
#if defined __USE_BSD && !defined __ASSEMBLER__
|
||||
/* Conversion interfaces. */
|
||||
//# include <bits/byteswap.h>
|
||||
#include "my-byteswap.h"
|
||||
|
||||
|
||||
# if __BYTE_ORDER == __LITTLE_ENDIAN
|
||||
# define htobe16(x) __bswap_16 (x)
|
||||
# define htole16(x) (x)
|
||||
# define be16toh(x) __bswap_16 (x)
|
||||
# define le16toh(x) (x)
|
||||
|
||||
# define htobe32(x) __bswap_32 (x)
|
||||
# define htole32(x) (x)
|
||||
# define be32toh(x) __bswap_32 (x)
|
||||
# define le32toh(x) (x)
|
||||
|
||||
# define htobe64(x) __bswap_64 (x)
|
||||
# define htole64(x) (x)
|
||||
# define be64toh(x) __bswap_64 (x)
|
||||
# define le64toh(x) (x)
|
||||
|
||||
# else
|
||||
# define htobe16(x) (x)
|
||||
# define htole16(x) __bswap_16 (x)
|
||||
# define be16toh(x) (x)
|
||||
# define le16toh(x) __bswap_16 (x)
|
||||
|
||||
# define htobe32(x) (x)
|
||||
# define htole32(x) __bswap_32 (x)
|
||||
# define be32toh(x) (x)
|
||||
# define le32toh(x) __bswap_32 (x)
|
||||
|
||||
# define htobe64(x) (x)
|
||||
# define htole64(x) __bswap_64 (x)
|
||||
# define be64toh(x) (x)
|
||||
# define le64toh(x) __bswap_64 (x)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#endif /* endian.h */
|
||||
862
algo/hodl/serialize.h
Normal file
862
algo/hodl/serialize.h
Normal file
@@ -0,0 +1,862 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_SERIALIZE_H
|
||||
#define BITCOIN_SERIALIZE_H
|
||||
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
#include <ios>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <string.h>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
class CScript;
|
||||
|
||||
static const unsigned int MAX_SIZE = 0x02000000;
|
||||
|
||||
/**
|
||||
* Used to bypass the rule against non-const reference to temporary
|
||||
* where it makes sense with wrappers such as CFlatData or CTxDB
|
||||
*/
|
||||
template<typename T>
|
||||
inline T& REF(const T& val)
|
||||
{
|
||||
return const_cast<T&>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Used to acquire a non-const pointer "this" to generate bodies
|
||||
* of const serialization operations from a template
|
||||
*/
|
||||
template<typename T>
|
||||
inline T* NCONST_PTR(const T* val)
|
||||
{
|
||||
return const_cast<T*>(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Get begin pointer of vector (non-const version).
|
||||
* @note These functions avoid the undefined case of indexing into an empty
|
||||
* vector, as well as that of indexing after the end of the vector.
|
||||
*/
|
||||
template <class T, class TAl>
|
||||
inline T* begin_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get begin pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* begin_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : &v[0];
|
||||
}
|
||||
/** Get end pointer of vector (non-const version) */
|
||||
template <class T, class TAl>
|
||||
inline T* end_ptr(std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
/** Get end pointer of vector (const version) */
|
||||
template <class T, class TAl>
|
||||
inline const T* end_ptr(const std::vector<T,TAl>& v)
|
||||
{
|
||||
return v.empty() ? NULL : (&v[0] + v.size());
|
||||
}
|
||||
|
||||
/*
|
||||
* Lowest-level serialization and conversion.
|
||||
* @note Sizes of these types are verified in the tests
|
||||
*/
|
||||
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
|
||||
{
|
||||
s.write((char*)&obj, 1);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
|
||||
{
|
||||
obj = htole16(obj);
|
||||
s.write((char*)&obj, 2);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
|
||||
{
|
||||
obj = htole32(obj);
|
||||
s.write((char*)&obj, 4);
|
||||
}
|
||||
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
|
||||
{
|
||||
obj = htole64(obj);
|
||||
s.write((char*)&obj, 8);
|
||||
}
|
||||
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
|
||||
{
|
||||
uint8_t obj;
|
||||
s.read((char*)&obj, 1);
|
||||
return obj;
|
||||
}
|
||||
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
|
||||
{
|
||||
uint16_t obj;
|
||||
s.read((char*)&obj, 2);
|
||||
return le16toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
|
||||
{
|
||||
uint32_t obj;
|
||||
s.read((char*)&obj, 4);
|
||||
return le32toh(obj);
|
||||
}
|
||||
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
|
||||
{
|
||||
uint64_t obj;
|
||||
s.read((char*)&obj, 8);
|
||||
return le64toh(obj);
|
||||
}
|
||||
inline uint64_t ser_double_to_uint64(double x)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline uint32_t ser_float_to_uint32(float x)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.x = x;
|
||||
return tmp.y;
|
||||
}
|
||||
inline double ser_uint64_to_double(uint64_t y)
|
||||
{
|
||||
union { double x; uint64_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
inline float ser_uint32_to_float(uint32_t y)
|
||||
{
|
||||
union { float x; uint32_t y; } tmp;
|
||||
tmp.y = y;
|
||||
return tmp.x;
|
||||
}
|
||||
|
||||
|
||||
/////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Templates for serializing to anything that looks like a stream,
|
||||
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
|
||||
//
|
||||
|
||||
enum
|
||||
{
|
||||
// primary actions
|
||||
SER_NETWORK = (1 << 0),
|
||||
SER_DISK = (1 << 1),
|
||||
SER_GETHASH = (1 << 2),
|
||||
};
|
||||
|
||||
#define READWRITE(obj) (::SerReadWrite(s, (obj), nType, nVersion, ser_action))
|
||||
|
||||
/**
|
||||
* Implement three methods for serializable objects. These are actually wrappers over
|
||||
* "SerializationOp" template, which implements the body of each class' serialization
|
||||
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
|
||||
* added as members.
|
||||
*/
|
||||
#define ADD_SERIALIZE_METHODS \
|
||||
size_t GetSerializeSize(int nType, int nVersion) const { \
|
||||
CSizeComputer s(nType, nVersion); \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
return s.size(); \
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Serialize(Stream& s, int nType, int nVersion) const { \
|
||||
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize(), nType, nVersion);\
|
||||
} \
|
||||
template<typename Stream> \
|
||||
void Unserialize(Stream& s, int nType, int nVersion) { \
|
||||
SerializationOp(s, CSerActionUnserialize(), nType, nVersion); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Basic Types
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(char a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(uint8_t a, int, int=0) { return 1; }
|
||||
inline unsigned int GetSerializeSize(int16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(uint16_t a, int, int=0) { return 2; }
|
||||
inline unsigned int GetSerializeSize(int32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(uint32_t a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(int64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(uint64_t a, int, int=0) { return 8; }
|
||||
inline unsigned int GetSerializeSize(float a, int, int=0) { return 4; }
|
||||
inline unsigned int GetSerializeSize(double a, int, int=0) { return 8; }
|
||||
|
||||
template<typename Stream> inline void Serialize(Stream& s, char a, int, int=0) { ser_writedata8(s, a); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Serialize(Stream& s, int8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint8_t a, int, int=0) { ser_writedata8(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint16_t a, int, int=0) { ser_writedata16(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint32_t a, int, int=0) { ser_writedata32(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, int64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, uint64_t a, int, int=0) { ser_writedata64(s, a); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, float a, int, int=0) { ser_writedata32(s, ser_float_to_uint32(a)); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, double a, int, int=0) { ser_writedata64(s, ser_double_to_uint64(a)); }
|
||||
|
||||
template<typename Stream> inline void Unserialize(Stream& s, char& a, int, int=0) { a = ser_readdata8(s); } // TODO Get rid of bare char
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a, int, int=0) { a = ser_readdata8(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a, int, int=0) { a = ser_readdata16(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a, int, int=0) { a = ser_readdata32(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a, int, int=0) { a = ser_readdata64(s); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, float& a, int, int=0) { a = ser_uint32_to_float(ser_readdata32(s)); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, double& a, int, int=0) { a = ser_uint64_to_double(ser_readdata64(s)); }
|
||||
|
||||
inline unsigned int GetSerializeSize(bool a, int, int=0) { return sizeof(char); }
|
||||
template<typename Stream> inline void Serialize(Stream& s, bool a, int, int=0) { char f=a; ser_writedata8(s, f); }
|
||||
template<typename Stream> inline void Unserialize(Stream& s, bool& a, int, int=0) { char f=ser_readdata8(s); a=f; }
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Compact Size
|
||||
* size < 253 -- 1 byte
|
||||
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
|
||||
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
|
||||
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
|
||||
*/
|
||||
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253) return sizeof(unsigned char);
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
|
||||
else return sizeof(unsigned char) + sizeof(uint64_t);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void WriteCompactSize(Stream& os, uint64_t nSize)
|
||||
{
|
||||
if (nSize < 253)
|
||||
{
|
||||
ser_writedata8(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned short>::max())
|
||||
{
|
||||
ser_writedata8(os, 253);
|
||||
ser_writedata16(os, nSize);
|
||||
}
|
||||
else if (nSize <= std::numeric_limits<unsigned int>::max())
|
||||
{
|
||||
ser_writedata8(os, 254);
|
||||
ser_writedata32(os, nSize);
|
||||
}
|
||||
else
|
||||
{
|
||||
ser_writedata8(os, 255);
|
||||
ser_writedata64(os, nSize);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
uint64_t ReadCompactSize(Stream& is)
|
||||
{
|
||||
uint8_t chSize = ser_readdata8(is);
|
||||
uint64_t nSizeRet = 0;
|
||||
if (chSize < 253)
|
||||
{
|
||||
nSizeRet = chSize;
|
||||
}
|
||||
else if (chSize == 253)
|
||||
{
|
||||
nSizeRet = ser_readdata16(is);
|
||||
if (nSizeRet < 253)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else if (chSize == 254)
|
||||
{
|
||||
nSizeRet = ser_readdata32(is);
|
||||
if (nSizeRet < 0x10000u)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
else
|
||||
{
|
||||
nSizeRet = ser_readdata64(is);
|
||||
if (nSizeRet < 0x100000000ULL)
|
||||
throw std::ios_base::failure("non-canonical ReadCompactSize()");
|
||||
}
|
||||
if (nSizeRet > (uint64_t)MAX_SIZE)
|
||||
throw std::ios_base::failure("ReadCompactSize(): size too large");
|
||||
return nSizeRet;
|
||||
}
|
||||
|
||||
/**
|
||||
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
|
||||
* The high bit in each byte signifies whether another digit follows. To make
|
||||
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
|
||||
* Thus, the byte sequence a[] with length len, where all but the last byte
|
||||
* has bit 128 set, encodes the number:
|
||||
*
|
||||
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
|
||||
*
|
||||
* Properties:
|
||||
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
|
||||
* * Every integer has exactly one encoding
|
||||
* * Encoding does not depend on size of original integer type
|
||||
* * No redundancy: every (infinite) byte sequence corresponds to a list
|
||||
* of encoded integers.
