Initial upload v3.4.7

This commit is contained in:
Jay D Dee
2016-09-22 13:16:18 -04:00
parent a3c8079774
commit a35039bc05
480 changed files with 211015 additions and 3 deletions

0
algo/echo/.dirstamp Normal file
View File

View File

2
algo/echo/aes_ni/api.h Normal file
View File

@@ -0,0 +1,2 @@
#define CRYPTO_BYTES 64
#define CRYPTO_VERSION "1.208"

View File

@@ -0,0 +1,2 @@
amd64
x86

623
algo/echo/aes_ni/hash.c Normal file
View File

@@ -0,0 +1,623 @@
/*
* file : echo_vperm.c
* version : 1.0.208
* date : 14.12.2010
*
* - vperm and aes_ni implementations of hash function ECHO
* - implements NIST hash api
* - assumes that message lenght is multiple of 8-bits
* - _ECHO_VPERM_ must be defined if compiling with ../main.c
* - define NO_AES_NI for aes_ni version
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#include <memory.h>
#include "miner.h"
#include "hash_api.h"
#include "vperm.h"
#ifndef NO_AES_NI
#include <wmmintrin.h>
#else
#include <tmmintrin.h>
#endif
MYALIGN const unsigned int _k_s0F[] = {0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F};
MYALIGN const unsigned int _k_ipt[] = {0x5A2A7000, 0xC2B2E898, 0x52227808, 0xCABAE090, 0x317C4D00, 0x4C01307D, 0xB0FDCC81, 0xCD80B1FC};
MYALIGN const unsigned int _k_opt[] = {0xD6B66000, 0xFF9F4929, 0xDEBE6808, 0xF7974121, 0x50BCEC00, 0x01EDBD51, 0xB05C0CE0, 0xE10D5DB1};
MYALIGN const unsigned int _k_inv[] = {0x0D080180, 0x0E05060F, 0x0A0B0C02, 0x04070309, 0x0F0B0780, 0x01040A06, 0x02050809, 0x030D0E0C};
MYALIGN const unsigned int _k_sb1[] = {0xCB503E00, 0xB19BE18F, 0x142AF544, 0xA5DF7A6E, 0xFAE22300, 0x3618D415, 0x0D2ED9EF, 0x3BF7CCC1};
MYALIGN const unsigned int _k_sb2[] = {0x0B712400, 0xE27A93C6, 0xBC982FCD, 0x5EB7E955, 0x0AE12900, 0x69EB8840, 0xAB82234A, 0xC2A163C8};
MYALIGN const unsigned int _k_sb3[] = {0xC0211A00, 0x53E17249, 0xA8B2DA89, 0xFB68933B, 0xF0030A00, 0x5FF35C55, 0xA6ACFAA5, 0xF956AF09};
MYALIGN const unsigned int _k_sb4[] = {0x3FD64100, 0xE1E937A0, 0x49087E9F, 0xA876DE97, 0xC393EA00, 0x3D50AED7, 0x876D2914, 0xBA44FE79};
MYALIGN const unsigned int _k_sb5[] = {0xF4867F00, 0x5072D62F, 0x5D228BDB, 0x0DA9A4F9, 0x3971C900, 0x0B487AC2, 0x8A43F0FB, 0x81B332B8};
MYALIGN const unsigned int _k_sb7[] = {0xFFF75B00, 0xB20845E9, 0xE1BAA416, 0x531E4DAC, 0x3390E000, 0x62A3F282, 0x21C1D3B1, 0x43125170};
MYALIGN const unsigned int _k_sbo[] = {0x6FBDC700, 0xD0D26D17, 0xC502A878, 0x15AABF7A, 0x5FBB6A00, 0xCFE474A5, 0x412B35FA, 0x8E1E90D1};
MYALIGN const unsigned int _k_h63[] = {0x63636363, 0x63636363, 0x63636363, 0x63636363};
MYALIGN const unsigned int _k_hc6[] = {0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6, 0xc6c6c6c6};
MYALIGN const unsigned int _k_h5b[] = {0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b, 0x5b5b5b5b};
MYALIGN const unsigned int _k_h4e[] = {0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e, 0x4e4e4e4e};
MYALIGN const unsigned int _k_h0e[] = {0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e, 0x0e0e0e0e};
MYALIGN const unsigned int _k_h15[] = {0x15151515, 0x15151515, 0x15151515, 0x15151515};
MYALIGN const unsigned int _k_aesmix1[] = {0x0f0a0500, 0x030e0904, 0x07020d08, 0x0b06010c};