|
||||
*
|
||||
* 0: [0x00] 256: [0x81 0x00]
|
||||
* 1: [0x01] 16383: [0xFE 0x7F]
|
||||
* 127: [0x7F] 16384: [0xFF 0x00]
|
||||
* 128: [0x80 0x00] 16511: [0x80 0xFF 0x7F]
|
||||
* 255: [0x80 0x7F] 65535: [0x82 0xFD 0x7F]
|
||||
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
|
||||
*/
|
||||
|
||||
template<typename I>
|
||||
inline unsigned int GetSizeOfVarInt(I n)
|
||||
{
|
||||
int nRet = 0;
|
||||
while(true) {
|
||||
nRet++;
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
}
|
||||
return nRet;
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
void WriteVarInt(Stream& os, I n)
|
||||
{
|
||||
unsigned char tmp[(sizeof(n)*8+6)/7];
|
||||
int len=0;
|
||||
while(true) {
|
||||
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
|
||||
if (n <= 0x7F)
|
||||
break;
|
||||
n = (n >> 7) - 1;
|
||||
len++;
|
||||
}
|
||||
do {
|
||||
ser_writedata8(os, tmp[len]);
|
||||
} while(len--);
|
||||
}
|
||||
|
||||
template<typename Stream, typename I>
|
||||
I ReadVarInt(Stream& is)
|
||||
{
|
||||
I n = 0;
|
||||
while(true) {
|
||||
unsigned char chData = ser_readdata8(is);
|
||||
n = (n << 7) | (chData & 0x7F);
|
||||
if (chData & 0x80)
|
||||
n++;
|
||||
else
|
||||
return n;
|
||||
}
|
||||
}
|
||||
|
||||
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
|
||||
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
|
||||
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
|
||||
|
||||
/**
|
||||
* Wrapper for serializing arrays and POD.
|
||||
*/
|
||||
class CFlatData
|
||||
{
|
||||
protected:
|
||||
char* pbegin;
|
||||
char* pend;
|
||||
public:
|
||||
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
|
||||
template <class T, class TAl>
|
||||
explicit CFlatData(std::vector<T,TAl> &v)
|
||||
{
|
||||
pbegin = (char*)begin_ptr(v);
|
||||
pend = (char*)end_ptr(v);
|
||||
}
|
||||
char* begin() { return pbegin; }
|
||||
const char* begin() const { return pbegin; }
|
||||
char* end() { return pend; }
|
||||
const char* end() const { return pend; }
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return pend - pbegin;
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
s.write(pbegin, pend - pbegin);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
s.read(pbegin, pend - pbegin);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
class CVarInt
|
||||
{
|
||||
protected:
|
||||
I &n;
|
||||
public:
|
||||
CVarInt(I& nIn) : n(nIn) { }
|
||||
|
||||
unsigned int GetSerializeSize(int, int) const {
|
||||
return GetSizeOfVarInt<I>(n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream &s, int, int) const {
|
||||
WriteVarInt<Stream,I>(s, n);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int) {
|
||||
n = ReadVarInt<Stream,I>(s);
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t Limit>
|
||||
class LimitedString
|
||||
{
|
||||
protected:
|
||||
std::string& string;
|
||||
public:
|
||||
LimitedString(std::string& string) : string(string) {}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& s, int, int=0)
|
||||
{
|
||||
size_t size = ReadCompactSize(s);
|
||||
if (size > Limit) {
|
||||
throw std::ios_base::failure("String length limit exceeded");
|
||||
}
|
||||
string.resize(size);
|
||||
if (size != 0)
|
||||
s.read((char*)&string[0], size);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& s, int, int=0) const
|
||||
{
|
||||
WriteCompactSize(s, string.size());
|
||||
if (!string.empty())
|
||||
s.write((char*)&string[0], string.size());
|
||||
}
|
||||
|
||||
unsigned int GetSerializeSize(int, int=0) const
|
||||
{
|
||||
return GetSizeOfCompactSize(string.size()) + string.size();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename I>
|
||||
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
|
||||
|
||||
/**
|
||||
* Forward declarations
|
||||
*/
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C> unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str, int, int=0);
|
||||
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str, int, int=0);
|
||||
|
||||
/**
|
||||
* vector
|
||||
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
|
||||
*/
|
||||
template<typename T, typename A> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename T, typename A, typename V> unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename T, typename A> inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion);
|
||||
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&);
|
||||
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&);
|
||||
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
extern inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Serialize(Stream& os, const CScript& v, int nType, int nVersion);
|
||||
template<typename Stream> void Unserialize(Stream& is, CScript& v, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T> unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A> unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A> unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* If none of the specialized versions above matched, default to calling member function.
|
||||
* "int nType" is changed to "long nType" to keep from getting an ambiguous overload error.
|
||||
* The compiler will only cast int to long if none of the other templates matched.
|
||||
* Thanks to Boost serialization for this idea.
|
||||
*/
|
||||
template<typename T>
|
||||
inline unsigned int GetSerializeSize(const T& a, long nType, int nVersion)
|
||||
{
|
||||
return a.GetSerializeSize((int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Serialize(Stream& os, const T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Serialize(os, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void Unserialize(Stream& is, T& a, long nType, int nVersion)
|
||||
{
|
||||
a.Unserialize(is, (int)nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* string
|
||||
*/
|
||||
template<typename C>
|
||||
unsigned int GetSerializeSize(const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
return GetSizeOfCompactSize(str.size()) + str.size() * sizeof(str[0]);
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Serialize(Stream& os, const std::basic_string<C>& str, int, int)
|
||||
{
|
||||
WriteCompactSize(os, str.size());
|
||||
if (!str.empty())
|
||||
os.write((char*)&str[0], str.size() * sizeof(str[0]));
|
||||
}
|
||||
|
||||
template<typename Stream, typename C>
|
||||
void Unserialize(Stream& is, std::basic_string<C>& str, int, int)
|
||||
{
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
str.resize(nSize);
|
||||
if (nSize != 0)
|
||||
is.read((char*)&str[0], nSize * sizeof(str[0]));
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* vector
|
||||
*/
|
||||
template<typename T, typename A>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
return (GetSizeOfCompactSize(v.size()) + v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename T, typename A, typename V>
|
||||
unsigned int GetSerializeSize_impl(const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
nSize += GetSerializeSize((*vi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename T, typename A>
|
||||
inline unsigned int GetSerializeSize(const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize_impl(v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
if (!v.empty())
|
||||
os.write((char*)&v[0], v.size() * sizeof(T));
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Serialize_impl(Stream& os, const std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
WriteCompactSize(os, v.size());
|
||||
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
|
||||
::Serialize(os, (*vi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Serialize(Stream& os, const std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize_impl(os, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const unsigned char&)
|
||||
{
|
||||
// Limit size per read so bogus size value won't cause out of memory
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
while (i < nSize)
|
||||
{
|
||||
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
|
||||
v.resize(i + blk);
|
||||
is.read((char*)&v[i], blk * sizeof(T));
|
||||
i += blk;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A, typename V>
|
||||
void Unserialize_impl(Stream& is, std::vector<T, A>& v, int nType, int nVersion, const V&)
|
||||
{
|
||||
v.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
unsigned int i = 0;
|
||||
unsigned int nMid = 0;
|
||||
while (nMid < nSize)
|
||||
{
|
||||
nMid += 5000000 / sizeof(T);
|
||||
if (nMid > nSize)
|
||||
nMid = nSize;
|
||||
v.resize(nMid);
|
||||
for (; i < nMid; i++)
|
||||
Unserialize(is, v[i], nType, nVersion);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Stream, typename T, typename A>
|
||||
inline void Unserialize(Stream& is, std::vector<T, A>& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize_impl(is, v, nType, nVersion, T());
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* others derived from vector
|
||||
*/
|
||||
inline unsigned int GetSerializeSize(const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize((const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Serialize(Stream& os, const CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, (const std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream>
|
||||
void Unserialize(Stream& is, CScript& v, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, (std::vector<unsigned char>&)v, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* pair
|
||||
*/
|
||||
template<typename K, typename T>
|
||||
unsigned int GetSerializeSize(const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
return GetSerializeSize(item.first, nType, nVersion) + GetSerializeSize(item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Serialize(Stream& os, const std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Serialize(os, item.first, nType, nVersion);
|
||||
Serialize(os, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T>
|
||||
void Unserialize(Stream& is, std::pair<K, T>& item, int nType, int nVersion)
|
||||
{
|
||||
Unserialize(is, item.first, nType, nVersion);
|
||||
Unserialize(is, item.second, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* map
|
||||
*/
|
||||
template<typename K, typename T, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
nSize += GetSerializeSize((*mi), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
|
||||
Serialize(os, (*mi), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename T, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
std::pair<K, T> item;
|
||||
Unserialize(is, item, nType, nVersion);
|
||||
mi = m.insert(mi, item);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* set
|
||||
*/
|
||||
template<typename K, typename Pred, typename A>
|
||||
unsigned int GetSerializeSize(const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
unsigned int nSize = GetSizeOfCompactSize(m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
nSize += GetSerializeSize((*it), nType, nVersion);
|
||||
return nSize;
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Serialize(Stream& os, const std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
WriteCompactSize(os, m.size());
|
||||
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
|
||||
Serialize(os, (*it), nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename K, typename Pred, typename A>
|
||||
void Unserialize(Stream& is, std::set<K, Pred, A>& m, int nType, int nVersion)
|
||||
{
|
||||
m.clear();
|
||||
unsigned int nSize = ReadCompactSize(is);
|
||||
typename std::set<K, Pred, A>::iterator it = m.begin();
|
||||
for (unsigned int i = 0; i < nSize; i++)
|
||||
{
|
||||
K key;
|
||||
Unserialize(is, key, nType, nVersion);
|
||||
it = m.insert(it, key);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
|
||||
*/
|
||||
struct CSerActionSerialize
|
||||
{
|
||||
bool ForRead() const { return false; }
|
||||
};
|
||||
struct CSerActionUnserialize
|
||||
{
|
||||
bool ForRead() const { return true; }
|
||||
};
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, const T& obj, int nType, int nVersion, CSerActionSerialize ser_action)
|
||||
{
|
||||
::Serialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
template<typename Stream, typename T>
|
||||
inline void SerReadWrite(Stream& s, T& obj, int nType, int nVersion, CSerActionUnserialize ser_action)
|
||||
{
|
||||
::Unserialize(s, obj, nType, nVersion);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class CSizeComputer
|
||||
{
|
||||
protected:
|
||||
size_t nSize;
|
||||
|
||||
public:
|
||||
int nType;
|
||||
int nVersion;
|
||||
|
||||
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
|
||||
|
||||
CSizeComputer& write(const char *psz, size_t nSize)
|
||||
{
|
||||
this->nSize += nSize;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
CSizeComputer& operator<<(const T& obj)
|
||||
{
|
||||
::Serialize(*this, obj, nType, nVersion);
|
||||
return (*this);
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return nSize;
|
||||
}
|
||||
};
|
||||
|
||||
#endif // BITCOIN_SERIALIZE_H
|
||||
187
algo/hodl/sha256.cpp
Normal file
187
algo/hodl/sha256.cpp
Normal file
@@ -0,0 +1,187 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha256.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-256 implementation.
|
||||
namespace sha256
|
||||
{
|
||||
uint32_t inline Ch(uint32_t x, uint32_t y, uint32_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint32_t inline Maj(uint32_t x, uint32_t y, uint32_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint32_t inline Sigma0(uint32_t x) { return (x >> 2 | x << 30) ^ (x >> 13 | x << 19) ^ (x >> 22 | x << 10); }
|
||||
uint32_t inline Sigma1(uint32_t x) { return (x >> 6 | x << 26) ^ (x >> 11 | x << 21) ^ (x >> 25 | x << 7); }
|
||||
uint32_t inline sigma0(uint32_t x) { return (x >> 7 | x << 25) ^ (x >> 18 | x << 14) ^ (x >> 3); }
|
||||
uint32_t inline sigma1(uint32_t x) { return (x >> 17 | x << 15) ^ (x >> 19 | x << 13) ^ (x >> 10); }
|
||||
|
||||
/** One round of SHA-256. */
|
||||
void inline Round(uint32_t a, uint32_t b, uint32_t c, uint32_t& d, uint32_t e, uint32_t f, uint32_t g, uint32_t& h, uint32_t k, uint32_t w)
|
||||
{
|
||||
uint32_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint32_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint32_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667ul;
|
||||
s[1] = 0xbb67ae85ul;
|
||||
s[2] = 0x3c6ef372ul;
|
||||
s[3] = 0xa54ff53aul;
|
||||
s[4] = 0x510e527ful;
|
||||
s[5] = 0x9b05688cul;
|
||||
s[6] = 0x1f83d9abul;
|
||||
s[7] = 0x5be0cd19ul;
|
||||
}
|
||||
|
||||
/** Perform one SHA-256 transformation, processing a 64-byte chunk. */
|
||||
void Transform(uint32_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = ReadBE32(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = ReadBE32(chunk + 4));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = ReadBE32(chunk + 8));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = ReadBE32(chunk + 12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = ReadBE32(chunk + 16));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = ReadBE32(chunk + 20));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = ReadBE32(chunk + 24));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = ReadBE32(chunk + 28));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = ReadBE32(chunk + 32));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = ReadBE32(chunk + 36));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = ReadBE32(chunk + 40));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = ReadBE32(chunk + 44));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = ReadBE32(chunk + 48));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = ReadBE32(chunk + 52));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = ReadBE32(chunk + 56));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = ReadBE32(chunk + 60));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha256
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-256
|
||||
|
||||
CSHA256::CSHA256() : bytes(0)
|
||||
{
|
||||
sha256::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 64;
|
||||
if (bufsize && bufsize + len >= 64) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 64 - bufsize);
|
||||
bytes += 64 - bufsize;
|
||||
data += 64 - bufsize;
|
||||
sha256::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 64) {
|
||||
// Process full chunks directly from the source.
|
||||
sha256::Transform(s, data);
|
||||
bytes += 64;
|
||||
data += 64;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA256::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[64] = {0x80};
|
||||
unsigned char sizedesc[8];
|
||||
WriteBE64(sizedesc, bytes << 3);
|
||||
Write(pad, 1 + ((119 - (bytes % 64)) % 64));
|
||||
Write(sizedesc, 8);
|
||||
WriteBE32(hash, s[0]);
|
||||
WriteBE32(hash + 4, s[1]);
|
||||
WriteBE32(hash + 8, s[2]);
|
||||
WriteBE32(hash + 12, s[3]);
|
||||
WriteBE32(hash + 16, s[4]);
|
||||
WriteBE32(hash + 20, s[5]);
|
||||
WriteBE32(hash + 24, s[6]);
|
||||
WriteBE32(hash + 28, s[7]);
|
||||
}
|
||||
|
||||
CSHA256& CSHA256::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha256::Initialize(s);
|
||||
return *this;
|
||||
}
|
||||
28
algo/hodl/sha256.h
Normal file
28
algo/hodl/sha256.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA256_H
|
||||
#define BITCOIN_CRYPTO_SHA256_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-256. */
|
||||
class CSHA256
|
||||
{
|
||||
private:
|
||||
uint32_t s[8];
|
||||
unsigned char buf[64];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 32;
|
||||
|
||||
CSHA256();
|
||||
CSHA256& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA256& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA256_H
|
||||
44
algo/hodl/sha512-avx.h
Normal file
44
algo/hodl/sha512-avx.h
Normal file
@@ -0,0 +1,44 @@
|
||||
#ifndef _SHA512_H
|
||||
#define _SHA512_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "emmintrin.h"
|
||||
|
||||
//SHA-512 block size
|
||||
#define SHA512_BLOCK_SIZE 128
|
||||
//SHA-512 digest size
|
||||
#define SHA512_DIGEST_SIZE 64
|
||||
|
||||
/*
|
||||
#ifndef __AVX2__
|
||||
#ifndef __AVX__
|
||||
#error "Either AVX or AVX2 supported needed"
|
||||
#endif // __AVX__
|
||||
#endif // __AVX2__
|
||||
*/
|
||||
|
||||
typedef struct
|
||||
{
|
||||
#ifdef __AVX2__
|
||||
__m256i h[8];
|
||||
__m256i w[80];
|
||||
#else // AVX
|
||||
__m128i h[8];
|
||||
__m128i w[80];
|
||||
#endif
|
||||
} Sha512Context;
|
||||
|
||||
#ifdef __AVX2__
|
||||
#define SHA512_PARALLEL_N 8
|
||||
#else // AVX
|
||||
#define SHA512_PARALLEL_N 4
|
||||
#endif
|
||||
|
||||
//SHA-512 related functions
|
||||
void sha512Compute32b_parallel(
|
||||
uint64_t *data[SHA512_PARALLEL_N],
|
||||
uint64_t *digest[SHA512_PARALLEL_N]);
|
||||
|
||||
void sha512ProcessBlock(Sha512Context *context);
|
||||
|
||||
#endif
|
||||
205
algo/hodl/sha512.cpp
Normal file
205
algo/hodl/sha512.cpp
Normal file
@@ -0,0 +1,205 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "sha512.h"
|
||||
#include "common.h"
|
||||
#include <string.h>
|
||||
|
||||
// Internal implementation code.
|
||||
namespace
|
||||
{
|
||||
/// Internal SHA-512 implementation.
|
||||
namespace sha512
|
||||
{
|
||||
uint64_t inline Ch(uint64_t x, uint64_t y, uint64_t z) { return z ^ (x & (y ^ z)); }
|
||||
uint64_t inline Maj(uint64_t x, uint64_t y, uint64_t z) { return (x & y) | (z & (x | y)); }
|
||||
uint64_t inline Sigma0(uint64_t x) { return (x >> 28 | x << 36) ^ (x >> 34 | x << 30) ^ (x >> 39 | x << 25); }
|
||||
uint64_t inline Sigma1(uint64_t x) { return (x >> 14 | x << 50) ^ (x >> 18 | x << 46) ^ (x >> 41 | x << 23); }
|
||||
uint64_t inline sigma0(uint64_t x) { return (x >> 1 | x << 63) ^ (x >> 8 | x << 56) ^ (x >> 7); }
|
||||
uint64_t inline sigma1(uint64_t x) { return (x >> 19 | x << 45) ^ (x >> 61 | x << 3) ^ (x >> 6); }
|
||||
|
||||
/** One round of SHA-512. */
|
||||
void inline Round(uint64_t a, uint64_t b, uint64_t c, uint64_t& d, uint64_t e, uint64_t f, uint64_t g, uint64_t& h, uint64_t k, uint64_t w)
|
||||
{
|
||||
uint64_t t1 = h + Sigma1(e) + Ch(e, f, g) + k + w;
|
||||
uint64_t t2 = Sigma0(a) + Maj(a, b, c);
|
||||
d += t1;
|
||||
h = t1 + t2;
|
||||
}
|
||||
|
||||
/** Initialize SHA-256 state. */
|
||||
void inline Initialize(uint64_t* s)
|
||||
{
|
||||
s[0] = 0x6a09e667f3bcc908ull;
|
||||
s[1] = 0xbb67ae8584caa73bull;
|
||||
s[2] = 0x3c6ef372fe94f82bull;
|
||||
s[3] = 0xa54ff53a5f1d36f1ull;
|
||||
s[4] = 0x510e527fade682d1ull;
|
||||
s[5] = 0x9b05688c2b3e6c1full;
|
||||
s[6] = 0x1f83d9abfb41bd6bull;
|
||||
s[7] = 0x5be0cd19137e2179ull;
|
||||
}
|
||||
|
||||
/** Perform one SHA-512 transformation, processing a 128-byte chunk. */
|
||||
void Transform(uint64_t* s, const unsigned char* chunk)
|
||||
{
|
||||
uint64_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
|
||||
uint64_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x428a2f98d728ae22ull, w0 = ReadBE64(chunk + 0));
|
||||
Round(h, a, b, c, d, e, f, g, 0x7137449123ef65cdull, w1 = ReadBE64(chunk + 8));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcfec4d3b2full, w2 = ReadBE64(chunk + 16));
|
||||
Round(f, g, h, a, b, c, d, e, 0xe9b5dba58189dbbcull, w3 = ReadBE64(chunk + 24));
|
||||
Round(e, f, g, h, a, b, c, d, 0x3956c25bf348b538ull, w4 = ReadBE64(chunk + 32));
|
||||
Round(d, e, f, g, h, a, b, c, 0x59f111f1b605d019ull, w5 = ReadBE64(chunk + 40));
|
||||
Round(c, d, e, f, g, h, a, b, 0x923f82a4af194f9bull, w6 = ReadBE64(chunk + 48));
|
||||
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5da6d8118ull, w7 = ReadBE64(chunk + 56));
|
||||
Round(a, b, c, d, e, f, g, h, 0xd807aa98a3030242ull, w8 = ReadBE64(chunk + 64));
|
||||
Round(h, a, b, c, d, e, f, g, 0x12835b0145706fbeull, w9 = ReadBE64(chunk + 72));
|
||||
Round(g, h, a, b, c, d, e, f, 0x243185be4ee4b28cull, w10 = ReadBE64(chunk + 80));
|
||||
Round(f, g, h, a, b, c, d, e, 0x550c7dc3d5ffb4e2ull, w11 = ReadBE64(chunk + 88));