MYALIGN const unsigned int _k_aesmix2[] = {0x000f0a05, 0x04030e09, 0x0807020d, 0x0c0b0601};
MYALIGN const unsigned int _k_aesmix3[] = {0x05000f0a, 0x0904030e, 0x0d080702, 0x010c0b06};
MYALIGN const unsigned int _k_aesmix4[] = {0x0a05000f, 0x0e090403, 0x020d0807, 0x06010c0b};
MYALIGN const unsigned int const1[] = {0x00000001, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2mask[] = {0x00001b00, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int lsbmask[] = {0x01010101, 0x01010101, 0x01010101, 0x01010101};
MYALIGN const unsigned int invshiftrows[] = {0x070a0d00, 0x0b0e0104, 0x0f020508, 0x0306090c};
MYALIGN const unsigned int zero[] = {0x00000000, 0x00000000, 0x00000000, 0x00000000};
MYALIGN const unsigned int mul2ipt[] = {0x728efc00, 0x6894e61a, 0x3fc3b14d, 0x25d9ab57, 0xfd5ba600, 0x2a8c71d7, 0x1eb845e3, 0xc96f9234};
//#include "crypto_hash.h"
int crypto_hash(
unsigned char *out,
const unsigned char *in,
unsigned long long inlen
)
{
if(hash_echo(512, in, inlen * 8, out) == SUCCESS)
return 0;
return -1;
}
/*
int main()
{
return 0;
}
*/
#if 0
void DumpState(__m128i *ps)
{
int i, j, k;
unsigned int ucol;
for(j = 0; j < 4; j++)
{
for(i = 0; i < 4; i++)
{
printf("row %d,col %d : ", i, j);
for(k = 0; k < 4; k++)
{
ucol = *((int*)ps + 16 * i + 4 * j + k);
printf("%02x%02x%02x%02x ", (ucol >> 0) & 0xff, (ucol >> 8) & 0xff, (ucol >> 16) & 0xff, (ucol >> 24) & 0xff);
}
printf("\n");
}
}
printf("\n");
}
#endif
#ifndef NO_AES_NI
#define ECHO_SUBBYTES(state, i, j) \
state[i][j] = _mm_aesenc_si128(state[i][j], k1);\
state[i][j] = _mm_aesenc_si128(state[i][j], M128(zero));\
k1 = _mm_add_epi32(k1, M128(const1))
#else
#define ECHO_SUBBYTES(state, i, j) \
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
state[i][j] = _mm_xor_si128(state[i][j], k1);\
AES_ROUND_VPERM(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
k1 = _mm_add_epi32(k1, M128(const1))
#define ECHO_SUB_AND_MIX(state, i, j, state2, c, r1, r2, r3, r4) \
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
ktemp = k1;\
TRANSFORM(ktemp, _k_ipt, t1, t4);\
state[i][j] = _mm_xor_si128(state[i][j], ktemp);\
AES_ROUND_VPERM_CORE(state[i][j], t1, t2, t3, t4, s1, s2, s3);\
k1 = _mm_add_epi32(k1, M128(const1));\
s1 = state[i][j];\
s2 = s1;\
TRANSFORM(s2, mul2ipt, t1, t2);\
s3 = _mm_xor_si128(s1, s2);\
state2[r1][c] = _mm_xor_si128(state2[r1][c], s2);\
state2[r2][c] = _mm_xor_si128(state2[r2][c], s1);\
state2[r3][c] = _mm_xor_si128(state2[r3][c], s1);\
state2[r4][c] = _mm_xor_si128(state2[r4][c], s3)
#endif
#define ECHO_MIXBYTES(state1, state2, j, t1, t2, s2) \
s2 = _mm_add_epi8(state1[0][j], state1[0][j]);\
t1 = _mm_srli_epi16(state1[0][j], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = s2;\
state2[1][j] = state1[0][j];\
state2[2][j] = state1[0][j];\
state2[3][j] = _mm_xor_si128(s2, state1[0][j]);\
s2 = _mm_add_epi8(state1[1][(j + 1) & 3], state1[1][(j + 1) & 3]);\
t1 = _mm_srli_epi16(state1[1][(j + 1) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], _mm_xor_si128(s2, state1[1][(j + 1) & 3]));\
state2[1][j] = _mm_xor_si128(state2[1][j], s2);\
state2[2][j] = _mm_xor_si128(state2[2][j], state1[1][(j + 1) & 3]);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[1][(j + 1) & 3]);\