|
||||
Round(e, f, g, h, a, b, c, d, 0x72be5d74f27b896full, w12 = ReadBE64(chunk + 96));
|
||||
Round(d, e, f, g, h, a, b, c, 0x80deb1fe3b1696b1ull, w13 = ReadBE64(chunk + 104));
|
||||
Round(c, d, e, f, g, h, a, b, 0x9bdc06a725c71235ull, w14 = ReadBE64(chunk + 112));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc19bf174cf692694ull, w15 = ReadBE64(chunk + 120));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xe49b69c19ef14ad2ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xefbe4786384f25e3ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x0fc19dc68b8cd5b5ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x240ca1cc77ac9c65ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x2de92c6f592b0275ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4a7484aa6ea6e483ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dcbd41fbd4ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x76f988da831153b5ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x983e5152ee66dfabull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa831c66d2db43210ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xb00327c898fb213full, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xbf597fc7beef0ee4ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xc6e00bf33da88fc2ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd5a79147930aa725ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x06ca6351e003826full, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x142929670a0e6e70ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x27b70a8546d22ffcull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x2e1b21385c26c926ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc5ac42aedull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x53380d139d95b3dfull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x650a73548baf63deull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x766a0abb3c77b2a8ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x81c2c92e47edaee6ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x92722c851482353bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a14cf10364ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0xa81a664bbc423001ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0xc24b8b70d0f89791ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0xc76c51a30654be30ull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0xd192e819d6ef5218ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xd69906245565a910ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xf40e35855771202aull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x106aa07032bbd1b8ull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0x19a4c116b8d2d0c8ull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0x1e376c085141ab53ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0x2748774cdf8eeb99ull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5e19b48a8ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x391c0cb3c5c95a63ull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4ae3418acbull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f7763e373ull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x682e6ff3d6b2b8a3ull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x748f82ee5defb2fcull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x78a5636f43172f60ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x84c87814a1f0ab72ull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x8cc702081a6439ecull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x90befffa23631e28ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0xa4506cebde82bde9ull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7b2c67915ull, w14 += sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0xc67178f2e372532bull, w15 += sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
Round(a, b, c, d, e, f, g, h, 0xca273eceea26619cull, w0 += sigma1(w14) + w9 + sigma0(w1));
|
||||
Round(h, a, b, c, d, e, f, g, 0xd186b8c721c0c207ull, w1 += sigma1(w15) + w10 + sigma0(w2));
|
||||
Round(g, h, a, b, c, d, e, f, 0xeada7dd6cde0eb1eull, w2 += sigma1(w0) + w11 + sigma0(w3));
|
||||
Round(f, g, h, a, b, c, d, e, 0xf57d4f7fee6ed178ull, w3 += sigma1(w1) + w12 + sigma0(w4));
|
||||
Round(e, f, g, h, a, b, c, d, 0x06f067aa72176fbaull, w4 += sigma1(w2) + w13 + sigma0(w5));
|
||||
Round(d, e, f, g, h, a, b, c, 0x0a637dc5a2c898a6ull, w5 += sigma1(w3) + w14 + sigma0(w6));
|
||||
Round(c, d, e, f, g, h, a, b, 0x113f9804bef90daeull, w6 += sigma1(w4) + w15 + sigma0(w7));
|
||||
Round(b, c, d, e, f, g, h, a, 0x1b710b35131c471bull, w7 += sigma1(w5) + w0 + sigma0(w8));
|
||||
Round(a, b, c, d, e, f, g, h, 0x28db77f523047d84ull, w8 += sigma1(w6) + w1 + sigma0(w9));
|
||||
Round(h, a, b, c, d, e, f, g, 0x32caab7b40c72493ull, w9 += sigma1(w7) + w2 + sigma0(w10));
|
||||
Round(g, h, a, b, c, d, e, f, 0x3c9ebe0a15c9bebcull, w10 += sigma1(w8) + w3 + sigma0(w11));
|
||||
Round(f, g, h, a, b, c, d, e, 0x431d67c49c100d4cull, w11 += sigma1(w9) + w4 + sigma0(w12));
|
||||
Round(e, f, g, h, a, b, c, d, 0x4cc5d4becb3e42b6ull, w12 += sigma1(w10) + w5 + sigma0(w13));
|
||||
Round(d, e, f, g, h, a, b, c, 0x597f299cfc657e2aull, w13 += sigma1(w11) + w6 + sigma0(w14));
|
||||
Round(c, d, e, f, g, h, a, b, 0x5fcb6fab3ad6faecull, w14 + sigma1(w12) + w7 + sigma0(w15));
|
||||
Round(b, c, d, e, f, g, h, a, 0x6c44198c4a475817ull, w15 + sigma1(w13) + w8 + sigma0(w0));
|
||||
|
||||
s[0] += a;
|
||||
s[1] += b;
|
||||
s[2] += c;
|
||||
s[3] += d;
|
||||
s[4] += e;
|
||||
s[5] += f;
|
||||
s[6] += g;
|
||||
s[7] += h;
|
||||
}
|
||||
|
||||
} // namespace sha512
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
////// SHA-512
|
||||
|
||||
CSHA512::CSHA512() : bytes(0)
|
||||
{
|
||||
sha512::Initialize(s);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Write(const unsigned char* data, size_t len)
|
||||
{
|
||||
const unsigned char* end = data + len;
|
||||
size_t bufsize = bytes % 128;
|
||||
if (bufsize && bufsize + len >= 128) {
|
||||
// Fill the buffer, and process it.
|
||||
memcpy(buf + bufsize, data, 128 - bufsize);
|
||||
bytes += 128 - bufsize;
|
||||
data += 128 - bufsize;
|
||||
sha512::Transform(s, buf);
|
||||
bufsize = 0;
|
||||
}
|
||||
while (end >= data + 128) {
|
||||
// Process full chunks directly from the source.
|
||||
sha512::Transform(s, data);
|
||||
data += 128;
|
||||
bytes += 128;
|
||||
}
|
||||
if (end > data) {
|
||||
// Fill the buffer with what remains.
|
||||
memcpy(buf + bufsize, data, end - data);
|
||||
bytes += end - data;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
void CSHA512::Finalize(unsigned char hash[OUTPUT_SIZE])
|
||||
{
|
||||
static const unsigned char pad[128] = {0x80};
|
||||
unsigned char sizedesc[16] = {0x00};
|
||||
WriteBE64(sizedesc + 8, bytes << 3);
|
||||
Write(pad, 1 + ((239 - (bytes % 128)) % 128));
|
||||
Write(sizedesc, 16);
|
||||
WriteBE64(hash, s[0]);
|
||||
WriteBE64(hash + 8, s[1]);
|
||||
WriteBE64(hash + 16, s[2]);
|
||||
WriteBE64(hash + 24, s[3]);
|
||||
WriteBE64(hash + 32, s[4]);
|
||||
WriteBE64(hash + 40, s[5]);
|
||||
WriteBE64(hash + 48, s[6]);
|
||||
WriteBE64(hash + 56, s[7]);
|
||||
}
|
||||
|
||||
CSHA512& CSHA512::Reset()
|
||||
{
|
||||
bytes = 0;
|
||||
sha512::Initialize(s);
|
||||
return *this;
|
||||
}
|
||||
28
algo/hodl/sha512.h
Normal file
28
algo/hodl/sha512.h
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_CRYPTO_SHA512_H
|
||||
#define BITCOIN_CRYPTO_SHA512_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/** A hasher class for SHA-512. */
|
||||
class CSHA512
|
||||
{
|
||||
private:
|
||||
uint64_t s[8];
|
||||
unsigned char buf[128];
|
||||
size_t bytes;
|
||||
|
||||
public:
|
||||
static const size_t OUTPUT_SIZE = 64;
|
||||
|
||||
CSHA512();
|
||||
CSHA512& Write(const unsigned char* data, size_t len);
|
||||
void Finalize(unsigned char hash[OUTPUT_SIZE]);
|
||||
CSHA512& Reset();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_CRYPTO_SHA512_H
|
||||
224
algo/hodl/sha512_avx.c
Normal file
224
algo/hodl/sha512_avx.c
Normal file
@@ -0,0 +1,224 @@
|
||||
#ifndef __AVX2__
|
||||
#ifdef __AVX__
|
||||
|
||||
//Dependencies
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
|
||||
#include "sha512-avx.h"
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
//SHA-512 auxiliary functions
|
||||
#define Ch(x, y, z) (((x) & (y)) | (~(x) & (z)))
|
||||
#define Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
||||
#define SIGMA1(x) (ROR64(x, 28) ^ ROR64(x, 34) ^ ROR64(x, 39))
|
||||
#define SIGMA2(x) (ROR64(x, 14) ^ ROR64(x, 18) ^ ROR64(x, 41))
|
||||
#define SIGMA3(x) (ROR64(x, 1) ^ ROR64(x, 8) ^ SHR64(x, 7))
|
||||
#define SIGMA4(x) (ROR64(x, 19) ^ ROR64(x, 61) ^ SHR64(x, 6))
|
||||
|
||||
//Rotate right operation
|
||||
#define ROR64(a, n) _mm_or_si128(_mm_srli_epi64(a, n), _mm_slli_epi64(a, 64 - n))
|
||||
|
||||
//Shift right operation
|
||||
#define SHR64(a, n) _mm_srli_epi64(a, n)
|
||||
|
||||
__m128i mm_htobe_epi64(__m128i a) {
|
||||
__m128i mask = _mm_set_epi8(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);
|
||||
return _mm_shuffle_epi8(a, mask);
|
||||
}
|
||||
|
||||
__m128i mm_betoh_epi64(__m128i a) {
|
||||
return mm_htobe_epi64(a);
|
||||
}
|
||||
|
||||
//SHA-512 padding
|
||||
static const uint8_t padding[128] =
|
||||
{
|
||||
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||||
};
|
||||
|
||||
//SHA-512 constants
|
||||
static const uint64_t k[80] =
|
||||
{
|
||||
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
|
||||
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
|
||||
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
|
||||
0x72BE5D74F27B896F, 0x80DEB1FE3B1696B1, 0x9BDC06A725C71235, 0xC19BF174CF692694,
|
||||
0xE49B69C19EF14AD2, 0xEFBE4786384F25E3, 0x0FC19DC68B8CD5B5, 0x240CA1CC77AC9C65,
|
||||
0x2DE92C6F592B0275, 0x4A7484AA6EA6E483, 0x5CB0A9DCBD41FBD4, 0x76F988DA831153B5,
|
||||
0x983E5152EE66DFAB, 0xA831C66D2DB43210, 0xB00327C898FB213F, 0xBF597FC7BEEF0EE4,
|
||||
0xC6E00BF33DA88FC2, 0xD5A79147930AA725, 0x06CA6351E003826F, 0x142929670A0E6E70,
|
||||
0x27B70A8546D22FFC, 0x2E1B21385C26C926, 0x4D2C6DFC5AC42AED, 0x53380D139D95B3DF,
|
||||
0x650A73548BAF63DE, 0x766A0ABB3C77B2A8, 0x81C2C92E47EDAEE6, 0x92722C851482353B,
|
||||
0xA2BFE8A14CF10364, 0xA81A664BBC423001, 0xC24B8B70D0F89791, 0xC76C51A30654BE30,
|
||||
0xD192E819D6EF5218, 0xD69906245565A910, 0xF40E35855771202A, 0x106AA07032BBD1B8,
|
||||
0x19A4C116B8D2D0C8, 0x1E376C085141AB53, 0x2748774CDF8EEB99, 0x34B0BCB5E19B48A8,
|
||||
0x391C0CB3C5C95A63, 0x4ED8AA4AE3418ACB, 0x5B9CCA4F7763E373, 0x682E6FF3D6B2B8A3,
|
||||
0x748F82EE5DEFB2FC, 0x78A5636F43172F60, 0x84C87814A1F0AB72, 0x8CC702081A6439EC,
|
||||
0x90BEFFFA23631E28, 0xA4506CEBDE82BDE9, 0xBEF9A3F7B2C67915, 0xC67178F2E372532B,
|
||||
0xCA273ECEEA26619C, 0xD186B8C721C0C207, 0xEADA7DD6CDE0EB1E, 0xF57D4F7FEE6ED178,
|
||||
0x06F067AA72176FBA, 0x0A637DC5A2C898A6, 0x113F9804BEF90DAE, 0x1B710B35131C471B,
|
||||
0x28DB77F523047D84, 0x32CAAB7B40C72493, 0x3C9EBE0A15C9BEBC, 0x431D67C49C100D4C,
|
||||
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
|
||||
};
|
||||
|
||||
|
||||
void sha512Compute32b_parallel(uint64_t *data[SHA512_PARALLEL_N], uint64_t *digest[SHA512_PARALLEL_N]) {
|
||||
Sha512Context context[2];
|
||||
context[0].h[0] = _mm_set1_epi64x(0x6A09E667F3BCC908);
|
||||
context[0].h[1] = _mm_set1_epi64x(0xBB67AE8584CAA73B);
|
||||
context[0].h[2] = _mm_set1_epi64x(0x3C6EF372FE94F82B);
|
||||
context[0].h[3] = _mm_set1_epi64x(0xA54FF53A5F1D36F1);
|
||||
context[0].h[4] = _mm_set1_epi64x(0x510E527FADE682D1);
|
||||
context[0].h[5] = _mm_set1_epi64x(0x9B05688C2B3E6C1F);
|
||||
context[0].h[6] = _mm_set1_epi64x(0x1F83D9ABFB41BD6B);
|
||||
context[0].h[7] = _mm_set1_epi64x(0x5BE0CD19137E2179);
|
||||
|
||||
context[1].h[0] = _mm_set1_epi64x(0x6A09E667F3BCC908);
|
||||
context[1].h[1] = _mm_set1_epi64x(0xBB67AE8584CAA73B);
|
||||
context[1].h[2] = _mm_set1_epi64x(0x3C6EF372FE94F82B);
|
||||
context[1].h[3] = _mm_set1_epi64x(0xA54FF53A5F1D36F1);
|
||||
context[1].h[4] = _mm_set1_epi64x(0x510E527FADE682D1);
|
||||
context[1].h[5] = _mm_set1_epi64x(0x9B05688C2B3E6C1F);
|
||||
context[1].h[6] = _mm_set1_epi64x(0x1F83D9ABFB41BD6B);
|
||||
context[1].h[7] = _mm_set1_epi64x(0x5BE0CD19137E2179);
|
||||
|
||||
for(int i=0; i<4; ++i) {
|
||||
context[0].w[i] = _mm_set_epi64x ( data[1][i], data[0][i] );
|
||||
context[1].w[i] = _mm_set_epi64x ( data[3][i], data[2][i] );
|
||||
}
|
||||
for(int i=0; i<10; ++i) {
|
||||
context[0].w[i+4] = _mm_set1_epi64x( ((uint64_t*)padding)[i] );
|
||||
context[1].w[i+4] = _mm_set1_epi64x( ((uint64_t*)padding)[i] );
|
||||
}
|
||||
|
||||
//Length of the original message (before padding)
|
||||
uint64_t totalSize = 32 * 8;
|
||||
|
||||
//Append the length of the original message
|
||||
context[0].w[14] = _mm_set1_epi64x(0);
|
||||
context[0].w[15] = _mm_set1_epi64x(htobe64(totalSize));
|
||||
|
||||
context[1].w[14] = _mm_set1_epi64x(0);
|
||||
context[1].w[15] = _mm_set1_epi64x(htobe64(totalSize));
|
||||
|
||||
//Calculate the message digest
|
||||
sha512ProcessBlock(context);
|
||||
|
||||
//Convert from host byte order to big-endian byte order
|
||||
for (int i = 0; i < 8; i++) {
|
||||
context[0].h[i] = mm_htobe_epi64(context[0].h[i]);
|
||||
context[1].h[i] = mm_htobe_epi64(context[1].h[i]);
|
||||
}
|
||||
|
||||
//Copy the resulting digest
|
||||
for(int i=0; i<8; ++i) {
|
||||
digest[0][i] = _mm_extract_epi64(context[0].h[i], 0);
|
||||
digest[1][i] = _mm_extract_epi64(context[0].h[i], 1);
|
||||
digest[2][i] = _mm_extract_epi64(context[1].h[i], 0);
|
||||
digest[3][i] = _mm_extract_epi64(context[1].h[i], 1);
|
||||
}
|
||||
}
|
||||
|
||||
#define blk0(n, i) (block[n][i] = mm_betoh_epi64(block[n][i]))
|
||||
#define blk(n, i) (block[n][i] = block[n][i - 16] + SIGMA3(block[n][i - 15]) + \
|
||||
SIGMA4(block[n][i - 2]) + block[n][i - 7])
|
||||
|
||||
#define ROUND512(a,b,c,d,e,f,g,h) \
|
||||
T0 += (h[0]) + SIGMA2(e[0]) + Ch((e[0]), (f[0]), (g[0])) + k[i]; \
|
||||
T1 += (h[1]) + SIGMA2(e[1]) + Ch((e[1]), (f[1]), (g[1])) + k[i]; \
|
||||
(d[0]) += T0; \
|
||||
(d[1]) += T1; \
|
||||
(h[0]) = T0 + SIGMA1(a[0]) + Maj((a[0]), (b[0]), (c[0])); \
|
||||
(h[1]) = T1 + SIGMA1(a[1]) + Maj((a[1]), (b[1]), (c[1])); \
|
||||
i++
|
||||
|
||||
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T0 = blk0(0, i); \
|
||||
T1 = blk0(1, i); \
|
||||
ROUND512(a,b,c,d,e,f,g,h)
|
||||
|
||||
#define ROUND512_16_TO_80(a,b,c,d,e,f,g,h) \
|
||||
T0 = blk(0, i); \
|
||||
T1 = blk(1, i); \
|
||||
ROUND512(a,b,c,d,e,f,g,h)
|
||||
|
||||
#define R512_0 \
|
||||
ROUND512_0_TO_15(a, b, c, d, e, f, g, h); \
|
||||
ROUND512_0_TO_15(h, a, b, c, d, e, f, g); \
|
||||
ROUND512_0_TO_15(g, h, a, b, c, d, e, f); \
|
||||
ROUND512_0_TO_15(f, g, h, a, b, c, d, e); \
|
||||
ROUND512_0_TO_15(e, f, g, h, a, b, c, d); \
|
||||
ROUND512_0_TO_15(d, e, f, g, h, a, b, c); \
|
||||
ROUND512_0_TO_15(c, d, e, f, g, h, a, b); \
|
||||
ROUND512_0_TO_15(b, c, d, e, f, g, h, a)
|
||||
|
||||
#define R512_16 \
|
||||
ROUND512_16_TO_80(a, b, c, d, e, f, g, h); \
|
||||
ROUND512_16_TO_80(h, a, b, c, d, e, f, g); \
|
||||
ROUND512_16_TO_80(g, h, a, b, c, d, e, f); \
|
||||
ROUND512_16_TO_80(f, g, h, a, b, c, d, e); \
|
||||
ROUND512_16_TO_80(e, f, g, h, a, b, c, d); \
|
||||
ROUND512_16_TO_80(d, e, f, g, h, a, b, c); \
|
||||
ROUND512_16_TO_80(c, d, e, f, g, h, a, b); \
|
||||
ROUND512_16_TO_80(b, c, d, e, f, g, h, a)
|
||||
|
||||
#define INIT(x,n) \
|
||||
x[0] = context[0].h[n]; \
|
||||
x[1] = context[1].h[n]; \
|
||||
|
||||
void sha512ProcessBlock(Sha512Context context[2])
|
||||
{
|
||||
__m128i* block[2];
|
||||
block[0] = context[0].w;
|
||||
block[1] = context[1].w;
|
||||
|
||||
__m128i T0, T1;
|
||||
__m128i a[2], b[2], c[2], d[2], e[2], f[2], g[2], h[2];
|
||||
INIT(a, 0)
|
||||
INIT(b, 1)
|
||||
INIT(c, 2)
|
||||
INIT(d, 3)
|
||||
INIT(e, 4)
|
||||
INIT(f, 5)
|
||||
INIT(g, 6)
|
||||
INIT(h, 7)
|
||||
|
||||
int i = 0;
|
||||
R512_0; R512_0;
|
||||
for(int j=0; j<8; ++j) {
|
||||
R512_16;
|
||||
}
|
||||
|
||||
context[0].h[0] += a[0];
|
||||
context[0].h[1] += b[0];
|
||||
context[0].h[2] += c[0];
|
||||
context[0].h[3] += d[0];
|
||||
context[0].h[4] += e[0];
|
||||
context[0].h[5] += f[0];
|
||||
context[0].h[6] += g[0];
|
||||
context[0].h[7] += h[0];
|
||||
|
||||
context[1].h[0] += a[1];
|
||||
context[1].h[1] += b[1];
|
||||
context[1].h[2] += c[1];
|
||||
context[1].h[3] += d[1];
|
||||
context[1].h[4] += e[1];
|
||||
context[1].h[5] += f[1];
|
||||
context[1].h[6] += g[1];
|
||||
context[1].h[7] += h[1];
|
||||
}
|
||||
|
||||
#endif // __AVX__
|
||||
#endif // __AVX2__
|
||||
232
algo/hodl/sha512_avx2.c
Normal file
232
algo/hodl/sha512_avx2.c
Normal file
@@ -0,0 +1,232 @@
|
||||
#ifdef __AVX2__
|
||||
|
||||
//Dependencies
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "tmmintrin.h"
|
||||
#include "smmintrin.h"
|
||||
#include "immintrin.h"
|
||||
|
||||
#include "sha512-avx.h"
|
||||
#if ((defined(_WIN64) || defined(__WINDOWS__)))
|
||||
#include "hodl-endian.h"
|
||||
#endif
|
||||
|
||||
//SHA-512 auxiliary functions
|
||||
#define Ch(x, y, z) (((x) & (y)) | (~(x) & (z)))
|
||||
#define Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
||||
#define SIGMA1(x) (ROR64(x, 28) ^ ROR64(x, 34) ^ ROR64(x, 39))
|
||||
#define SIGMA2(x) (ROR64(x, 14) ^ ROR64(x, 18) ^ ROR64(x, 41))