s2 = _mm_add_epi8(state1[2][(j + 2) & 3], state1[2][(j + 2) & 3]);\
t1 = _mm_srli_epi16(state1[2][(j + 2) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[2][(j + 2) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], _mm_xor_si128(s2, state1[2][(j + 2) & 3]));\
state2[2][j] = _mm_xor_si128(state2[2][j], s2);\
state2[3][j] = _mm_xor_si128(state2[3][j], state1[2][(j + 2) & 3]);\
s2 = _mm_add_epi8(state1[3][(j + 3) & 3], state1[3][(j + 3) & 3]);\
t1 = _mm_srli_epi16(state1[3][(j + 3) & 3], 7);\
t1 = _mm_and_si128(t1, M128(lsbmask));\
t2 = _mm_shuffle_epi8(M128(mul2mask), t1);\
s2 = _mm_xor_si128(s2, t2);\
state2[0][j] = _mm_xor_si128(state2[0][j], state1[3][(j + 3) & 3]);\
state2[1][j] = _mm_xor_si128(state2[1][j], state1[3][(j + 3) & 3]);\
state2[2][j] = _mm_xor_si128(state2[2][j], _mm_xor_si128(s2, state1[3][(j + 3) & 3]));\
state2[3][j] = _mm_xor_si128(state2[3][j], s2)
#define ECHO_ROUND_UNROLL2 \
ECHO_SUBBYTES(_state, 0, 0);\
ECHO_SUBBYTES(_state, 1, 0);\
ECHO_SUBBYTES(_state, 2, 0);\
ECHO_SUBBYTES(_state, 3, 0);\
ECHO_SUBBYTES(_state, 0, 1);\
ECHO_SUBBYTES(_state, 1, 1);\
ECHO_SUBBYTES(_state, 2, 1);\
ECHO_SUBBYTES(_state, 3, 1);\
ECHO_SUBBYTES(_state, 0, 2);\
ECHO_SUBBYTES(_state, 1, 2);\
ECHO_SUBBYTES(_state, 2, 2);\
ECHO_SUBBYTES(_state, 3, 2);\
ECHO_SUBBYTES(_state, 0, 3);\
ECHO_SUBBYTES(_state, 1, 3);\
ECHO_SUBBYTES(_state, 2, 3);\
ECHO_SUBBYTES(_state, 3, 3);\
ECHO_MIXBYTES(_state, _state2, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state, _state2, 3, t1, t2, s2);\
ECHO_SUBBYTES(_state2, 0, 0);\
ECHO_SUBBYTES(_state2, 1, 0);\
ECHO_SUBBYTES(_state2, 2, 0);\
ECHO_SUBBYTES(_state2, 3, 0);\
ECHO_SUBBYTES(_state2, 0, 1);\
ECHO_SUBBYTES(_state2, 1, 1);\
ECHO_SUBBYTES(_state2, 2, 1);\
ECHO_SUBBYTES(_state2, 3, 1);\
ECHO_SUBBYTES(_state2, 0, 2);\
ECHO_SUBBYTES(_state2, 1, 2);\
ECHO_SUBBYTES(_state2, 2, 2);\
ECHO_SUBBYTES(_state2, 3, 2);\
ECHO_SUBBYTES(_state2, 0, 3);\
ECHO_SUBBYTES(_state2, 1, 3);\
ECHO_SUBBYTES(_state2, 2, 3);\
ECHO_SUBBYTES(_state2, 3, 3);\
ECHO_MIXBYTES(_state2, _state, 0, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 1, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 2, t1, t2, s2);\
ECHO_MIXBYTES(_state2, _state, 3, t1, t2, s2)
#define SAVESTATE(dst, src)\
dst[0][0] = src[0][0];\
dst[0][1] = src[0][1];\
dst[0][2] = src[0][2];\
dst[0][3] = src[0][3];\
dst[1][0] = src[1][0];\
dst[1][1] = src[1][1];\
dst[1][2] = src[1][2];\
dst[1][3] = src[1][3];\
dst[2][0] = src[2][0];\
dst[2][1] = src[2][1];\
dst[2][2] = src[2][2];\
dst[2][3] = src[2][3];\
dst[3][0] = src[3][0];\
dst[3][1] = src[3][1];\
dst[3][2] = src[3][2];\
dst[3][3] = src[3][3]
void Compress(hashState_echo *ctx, const unsigned char *pmsg, unsigned int uBlockCount)
{
unsigned int r, b, i, j;
__m128i t1, t2, t3, t4, s1, s2, s3, k1, ktemp;
__m128i _state[4][4], _state2[4][4], _statebackup[4][4];
for(i = 0; i < 4; i++)
for(j = 0; j < ctx->uHashSize / 256; j++)
_state[i][j] = ctx->state[i][j];
#ifdef NO_AES_NI
// transform cv
for(i = 0; i < 4; i++)
for(j = 0; j < ctx->uHashSize / 256; j++)
{
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
}
#endif
for(b = 0; b < uBlockCount; b++)
{