|
||||
#define SIGMA3(x) (ROR64(x, 1) ^ ROR64(x, 8) ^ SHR64(x, 7))
|
||||
#define SIGMA4(x) (ROR64(x, 19) ^ ROR64(x, 61) ^ SHR64(x, 6))
|
||||
|
||||
//Rotate right operation
|
||||
#define ROR64(a, n) _mm256_or_si256(_mm256_srli_epi64(a, n), _mm256_slli_epi64(a, 64 - n))
|
||||
|
||||
//Shift right operation
|
||||
#define SHR64(a, n) _mm256_srli_epi64(a, n)
|
||||
|
||||
__m256i mm256_htobe_epi64(__m256i a) {
|
||||
__m256i mask = _mm256_set_epi8(
|
||||
24,25,26,27,28,29,30,31,
|
||||
16,17,18,19,20,21,22,23,
|
||||
8, 9, 10, 11, 12, 13, 14, 15,
|
||||
0, 1, 2, 3, 4, 5, 6, 7);
|
||||
return _mm256_shuffle_epi8(a, mask);
|
||||
}
|
||||
|
||||
__m256i mm256_betoh_epi64(__m256i a) {
|
||||
return mm256_htobe_epi64(a);
|
||||
}
|
||||
|
||||
//SHA-512 padding
|
||||
static const uint8_t padding[128] =
|
||||
{
|
||||
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||||
};
|
||||
|
||||
//SHA-512 constants
|
||||
static const uint64_t k[80] =
|
||||
{
|
||||
0x428A2F98D728AE22, 0x7137449123EF65CD, 0xB5C0FBCFEC4D3B2F, 0xE9B5DBA58189DBBC,
|
||||
0x3956C25BF348B538, 0x59F111F1B605D019, 0x923F82A4AF194F9B, 0xAB1C5ED5DA6D8118,
|
||||
0xD807AA98A3030242, 0x12835B0145706FBE, 0x243185BE4EE4B28C, 0x550C7DC3D5FFB4E2,
|
||||
0x72BE5D74F27B896F, 0x80DEB1FE3B1696B1, 0x9BDC06A725C71235, 0xC19BF174CF692694,
|
||||
0xE49B69C19EF14AD2, 0xEFBE4786384F25E3, 0x0FC19DC68B8CD5B5, 0x240CA1CC77AC9C65,
|
||||
0x2DE92C6F592B0275, 0x4A7484AA6EA6E483, 0x5CB0A9DCBD41FBD4, 0x76F988DA831153B5,
|
||||
0x983E5152EE66DFAB, 0xA831C66D2DB43210, 0xB00327C898FB213F, 0xBF597FC7BEEF0EE4,
|
||||
0xC6E00BF33DA88FC2, 0xD5A79147930AA725, 0x06CA6351E003826F, 0x142929670A0E6E70,
|
||||
0x27B70A8546D22FFC, 0x2E1B21385C26C926, 0x4D2C6DFC5AC42AED, 0x53380D139D95B3DF,
|
||||
0x650A73548BAF63DE, 0x766A0ABB3C77B2A8, 0x81C2C92E47EDAEE6, 0x92722C851482353B,
|
||||
0xA2BFE8A14CF10364, 0xA81A664BBC423001, 0xC24B8B70D0F89791, 0xC76C51A30654BE30,
|
||||
0xD192E819D6EF5218, 0xD69906245565A910, 0xF40E35855771202A, 0x106AA07032BBD1B8,
|
||||
0x19A4C116B8D2D0C8, 0x1E376C085141AB53, 0x2748774CDF8EEB99, 0x34B0BCB5E19B48A8,
|
||||
0x391C0CB3C5C95A63, 0x4ED8AA4AE3418ACB, 0x5B9CCA4F7763E373, 0x682E6FF3D6B2B8A3,
|
||||
0x748F82EE5DEFB2FC, 0x78A5636F43172F60, 0x84C87814A1F0AB72, 0x8CC702081A6439EC,
|
||||
0x90BEFFFA23631E28, 0xA4506CEBDE82BDE9, 0xBEF9A3F7B2C67915, 0xC67178F2E372532B,
|
||||
0xCA273ECEEA26619C, 0xD186B8C721C0C207, 0xEADA7DD6CDE0EB1E, 0xF57D4F7FEE6ED178,
|
||||
0x06F067AA72176FBA, 0x0A637DC5A2C898A6, 0x113F9804BEF90DAE, 0x1B710B35131C471B,
|
||||
0x28DB77F523047D84, 0x32CAAB7B40C72493, 0x3C9EBE0A15C9BEBC, 0x431D67C49C100D4C,
|
||||
0x4CC5D4BECB3E42B6, 0x597F299CFC657E2A, 0x5FCB6FAB3AD6FAEC, 0x6C44198C4A475817
|
||||
};
|
||||
|
||||
|
||||
void sha512Compute32b_parallel(uint64_t *data[SHA512_PARALLEL_N], uint64_t *digest[SHA512_PARALLEL_N]) {
|
||||
Sha512Context context[2];
|
||||
context[0].h[0] = _mm256_set1_epi64x(0x6A09E667F3BCC908);
|
||||
context[0].h[1] = _mm256_set1_epi64x(0xBB67AE8584CAA73B);
|
||||
context[0].h[2] = _mm256_set1_epi64x(0x3C6EF372FE94F82B);
|
||||
context[0].h[3] = _mm256_set1_epi64x(0xA54FF53A5F1D36F1);
|
||||
context[0].h[4] = _mm256_set1_epi64x(0x510E527FADE682D1);
|
||||
context[0].h[5] = _mm256_set1_epi64x(0x9B05688C2B3E6C1F);
|
||||
context[0].h[6] = _mm256_set1_epi64x(0x1F83D9ABFB41BD6B);
|
||||
context[0].h[7] = _mm256_set1_epi64x(0x5BE0CD19137E2179);
|
||||
|
||||
context[1].h[0] = _mm256_set1_epi64x(0x6A09E667F3BCC908);
|
||||
context[1].h[1] = _mm256_set1_epi64x(0xBB67AE8584CAA73B);
|
||||
context[1].h[2] = _mm256_set1_epi64x(0x3C6EF372FE94F82B);
|
||||
context[1].h[3] = _mm256_set1_epi64x(0xA54FF53A5F1D36F1);
|
||||
context[1].h[4] = _mm256_set1_epi64x(0x510E527FADE682D1);
|
||||
context[1].h[5] = _mm256_set1_epi64x(0x9B05688C2B3E6C1F);
|
||||
context[1].h[6] = _mm256_set1_epi64x(0x1F83D9ABFB41BD6B);
|
||||
context[1].h[7] = _mm256_set1_epi64x(0x5BE0CD19137E2179);
|
||||
|
||||
for(int i=0; i<4; ++i) {
|
||||
context[0].w[i] = _mm256_set_epi64x ( data[3][i], data[2][i], data[1][i], data[0][i] );
|
||||
context[1].w[i] = _mm256_set_epi64x ( data[7][i], data[6][i], data[5][i], data[4][i] );
|
||||
}
|
||||
for(int i=0; i<10; ++i) {
|
||||
context[0].w[i+4] = _mm256_set1_epi64x( ((uint64_t*)padding)[i] );
|
||||
context[1].w[i+4] = _mm256_set1_epi64x( ((uint64_t*)padding)[i] );
|
||||
}
|
||||
|
||||
//Length of the original message (before padding)
|
||||
uint64_t totalSize = 32 * 8;
|
||||
|
||||
//Append the length of the original message
|
||||
context[0].w[14] = _mm256_set1_epi64x(0);
|
||||
context[0].w[15] = _mm256_set1_epi64x(htobe64(totalSize));
|
||||
|
||||
context[1].w[14] = _mm256_set1_epi64x(0);
|
||||
context[1].w[15] = _mm256_set1_epi64x(htobe64(totalSize));
|
||||
|
||||
//Calculate the message digest
|
||||
sha512ProcessBlock(context);
|
||||
|
||||
//Convert from host byte order to big-endian byte order
|
||||
for (int i = 0; i < 8; i++) {
|
||||
context[0].h[i] = mm256_htobe_epi64(context[0].h[i]);
|
||||
context[1].h[i] = mm256_htobe_epi64(context[1].h[i]);
|
||||
}
|
||||
|
||||
//Copy the resulting digest
|
||||
for(int i=0; i<8; ++i) {
|
||||
digest[0][i] = _mm256_extract_epi64(context[0].h[i], 0);
|
||||
digest[1][i] = _mm256_extract_epi64(context[0].h[i], 1);
|
||||
digest[2][i] = _mm256_extract_epi64(context[0].h[i], 2);
|
||||
digest[3][i] = _mm256_extract_epi64(context[0].h[i], 3);
|
||||
|
||||
digest[4][i] = _mm256_extract_epi64(context[1].h[i], 0);
|
||||
digest[5][i] = _mm256_extract_epi64(context[1].h[i], 1);
|
||||
digest[6][i] = _mm256_extract_epi64(context[1].h[i], 2);
|
||||
digest[7][i] = _mm256_extract_epi64(context[1].h[i], 3);
|
||||
}
|
||||
}
|
||||
|
||||
#define blk0(n, i) (block[n][i] = mm256_betoh_epi64(block[n][i]))
|
||||
#define blk(n, i) (block[n][i] = block[n][i - 16] + SIGMA3(block[n][i - 15]) + \
|
||||
SIGMA4(block[n][i - 2]) + block[n][i - 7])
|
||||
|
||||
#define ROUND512(a,b,c,d,e,f,g,h) \
|
||||
T0 += (h[0]) + SIGMA2(e[0]) + Ch((e[0]), (f[0]), (g[0])) + k[i]; \
|
||||
T1 += (h[1]) + SIGMA2(e[1]) + Ch((e[1]), (f[1]), (g[1])) + k[i]; \
|
||||
(d[0]) += T0; \
|
||||
(d[1]) += T1; \
|
||||
(h[0]) = T0 + SIGMA1(a[0]) + Maj((a[0]), (b[0]), (c[0])); \
|
||||
(h[1]) = T1 + SIGMA1(a[1]) + Maj((a[1]), (b[1]), (c[1])); \
|
||||
i++
|
||||
|
||||
#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
|
||||
T0 = blk0(0, i); \
|
||||
T1 = blk0(1, i); \
|
||||
ROUND512(a,b,c,d,e,f,g,h)
|
||||
|
||||
#define ROUND512_16_TO_80(a,b,c,d,e,f,g,h) \
|
||||
T0 = blk(0, i); \
|
||||
T1 = blk(1, i); \
|
||||
ROUND512(a,b,c,d,e,f,g,h)
|
||||
|
||||
#define R512_0 \
|
||||
ROUND512_0_TO_15(a, b, c, d, e, f, g, h); \
|
||||
ROUND512_0_TO_15(h, a, b, c, d, e, f, g); \
|
||||
ROUND512_0_TO_15(g, h, a, b, c, d, e, f); \
|
||||
ROUND512_0_TO_15(f, g, h, a, b, c, d, e); \
|
||||
ROUND512_0_TO_15(e, f, g, h, a, b, c, d); \
|
||||
ROUND512_0_TO_15(d, e, f, g, h, a, b, c); \
|
||||
ROUND512_0_TO_15(c, d, e, f, g, h, a, b); \
|
||||
ROUND512_0_TO_15(b, c, d, e, f, g, h, a)
|
||||
|
||||
#define R512_16 \
|
||||
ROUND512_16_TO_80(a, b, c, d, e, f, g, h); \
|
||||
ROUND512_16_TO_80(h, a, b, c, d, e, f, g); \
|
||||
ROUND512_16_TO_80(g, h, a, b, c, d, e, f); \
|
||||
ROUND512_16_TO_80(f, g, h, a, b, c, d, e); \
|
||||
ROUND512_16_TO_80(e, f, g, h, a, b, c, d); \
|
||||
ROUND512_16_TO_80(d, e, f, g, h, a, b, c); \
|
||||
ROUND512_16_TO_80(c, d, e, f, g, h, a, b); \
|
||||
ROUND512_16_TO_80(b, c, d, e, f, g, h, a)
|
||||
|
||||
#define INIT(x,n) \
|
||||
x[0] = context[0].h[n]; \
|
||||
x[1] = context[1].h[n]; \
|
||||
|
||||
void sha512ProcessBlock(Sha512Context context[2])
|
||||
{
|
||||
__m256i* block[2];
|
||||
block[0] = context[0].w;
|
||||
block[1] = context[1].w;
|
||||
|
||||
__m256i T0, T1;
|
||||
__m256i a[2], b[2], c[2], d[2], e[2], f[2], g[2], h[2];
|
||||
INIT(a, 0)
|
||||
INIT(b, 1)
|
||||
INIT(c, 2)
|
||||
INIT(d, 3)
|
||||
INIT(e, 4)
|
||||
INIT(f, 5)
|
||||
INIT(g, 6)
|
||||
INIT(h, 7)
|
||||
|
||||
int i = 0;
|
||||
R512_0; R512_0;
|
||||
for(int j=0; j<8; ++j) {
|
||||
R512_16;
|
||||
}
|
||||
|
||||
context[0].h[0] += a[0];
|
||||
context[0].h[1] += b[0];
|
||||
context[0].h[2] += c[0];
|
||||
context[0].h[3] += d[0];
|
||||
context[0].h[4] += e[0];
|
||||
context[0].h[5] += f[0];
|
||||
context[0].h[6] += g[0];
|
||||
context[0].h[7] += h[0];
|
||||
|
||||
context[1].h[0] += a[1];
|
||||
context[1].h[1] += b[1];
|
||||
context[1].h[2] += c[1];
|
||||
context[1].h[3] += d[1];
|
||||
context[1].h[4] += e[1];
|
||||
context[1].h[5] += f[1];
|
||||
context[1].h[6] += g[1];
|
||||
context[1].h[7] += h[1];
|
||||
}
|
||||
|
||||
#endif // __AVX2__
|
||||
1013
algo/hodl/tinyformat.h
Normal file
1013
algo/hodl/tinyformat.h
Normal file
File diff suppressed because it is too large
Load Diff
497
algo/hodl/utilstrencodings.cpp
Normal file
497
algo/hodl/utilstrencodings.cpp
Normal file
@@ -0,0 +1,497 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "utilstrencodings.h"
|
||||
#include "tinyformat.h"
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <errno.h>
|
||||
#include <limits>
|
||||
|
||||
using namespace std;
|
||||
|
||||
string SanitizeString(const string& str)
|
||||
{
|
||||
/**
|
||||
* safeChars chosen to allow simple messages/URLs/email addresses, but avoid anything
|
||||
* even possibly remotely dangerous like & or >
|
||||
*/
|
||||
static string safeChars("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890 .,;_/:?@()");
|
||||
string strResult;
|
||||
for (std::string::size_type i = 0; i < str.size(); i++)
|
||||
{
|
||||
if (safeChars.find(str[i]) != std::string::npos)
|
||||
strResult.push_back(str[i]);
|
||||
}
|
||||
return strResult;
|
||||
}
|
||||
|
||||
const signed char p_util_hexdigit[256] =
|
||||
{ -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
0,1,2,3,4,5,6,7,8,9,-1,-1,-1,-1,-1,-1,
|
||||
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
|
||||
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, };
|
||||
|
||||
signed char HexDigit(char c)
|
||||
{
|
||||
return p_util_hexdigit[(unsigned char)c];
|
||||
}
|
||||
|
||||
bool IsHex(const string& str)
|
||||
{
|
||||
for(std::string::const_iterator it(str.begin()); it != str.end(); ++it)
|
||||
{
|
||||
if (HexDigit(*it) < 0)
|
||||
return false;
|
||||
}
|
||||
return (str.size() > 0) && (str.size()%2 == 0);
|
||||
}
|
||||
|
||||
vector<unsigned char> ParseHex(const char* psz)
|
||||
{
|
||||
// convert hex dump to vector
|
||||
vector<unsigned char> vch;
|
||||
while (true)
|
||||
{
|
||||
while (isspace(*psz))
|
||||
psz++;
|
||||
signed char c = HexDigit(*psz++);
|
||||
if (c == (signed char)-1)
|
||||
break;
|
||||
unsigned char n = (c << 4);
|
||||
c = HexDigit(*psz++);
|
||||
if (c == (signed char)-1)
|
||||
break;
|
||||
n |= c;
|
||||
vch.push_back(n);
|
||||
}
|
||||
return vch;
|
||||
}
|
||||
|
||||
vector<unsigned char> ParseHex(const string& str)
|
||||
{
|
||||
return ParseHex(str.c_str());
|
||||
}
|
||||
|
||||
string EncodeBase64(const unsigned char* pch, size_t len)
|
||||
{
|
||||
static const char *pbase64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
||||
|
||||
string strRet="";
|
||||
strRet.reserve((len+2)/3*4);
|
||||
|
||||
int mode=0, left=0;
|
||||
const unsigned char *pchEnd = pch+len;
|
||||
|
||||
while (pch<pchEnd)
|
||||
{
|
||||
int enc = *(pch++);
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits
|
||||
strRet += pbase64[enc >> 2];
|
||||
left = (enc & 3) << 4;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have two bits
|
||||
strRet += pbase64[left | (enc >> 4)];
|
||||
left = (enc & 15) << 2;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have four bits
|
||||
strRet += pbase64[left | (enc >> 6)];
|
||||
strRet += pbase64[enc & 63];
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (mode)
|
||||
{
|
||||
strRet += pbase64[left];
|
||||
strRet += '=';
|
||||
if (mode == 1)
|
||||
strRet += '=';
|
||||
}
|
||||
|
||||
return strRet;
|
||||
}
|
||||
|
||||
string EncodeBase64(const string& str)
|
||||
{
|
||||
return EncodeBase64((const unsigned char*)str.c_str(), str.size());
|
||||
}
|
||||
|
||||
vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid)
|
||||
{
|
||||
static const int decode64_table[256] =
|
||||
{
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, 62, -1, -1, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1,
|
||||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 26, 27, 28,
|
||||
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
|
||||
49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
|
||||
};
|
||||
|
||||
if (pfInvalid)
|
||||
*pfInvalid = false;
|
||||
|
||||
vector<unsigned char> vchRet;
|
||||
vchRet.reserve(strlen(p)*3/4);
|
||||
|
||||
int mode = 0;
|
||||
int left = 0;
|
||||
|
||||
while (1)
|
||||
{
|
||||
int dec = decode64_table[(unsigned char)*p];
|
||||
if (dec == -1) break;
|
||||
p++;
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits and get 6
|
||||
left = dec;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have 6 bits and keep 4
|
||||
vchRet.push_back((left<<2) | (dec>>4));
|
||||
left = dec & 15;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have 4 bits and get 6, we keep 2
|
||||
vchRet.push_back((left<<4) | (dec>>2));
|
||||
left = dec & 3;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have 2 bits and get 6
|
||||
vchRet.push_back((left<<6) | dec);
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pfInvalid)
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // 4n base64 characters processed: ok
|
||||
break;
|
||||
|
||||
case 1: // 4n+1 base64 character processed: impossible
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 2: // 4n+2 base64 characters processed: require '=='
|
||||
if (left || p[0] != '=' || p[1] != '=' || decode64_table[(unsigned char)p[2]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 3: // 4n+3 base64 characters processed: require '='
|
||||
if (left || p[0] != '=' || decode64_table[(unsigned char)p[1]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return vchRet;
|
||||
}
|
||||
|
||||
string DecodeBase64(const string& str)
|
||||
{
|
||||
vector<unsigned char> vchRet = DecodeBase64(str.c_str());
|
||||
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
|
||||
}
|
||||
|
||||
string EncodeBase32(const unsigned char* pch, size_t len)
|
||||
{
|
||||
static const char *pbase32 = "abcdefghijklmnopqrstuvwxyz234567";
|
||||
|
||||
string strRet="";
|
||||
strRet.reserve((len+4)/5*8);
|
||||
|
||||
int mode=0, left=0;
|
||||
const unsigned char *pchEnd = pch+len;
|
||||
|
||||
while (pch<pchEnd)
|
||||
{
|
||||
int enc = *(pch++);
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits
|
||||
strRet += pbase32[enc >> 3];
|
||||
left = (enc & 7) << 2;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have three bits
|
||||
strRet += pbase32[left | (enc >> 6)];
|
||||
strRet += pbase32[(enc >> 1) & 31];
|
||||
left = (enc & 1) << 4;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have one bit
|
||||
strRet += pbase32[left | (enc >> 4)];
|
||||
left = (enc & 15) << 1;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have four bits
|
||||
strRet += pbase32[left | (enc >> 7)];
|
||||
strRet += pbase32[(enc >> 2) & 31];
|
||||
left = (enc & 3) << 3;
|
||||
mode = 4;
|
||||
break;
|
||||
|
||||
case 4: // we have two bits
|
||||
strRet += pbase32[left | (enc >> 5)];
|
||||
strRet += pbase32[enc & 31];
|
||||
mode = 0;
|
||||
}
|
||||
}
|
||||
|
||||
static const int nPadding[5] = {0, 6, 4, 3, 1};
|
||||
if (mode)
|
||||
{
|
||||
strRet += pbase32[left];
|
||||
for (int n=0; n<nPadding[mode]; n++)
|
||||
strRet += '=';
|
||||
}
|
||||
|
||||
return strRet;
|
||||
}
|
||||
|
||||
string EncodeBase32(const string& str)
|
||||
{
|
||||
return EncodeBase32((const unsigned char*)str.c_str(), str.size());
|
||||
}
|
||||
|
||||
vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid)
|
||||
{
|
||||
static const int decode32_table[256] =
|
||||
{
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 26, 27, 28, 29, 30, 31, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
||||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 0, 1, 2,
|
||||
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
|
||||
23, 24, 25, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
||||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
|
||||
};
|
||||
|
||||
if (pfInvalid)
|
||||
*pfInvalid = false;
|
||||
|
||||
vector<unsigned char> vchRet;
|
||||
vchRet.reserve((strlen(p))*5/8);
|
||||
|
||||
int mode = 0;
|
||||
int left = 0;
|
||||
|
||||
while (1)
|
||||
{
|
||||
int dec = decode32_table[(unsigned char)*p];
|
||||
if (dec == -1) break;
|
||||
p++;
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // we have no bits and get 5
|
||||
left = dec;
|
||||
mode = 1;
|
||||
break;
|
||||
|
||||
case 1: // we have 5 bits and keep 2
|
||||
vchRet.push_back((left<<3) | (dec>>2));
|
||||
left = dec & 3;
|
||||
mode = 2;
|
||||
break;
|
||||
|
||||
case 2: // we have 2 bits and keep 7
|
||||
left = left << 5 | dec;
|
||||
mode = 3;
|
||||
break;
|
||||
|
||||
case 3: // we have 7 bits and keep 4
|
||||
vchRet.push_back((left<<1) | (dec>>4));
|
||||
left = dec & 15;
|
||||
mode = 4;
|
||||
break;
|
||||
|
||||
case 4: // we have 4 bits, and keep 1
|
||||