ctx->k = _mm_add_epi64(ctx->k, ctx->const1536);
// load message
for(j = ctx->uHashSize / 256; j < 4; j++)
{
for(i = 0; i < 4; i++)
{
_state[i][j] = _mm_loadu_si128((__m128i*)pmsg + 4 * (j - (ctx->uHashSize / 256)) + i);
#ifdef NO_AES_NI
// transform message
TRANSFORM(_state[i][j], _k_ipt, t1, t2);
#endif
}
}
// save state
SAVESTATE(_statebackup, _state);
k1 = ctx->k;
#ifndef NO_AES_NI
for(r = 0; r < ctx->uRounds / 2; r++)
{
ECHO_ROUND_UNROLL2;
}
#else
for(r = 0; r < ctx->uRounds / 2; r++)
{
_state2[0][0] = M128(zero); _state2[1][0] = M128(zero); _state2[2][0] = M128(zero); _state2[3][0] = M128(zero);
_state2[0][1] = M128(zero); _state2[1][1] = M128(zero); _state2[2][1] = M128(zero); _state2[3][1] = M128(zero);
_state2[0][2] = M128(zero); _state2[1][2] = M128(zero); _state2[2][2] = M128(zero); _state2[3][2] = M128(zero);
_state2[0][3] = M128(zero); _state2[1][3] = M128(zero); _state2[2][3] = M128(zero); _state2[3][3] = M128(zero);
ECHO_SUB_AND_MIX(_state, 0, 0, _state2, 0, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 0, _state2, 3, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 0, _state2, 2, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 0, _state2, 1, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 1, _state2, 1, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 1, _state2, 0, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 1, _state2, 3, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 1, _state2, 2, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 2, _state2, 2, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 2, _state2, 1, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 2, _state2, 0, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 2, _state2, 3, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state, 0, 3, _state2, 3, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state, 1, 3, _state2, 2, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state, 2, 3, _state2, 1, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state, 3, 3, _state2, 0, 3, 0, 1, 2);
_state[0][0] = M128(zero); _state[1][0] = M128(zero); _state[2][0] = M128(zero); _state[3][0] = M128(zero);
_state[0][1] = M128(zero); _state[1][1] = M128(zero); _state[2][1] = M128(zero); _state[3][1] = M128(zero);
_state[0][2] = M128(zero); _state[1][2] = M128(zero); _state[2][2] = M128(zero); _state[3][2] = M128(zero);
_state[0][3] = M128(zero); _state[1][3] = M128(zero); _state[2][3] = M128(zero); _state[3][3] = M128(zero);
ECHO_SUB_AND_MIX(_state2, 0, 0, _state, 0, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 0, _state, 3, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 0, _state, 2, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 0, _state, 1, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 1, _state, 1, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 1, _state, 0, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 1, _state, 3, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 1, _state, 2, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 2, _state, 2, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 2, _state, 1, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 2, _state, 0, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 2, _state, 3, 3, 0, 1, 2);