vchRet.push_back((left<<4) | (dec>>1));
|
||||
left = dec & 1;
|
||||
mode = 5;
|
||||
break;
|
||||
|
||||
case 5: // we have 1 bit, and keep 6
|
||||
left = left << 5 | dec;
|
||||
mode = 6;
|
||||
break;
|
||||
|
||||
case 6: // we have 6 bits, and keep 3
|
||||
vchRet.push_back((left<<2) | (dec>>3));
|
||||
left = dec & 7;
|
||||
mode = 7;
|
||||
break;
|
||||
|
||||
case 7: // we have 3 bits, and keep 0
|
||||
vchRet.push_back((left<<5) | dec);
|
||||
mode = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (pfInvalid)
|
||||
switch (mode)
|
||||
{
|
||||
case 0: // 8n base32 characters processed: ok
|
||||
break;
|
||||
|
||||
case 1: // 8n+1 base32 characters processed: impossible
|
||||
case 3: // +3
|
||||
case 6: // +6
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 2: // 8n+2 base32 characters processed: require '======'
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || p[4] != '=' || p[5] != '=' || decode32_table[(unsigned char)p[6]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 4: // 8n+4 base32 characters processed: require '===='
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || p[3] != '=' || decode32_table[(unsigned char)p[4]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 5: // 8n+5 base32 characters processed: require '==='
|
||||
if (left || p[0] != '=' || p[1] != '=' || p[2] != '=' || decode32_table[(unsigned char)p[3]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
|
||||
case 7: // 8n+7 base32 characters processed: require '='
|
||||
if (left || p[0] != '=' || decode32_table[(unsigned char)p[1]] != -1)
|
||||
*pfInvalid = true;
|
||||
break;
|
||||
}
|
||||
|
||||
return vchRet;
|
||||
}
|
||||
|
||||
string DecodeBase32(const string& str)
|
||||
{
|
||||
vector<unsigned char> vchRet = DecodeBase32(str.c_str());
|
||||
return (vchRet.size() == 0) ? string() : string((const char*)&vchRet[0], vchRet.size());
|
||||
}
|
||||
|
||||
bool ParseInt32(const std::string& str, int32_t *out)
|
||||
{
|
||||
char *endp = NULL;
|
||||
errno = 0; // strtol will not set errno if valid
|
||||
long int n = strtol(str.c_str(), &endp, 10);
|
||||
if(out) *out = (int)n;
|
||||
// Note that strtol returns a *long int*, so even if strtol doesn't report a over/underflow
|
||||
// we still have to check that the returned value is within the range of an *int32_t*. On 64-bit
|
||||
// platforms the size of these types may be different.
|
||||
return endp && *endp == 0 && !errno &&
|
||||
n >= std::numeric_limits<int32_t>::min() &&
|
||||
n <= std::numeric_limits<int32_t>::max();
|
||||
}
|
||||
|
||||
std::string FormatParagraph(const std::string in, size_t width, size_t indent)
|
||||
{
|
||||
std::stringstream out;
|
||||
size_t col = 0;
|
||||
size_t ptr = 0;
|
||||
while(ptr < in.size())
|
||||
{
|
||||
// Find beginning of next word
|
||||
ptr = in.find_first_not_of(' ', ptr);
|
||||
if (ptr == std::string::npos)
|
||||
break;
|
||||
// Find end of next word
|
||||
size_t endword = in.find_first_of(' ', ptr);
|
||||
if (endword == std::string::npos)
|
||||
endword = in.size();
|
||||
// Add newline and indentation if this wraps over the allowed width
|
||||
if (col > 0)
|
||||
{
|
||||
if ((col + endword - ptr) > width)
|
||||
{
|
||||
out << '\n';
|
||||
for(size_t i=0; i<indent; ++i)
|
||||
out << ' ';
|
||||
col = 0;
|
||||
} else
|
||||
out << ' ';
|
||||
}
|
||||
// Append word
|
||||
out << in.substr(ptr, endword - ptr);
|
||||
col += endword - ptr + 1;
|
||||
ptr = endword;
|
||||
}
|
||||
return out.str();
|
||||
}
|
||||
|
||||
std::string i64tostr(int64_t n)
|
||||
{
|
||||
return strprintf("%d", n);
|
||||
}
|
||||
|
||||
std::string itostr(int n)
|
||||
{
|
||||
return strprintf("%d", n);
|
||||
}
|
||||
|
||||
int64_t atoi64(const char* psz)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _atoi64(psz);
|
||||
#else
|
||||
return strtoll(psz, NULL, 10);
|
||||
#endif
|
||||
}
|
||||
|
||||
int64_t atoi64(const std::string& str)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _atoi64(str.c_str());
|
||||
#else
|
||||
return strtoll(str.c_str(), NULL, 10);
|
||||
#endif
|
||||
}
|
||||
|
||||
int atoi(const std::string& str)
|
||||
{
|
||||
return atoi(str.c_str());
|
||||
}
|
||||
98
algo/hodl/utilstrencodings.h
Normal file
98
algo/hodl/utilstrencodings.h
Normal file
@@ -0,0 +1,98 @@
|
||||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
/**
|
||||
* Utilities for converting data from/to strings.
|
||||
*/
|
||||
#ifndef BITCOIN_UTILSTRENCODINGS_H
|
||||
#define BITCOIN_UTILSTRENCODINGS_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#define BEGIN(a) ((char*)&(a))
|
||||
#define END(a) ((char*)&((&(a))[1]))
|
||||
#define UBEGIN(a) ((unsigned char*)&(a))
|
||||
#define UEND(a) ((unsigned char*)&((&(a))[1]))
|
||||
#define ARRAYLEN(array) (sizeof(array)/sizeof((array)[0]))
|
||||
|
||||
/** This is needed because the foreach macro can't get over the comma in pair<t1, t2> */
|
||||
#define PAIRTYPE(t1, t2) std::pair<t1, t2>
|
||||
|
||||
std::string SanitizeString(const std::string& str);
|
||||
std::vector<unsigned char> ParseHex(const char* psz);
|
||||
std::vector<unsigned char> ParseHex(const std::string& str);
|
||||
signed char HexDigit(char c);
|
||||
bool IsHex(const std::string& str);
|
||||
std::vector<unsigned char> DecodeBase64(const char* p, bool* pfInvalid = NULL);
|
||||
std::string DecodeBase64(const std::string& str);
|
||||
std::string EncodeBase64(const unsigned char* pch, size_t len);
|
||||
std::string EncodeBase64(const std::string& str);
|
||||
std::vector<unsigned char> DecodeBase32(const char* p, bool* pfInvalid = NULL);
|
||||
std::string DecodeBase32(const std::string& str);
|
||||
std::string EncodeBase32(const unsigned char* pch, size_t len);
|
||||
std::string EncodeBase32(const std::string& str);
|
||||
|
||||
std::string i64tostr(int64_t n);
|
||||
std::string itostr(int n);
|
||||
int64_t atoi64(const char* psz);
|
||||
int64_t atoi64(const std::string& str);
|
||||
int atoi(const std::string& str);
|
||||
|
||||
/**
|
||||
* Convert string to signed 32-bit integer with strict parse error feedback.
|
||||
* @returns true if the entire string could be parsed as valid integer,
|
||||
* false if not the entire string could be parsed or when overflow or underflow occurred.
|
||||
*/
|
||||
bool ParseInt32(const std::string& str, int32_t *out);
|
||||
|
||||
template<typename T>
|
||||
std::string HexStr(const T itbegin, const T itend, bool fSpaces=false)
|
||||
{
|
||||
std::string rv;
|
||||
static const char hexmap[16] = { '0', '1', '2', '3', '4', '5', '6', '7',
|
||||
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
|
||||
rv.reserve((itend-itbegin)*3);
|
||||
for(T it = itbegin; it < itend; ++it)
|
||||
{
|
||||
unsigned char val = (unsigned char)(*it);
|
||||
if(fSpaces && it != itbegin)
|
||||
rv.push_back(' ');
|
||||
rv.push_back(hexmap[val>>4]);
|
||||
rv.push_back(hexmap[val&15]);
|
||||
}
|
||||
|
||||
return rv;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline std::string HexStr(const T& vch, bool fSpaces=false)
|
||||
{
|
||||
return HexStr(vch.begin(), vch.end(), fSpaces);
|
||||
}
|
||||
|
||||
/**
|
||||
* Format a paragraph of text to a fixed width, adding spaces for
|
||||
* indentation to any added line.
|
||||
*/
|
||||
std::string FormatParagraph(const std::string in, size_t width=79, size_t indent=0);
|
||||
|
||||
/**
|
||||
* Timing-attack-resistant comparison.
|
||||
* Takes time proportional to length
|
||||
* of first argument.
|
||||
*/
|
||||
template <typename T>
|
||||
bool TimingResistantEqual(const T& a, const T& b)
|
||||
{
|
||||
if (b.size() == 0) return a.size() == 0;
|
||||
size_t accumulator = a.size() ^ b.size();
|
||||
for (size_t i = 0; i < a.size(); i++)
|
||||
accumulator |= a[i] ^ b[i%b.size()];
|
||||
return accumulator == 0;
|
||||
}
|
||||
|
||||
#endif // BITCOIN_UTILSTRENCODINGS_H
|
||||
24
algo/hodl/wolf-aes.h
Normal file
24
algo/hodl/wolf-aes.h
Normal file
@@ -0,0 +1,24 @@
|
||||
#ifndef __WOLF_AES_H
|
||||
#define __WOLF_AES_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <x86intrin.h>
|
||||
|
||||
void ExpandAESKey256(__m128i *keys, const __m128i *KeyBuf);
|
||||
|
||||
#ifdef __AVX__
|
||||
|
||||
#define AES_PARALLEL_N 8
|
||||
#define BLOCK_COUNT 256
|
||||
|
||||
void AES256CBC( __m128i** data, const __m128i** next, __m128i ExpandedKey[][16],
|
||||
__m128i* IV );
|
||||
|
||||
#else
|
||||
|
||||
void AES256CBC( __m128i *Ciphertext, const __m128i *Plaintext,
|
||||
const __m128i *ExpandedKey, __m128i IV, uint32_t BlockCount );
|
||||
|
||||
#endif
|
||||
|
||||
#endif // __WOLF_AES_H
|
||||
Reference in New Issue
Block a user