ECHO_SUB_AND_MIX(_state2, 0, 3, _state, 3, 0, 1, 2, 3);
ECHO_SUB_AND_MIX(_state2, 1, 3, _state, 2, 1, 2, 3, 0);
ECHO_SUB_AND_MIX(_state2, 2, 3, _state, 1, 2, 3, 0, 1);
ECHO_SUB_AND_MIX(_state2, 3, 3, _state, 0, 3, 0, 1, 2);
}
#endif
if(ctx->uHashSize == 256)
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][1]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][3]);
}
}
else
{
for(i = 0; i < 4; i++)
{
_state[i][0] = _mm_xor_si128(_state[i][0], _state[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _state[i][3]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][0]);
_state[i][0] = _mm_xor_si128(_state[i][0], _statebackup[i][2]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][1]);
_state[i][1] = _mm_xor_si128(_state[i][1], _statebackup[i][3]);
}
}
pmsg += ctx->uBlockLength;
}
#ifdef NO_AES_NI
// transform state
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
{
TRANSFORM(_state[i][j], _k_opt, t1, t2);
}
#endif
SAVESTATE(ctx->state, _state);
}
HashReturn init_echo(hashState_echo *ctx, int nHashSize)
{
int i, j;
ctx->k = _mm_xor_si128(ctx->k, ctx->k);
ctx->processed_bits = 0;
ctx->uBufferBytes = 0;
switch(nHashSize)
{
case 256:
ctx->uHashSize = 256;
ctx->uBlockLength = 192;
ctx->uRounds = 8;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000100);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000600);
break;
case 512:
ctx->uHashSize = 512;
ctx->uBlockLength = 128;
ctx->uRounds = 10;
ctx->hashsize = _mm_set_epi32(0, 0, 0, 0x00000200);
ctx->const1536 = _mm_set_epi32(0x00000000, 0x00000000, 0x00000000, 0x00000400);
break;
default:
return BAD_HASHBITLEN;
}
for(i = 0; i < 4; i++)
for(j = 0; j < nHashSize / 256; j++)
ctx->state[i][j] = ctx->hashsize;
for(i = 0; i < 4; i++)
for(j = nHashSize / 256; j < 4; j++)
ctx->state[i][j] = _mm_set_epi32(0, 0, 0, 0);
return SUCCESS;
}
HashReturn update_echo(hashState_echo *state, const BitSequence *data, DataLength databitlen)
{
unsigned int uByteLength, uBlockCount, uRemainingBytes;
uByteLength = (unsigned int)(databitlen / 8);
if((state->uBufferBytes + uByteLength) >= state->uBlockLength)
{
if(state->uBufferBytes != 0)
{
// Fill the buffer
memcpy(state->buffer + state->uBufferBytes, (void*)data, state->uBlockLength - state->uBufferBytes);
// Process buffer
Compress(state, state->buffer, 1);
state->processed_bits += state->uBlockLength * 8;
data += state->uBlockLength - state->uBufferBytes;
uByteLength -= state->uBlockLength - state->uBufferBytes;
}
// buffer now does not contain any unprocessed bytes
uBlockCount = uByteLength / state->uBlockLength;
uRemainingBytes = uByteLength % state->uBlockLength;
if(uBlockCount > 0)
{
Compress(state, data, uBlockCount);
state->processed_bits += uBlockCount * state->uBlockLength * 8;
data += uBlockCount * state->uBlockLength;
}
if(uRemainingBytes > 0)
{
memcpy(state->buffer, (void*)data, uRemainingBytes);
}
state->uBufferBytes = uRemainingBytes;
}
else
{
memcpy(state->buffer + state->uBufferBytes, (void*)data, uByteLength);
state->uBufferBytes += uByteLength;
}
return SUCCESS;
}
HashReturn final_echo(hashState_echo *state, BitSequence *hashval)
{
__m128i remainingbits;
// Add remaining bytes in the buffer
state->processed_bits += state->uBufferBytes * 8;
remainingbits = _mm_set_epi32(0, 0, 0, state->uBufferBytes * 8);
// Pad with 0x80
state->buffer[state->uBufferBytes++] = 0x80;
// Enough buffer space for padding in this block?
if((state->uBlockLength - state->uBufferBytes) >= 18)
{
// Pad with zeros
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - (state->uBufferBytes + 18));
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Last block contains message bits?
if(state->uBufferBytes == 1)
{
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
else
{
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
}
// Compress
Compress(state, state->buffer, 1);
}
else
{
// Fill with zero and compress
memset(state->buffer + state->uBufferBytes, 0, state->uBlockLength - state->uBufferBytes);
state->k = _mm_add_epi64(state->k, remainingbits);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
// Last block
memset(state->buffer, 0, state->uBlockLength - 18);
// Hash size
*((unsigned short*)(state->buffer + state->uBlockLength - 18)) = state->uHashSize;
// Processed bits
*((DataLength*)(state->buffer + state->uBlockLength - 16)) = state->processed_bits;
*((DataLength*)(state->buffer + state->uBlockLength - 8)) = 0;
// Compress the last block
state->k = _mm_xor_si128(state->k, state->k);
state->k = _mm_sub_epi64(state->k, state->const1536);
Compress(state, state->buffer, 1);
}
// Store the hash value
_mm_storeu_si128((__m128i*)hashval + 0, state->state[0][0]);
_mm_storeu_si128((__m128i*)hashval + 1, state->state[1][0]);
if(state->uHashSize == 512)
{
_mm_storeu_si128((__m128i*)hashval + 2, state->state[2][0]);
_mm_storeu_si128((__m128i*)hashval + 3, state->state[3][0]);
}
return SUCCESS;
}
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval)
{
HashReturn hRet;
hashState_echo hs;
/////
/*
__m128i a, b, c, d, t[4], u[4], v[4];
a = _mm_set_epi32(0x0f0e0d0c, 0x0b0a0908, 0x07060504, 0x03020100);
b = _mm_set_epi32(0x1f1e1d1c, 0x1b1a1918, 0x17161514, 0x13121110);
c = _mm_set_epi32(0x2f2e2d2c, 0x2b2a2928, 0x27262524, 0x23222120);
d = _mm_set_epi32(0x3f3e3d3c, 0x3b3a3938, 0x37363534, 0x33323130);
t[0] = _mm_unpacklo_epi8(a, b);
t[1] = _mm_unpackhi_epi8(a, b);
t[2] = _mm_unpacklo_epi8(c, d);
t[3] = _mm_unpackhi_epi8(c, d);
u[0] = _mm_unpacklo_epi16(t[0], t[2]);
u[1] = _mm_unpackhi_epi16(t[0], t[2]);
u[2] = _mm_unpacklo_epi16(t[1], t[3]);
u[3] = _mm_unpackhi_epi16(t[1], t[3]);
t[0] = _mm_unpacklo_epi16(u[0], u[1]);
t[1] = _mm_unpackhi_epi16(u[0], u[1]);
t[2] = _mm_unpacklo_epi16(u[2], u[3]);
t[3] = _mm_unpackhi_epi16(u[2], u[3]);
u[0] = _mm_unpacklo_epi8(t[0], t[1]);
u[1] = _mm_unpackhi_epi8(t[0], t[1]);
u[2] = _mm_unpacklo_epi8(t[2], t[3]);
u[3] = _mm_unpackhi_epi8(t[2], t[3]);
a = _mm_unpacklo_epi8(u[0], u[1]);
b = _mm_unpackhi_epi8(u[0], u[1]);
c = _mm_unpacklo_epi8(u[2], u[3]);
d = _mm_unpackhi_epi8(u[2], u[3]);
*/
/////
hRet = init_echo(&hs, hashbitlen);
if(hRet != SUCCESS)
return hRet;
hRet = update_echo(&hs, data, databitlen);
if(hRet != SUCCESS)
return hRet;
hRet = final_echo(&hs, hashval);
if(hRet != SUCCESS)
return hRet;
return SUCCESS;
}

View File

@@ -0,0 +1,58 @@
/*
* file : hash_api.h
* version : 1.0.208
* date : 14.12.2010
*
* ECHO vperm implementation Hash API
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#ifndef HASH_API_H
#define HASH_API_H
#ifndef NO_AES_NI
#define HASH_IMPL_STR "ECHO-aesni"
#else
#define HASH_IMPL_STR "ECHO-vperm"
#endif
#include "algo/sha3/sha3_common.h"
#include <emmintrin.h>
typedef struct
{
__m128i state[4][4];
__m128i k;
__m128i hashsize;
__m128i const1536;
unsigned int uRounds;
unsigned int uHashSize;
unsigned int uBlockLength;
unsigned int uBufferBytes;
DataLength processed_bits;
BitSequence buffer[192];
} hashState_echo;
HashReturn init_echo(hashState_echo *state, int hashbitlen);
HashReturn reinit_echo(hashState_echo *state);
HashReturn update_echo(hashState_echo *state, const BitSequence *data, DataLength databitlen);
HashReturn final_echo(hashState_echo *state, BitSequence *hashval);
HashReturn hash_echo(int hashbitlen, const BitSequence *data, DataLength databitlen, BitSequence *hashval);
#endif // HASH_API_H

View File

@@ -0,0 +1 @@
Çağdaş Çalık

119
algo/echo/aes_ni/vperm.h Normal file
View File

@@ -0,0 +1,119 @@
/*
* file : vperm.h
* version : 1.0.208
* date : 14.12.2010
*
* vperm implementation of AES s-box
*
* Credits: Adapted from Mike Hamburg's AES implementation, http://crypto.stanford.edu/vpaes/
*
* Cagdas Calik
* ccalik@metu.edu.tr
* Institute of Applied Mathematics, Middle East Technical University, Turkey.
*
*/
#ifndef VPERM_H
#define VPERM_H
#include "algo/sha3/sha3_common.h"
#include <tmmintrin.h>
/*
extern const unsigned int _k_s0F[];
extern const unsigned int _k_ipt[];
extern const unsigned int _k_opt[];
extern const unsigned int _k_inv[];
extern const unsigned int _k_sb1[];
extern const unsigned int _k_sb2[];
extern const unsigned int _k_sb3[];
extern const unsigned int _k_sb4[];
extern const unsigned int _k_sb5[];
extern const unsigned int _k_sb7[];
extern const unsigned int _k_sbo[];
extern const unsigned int _k_h63[];
extern const unsigned int _k_hc6[];
extern const unsigned int _k_h5b[];
extern const unsigned int _k_h4e[];
extern const unsigned int _k_h0e[];
extern const unsigned int _k_h15[];
extern const unsigned int _k_aesmix1[];
extern const unsigned int _k_aesmix2[];
extern const unsigned int _k_aesmix3[];
extern const unsigned int _k_aesmix4[];
*/
// input: x, table
// output: x
#define TRANSFORM(x, table, t1, t2)\
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
t1 = _mm_srli_epi32(t1, 4);\
x = _mm_and_si128(x, M128(_k_s0F));\
t1 = _mm_shuffle_epi8(*((__m128i*)table + 1), t1);\
x = _mm_shuffle_epi8(*((__m128i*)table + 0), x);\
x = _mm_xor_si128(x, t1)
// compiled erroneously with 32-bit msc compiler
//t2 = _mm_shuffle_epi8(table[0], x);\
//x = _mm_shuffle_epi8(table[1], t1);\
//x = _mm_xor_si128(x, t2)
// input: x
// output: t2, t3
#define SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4)\
t1 = _mm_andnot_si128(M128(_k_s0F), x);\
t1 = _mm_srli_epi32(t1, 4);\
x = _mm_and_si128(x, M128(_k_s0F));\
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 1), x);\
x = _mm_xor_si128(x, t1);\
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t1);\
t3 = _mm_xor_si128(t3, t2);\
t4 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), x);\
t4 = _mm_xor_si128(t4, t2);\
t2 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t3);\
t2 = _mm_xor_si128(t2, x);\
t3 = _mm_shuffle_epi8(*((__m128i*)_k_inv + 0), t4);\
t3 = _mm_xor_si128(t3, t1);\
// input: x1, x2, table
// output: y
#define VPERM_LOOKUP(x1, x2, table, y, t)\
t = _mm_shuffle_epi8(*((__m128i*)table + 0), x1);\
y = _mm_shuffle_epi8(*((__m128i*)table + 1), x2);\
y = _mm_xor_si128(y, t)
// input: x
// output: x
#define SUBSTITUTE_VPERM(x, t1, t2, t3, t4) \
TRANSFORM(x, _k_ipt, t1, t2);\
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
VPERM_LOOKUP(t2, t3, _k_sbo, x, t1);\
x = _mm_xor_si128(x, M128(_k_h63))
// input: x
// output: x
#define AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3) \
SUBSTITUTE_VPERM_CORE(x, t1, t2, t3, t4);\
VPERM_LOOKUP(t2, t3, _k_sb1, s1, t1);\
VPERM_LOOKUP(t2, t3, _k_sb2, s2, t1);\
s3 = _mm_xor_si128(s1, s2);\
x = _mm_shuffle_epi8(s2, M128(_k_aesmix1));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s3, M128(_k_aesmix2)));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix3)));\
x = _mm_xor_si128(x, _mm_shuffle_epi8(s1, M128(_k_aesmix4)));\
x = _mm_xor_si128(x, M128(_k_h5b))
// input: x
// output: x
#define AES_ROUND_VPERM(x, t1, t2, t3, t4, s1, s2, s3) \
TRANSFORM(x, _k_ipt, t1, t2);\
AES_ROUND_VPERM_CORE(x, t1, t2, t3, t4, s1, s2, s3);\
TRANSFORM(x, _k_opt, t1, t2)
#endif // VPERM_H

1031
algo/echo/sph_echo.c Normal file

File diff suppressed because it is too large Load Diff

320
algo/echo/sph_echo.h Normal file
View File

@@ -0,0 +1,320 @@
/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */
/**
* ECHO interface. ECHO is a family of functions which differ by
* their output size; this implementation defines ECHO for output
* sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_echo.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_ECHO_H__
#define SPH_ECHO_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for ECHO-224.
*/
#define SPH_SIZE_echo224 224
/**
* Output size (in bits) for ECHO-256.
*/
#define SPH_SIZE_echo256 256
/**
* Output size (in bits) for ECHO-384.
*/
#define SPH_SIZE_echo384 384
/**
* Output size (in bits) for ECHO-512.
*/
#define SPH_SIZE_echo512 512
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-224
* and ECHO-256.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[192]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[4][4];
#if SPH_64
sph_u64 Vb[4][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_small_context;
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-384
* and ECHO-512.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[8][4];
#if SPH_64
sph_u64 Vb[8][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_big_context;
/**
* Type for a ECHO-224 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo224_context;
/**
* Type for a ECHO-256 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo256_context;
/**
* Type for a ECHO-384 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo384_context;
/**
* Type for a ECHO-512 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo512_context;
/**
* Initialize an ECHO-224 context. This process performs no memory allocation.
*
* @param cc the ECHO-224 context (pointer to a
* <code>sph_echo224_context</code>)
*/
void sph_echo224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo224(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-224 context
* @param dst the destination buffer
*/
void sph_echo224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-256 context. This process performs no memory allocation.
*
* @param cc the ECHO-256 context (pointer to a
* <code>sph_echo256_context</code>)
*/
void sph_echo256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo256(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-256 context
* @param dst the destination buffer
*/
void sph_echo256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-384 context. This process performs no memory allocation.
*
* @param cc the ECHO-384 context (pointer to a
* <code>sph_echo384_context</code>)
*/
void sph_echo384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo384(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-384 context
* @param dst the destination buffer
*/
void sph_echo384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-512 context. This process performs no memory allocation.
*
* @param cc the ECHO-512 context (pointer to a
* <code>sph_echo512_context</code>)
*/
void sph_echo512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo512(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-512 context
* @param dst the destination buffer
*/
void sph_echo512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif

1031
algo/echo/sse2/echo.c Normal file

File diff suppressed because it is too large Load Diff

320
algo/echo/sse2/sph_echo.h Normal file
View File

@@ -0,0 +1,320 @@
/* $Id: sph_echo.h 216 2010-06-08 09:46:57Z tp $ */
/**
* ECHO interface. ECHO is a family of functions which differ by
* their output size; this implementation defines ECHO for output
* sizes 224, 256, 384 and 512 bits.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_echo.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_ECHO_H__
#define SPH_ECHO_H__
#ifdef __cplusplus
extern "C"{
#endif
#include <stddef.h>
#include "algo/sha3/sph_types.h"
/**
* Output size (in bits) for ECHO-224.
*/
#define SPH_SIZE_echo224 224
/**
* Output size (in bits) for ECHO-256.
*/
#define SPH_SIZE_echo256 256
/**
* Output size (in bits) for ECHO-384.
*/
#define SPH_SIZE_echo384 384
/**
* Output size (in bits) for ECHO-512.
*/
#define SPH_SIZE_echo512 512
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-224
* and ECHO-256.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[192]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[4][4];
#if SPH_64
sph_u64 Vb[4][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_small_context;
/**
* This structure is a context for ECHO computations: it contains the
* intermediate values and some data from the last entered block. Once
* an ECHO computation has been performed, the context can be reused for
* another computation. This specific structure is used for ECHO-384
* and ECHO-512.
*
* The contents of this structure are private. A running ECHO computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
size_t ptr;
union {
sph_u32 Vs[8][4];
#if SPH_64
sph_u64 Vb[8][2];
#endif
} u;
sph_u32 C0, C1, C2, C3;
#endif
} sph_echo_big_context;
/**
* Type for a ECHO-224 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo224_context;
/**
* Type for a ECHO-256 context (identical to the common "small" context).
*/
typedef sph_echo_small_context sph_echo256_context;
/**
* Type for a ECHO-384 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo384_context;
/**
* Type for a ECHO-512 context (identical to the common "big" context).
*/
typedef sph_echo_big_context sph_echo512_context;
/**
* Initialize an ECHO-224 context. This process performs no memory allocation.
*
* @param cc the ECHO-224 context (pointer to a
* <code>sph_echo224_context</code>)
*/
void sph_echo224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo224(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-224 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-224 context
* @param dst the destination buffer
*/
void sph_echo224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo224_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-256 context. This process performs no memory allocation.
*
* @param cc the ECHO-256 context (pointer to a
* <code>sph_echo256_context</code>)
*/
void sph_echo256_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-256 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo256(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-256 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-256 context
* @param dst the destination buffer
*/
void sph_echo256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-384 context. This process performs no memory allocation.
*
* @param cc the ECHO-384 context (pointer to a
* <code>sph_echo384_context</code>)
*/
void sph_echo384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo384(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-384 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-384 context
* @param dst the destination buffer
*/
void sph_echo384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo384_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
/**
* Initialize an ECHO-512 context. This process performs no memory allocation.
*
* @param cc the ECHO-512 context (pointer to a
* <code>sph_echo512_context</code>)
*/
void sph_echo512_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the ECHO-512 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_echo512(void *cc, const void *data, size_t len);
/**
* Terminate the current ECHO-512 computation and output the result into
* the provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the ECHO-512 context
* @param dst the destination buffer
*/
void sph_echo512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the ECHO-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_echo512_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#ifdef __cplusplus
}
#endif
#endif