This commit is contained in:
Jay D Dee
2019-12-09 15:59:02 -05:00
parent 73430b13b1
commit a17ff6f189
48 changed files with 3561 additions and 1367 deletions

319
algo/lyra2/sponge-2way.c Normal file
View File

@@ -0,0 +1,319 @@
/**
* A simple implementation of Blake2b's internal permutation
* in the form of a sponge.
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "algo-gate.h"
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <immintrin.h>
#include "sponge.h"
#include "lyra2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
inline void squeeze_2way( uint64_t *State, byte *Out, unsigned int len )
{
const int len_m256i = len / 32;
const int fullBlocks = len_m256i / BLOCK_LEN_M256I;
__m512i* state = (__m512i*)State;
__m512i* out = (__m512i*)Out;
int i;
//Squeezes full blocks
for ( i = 0; i < fullBlocks; i++ )
{
memcpy_512( out, state, BLOCK_LEN_M256I*2 );
LYRA_ROUND_2WAY_AVX2( state[0], state[1], state[2], state[3] );
out += BLOCK_LEN_M256I*2;
}
//Squeezes remaining bytes
memcpy_512( out, state, ( (len_m256i % BLOCK_LEN_M256I) * 2 ) );
}
inline void absorbBlock_2way( uint64_t *State, const uint64_t *In )
{
register __m512i state0, state1, state2, state3;
__m512i *in = (__m512i*)In;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
state0 = _mm512_xor_si512( state0, in[0] );
state1 = _mm512_xor_si512( state1, in[1] );
state2 = _mm512_xor_si512( state2, in[2] );
LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 );
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
inline void absorbBlockBlake2Safe_2way( uint64_t *State, const uint64_t *In,
const uint64_t nBlocks, const uint64_t block_len )
{
register __m512i state0, state1, state2, state3;
state0 =
state1 = m512_zero;
state2 = m512_const4_64( 0xa54ff53a5f1d36f1ULL, 0x3c6ef372fe94f82bULL,
0xbb67ae8584caa73bULL, 0x6a09e667f3bcc908ULL );
state3 = m512_const4_64( 0x5be0cd19137e2179ULL, 0x1f83d9abfb41bd6bULL,
0x9b05688c2b3e6c1fULL, 0x510e527fade682d1ULL );
for ( int i = 0; i < nBlocks; i++ )
{
__m512i *in = (__m512i*)In;
state0 = _mm512_xor_si512( state0, in[0] );
state1 = _mm512_xor_si512( state1, in[1] );
LYRA_12_ROUNDS_2WAY_AVX512( state0, state1, state2, state3 );
In += block_len * 2;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
inline void reducedSqueezeRow0_2way( uint64_t* State, uint64_t* rowOut,
uint64_t nCols )
{
int i;
//M[row][C-1-col] = H.reduced_squeeze()
register __m512i state0, state1, state2, state3;
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I * 2 );
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < 9; i += 3)
{
_mm_prefetch( out - i, _MM_HINT_T0 );
_mm_prefetch( out - i - 2, _MM_HINT_T0 );
}
for ( i = 0; i < nCols; i++ )
{
_mm_prefetch( out - 9, _MM_HINT_T0 );
_mm_prefetch( out - 11, _MM_HINT_T0 );
out[0] = state0;
out[1] = state1;
out[2] = state2;
//Goes to next block (column) that will receive the squeezed data
out -= BLOCK_LEN_M256I * 2;
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
// This function has to deal with gathering 2 256 bit rowin vectors from
// non-contiguous memory. Extra work and performance penalty.
inline void reducedDuplexRow1_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowOut, uint64_t nCols )
{
int i;
register __m512i state0, state1, state2, state3;
__m512i *in = (__m256i*)rowIn;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
state0 = _mm512_xor_si512( state0, in[0] );
state1 = _mm512_xor_si512( state1, in[1] );
state2 = _mm512_xor_si512( state2, in[2] );
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
out[0] = _mm512_xor_si512( state0, in[0] );
out[1] = _mm512_xor_si512( state1, in[1] );
out[2] = _mm512_xor_si512( state2, in[2] );
//Input: next column (i.e., next block in sequence)
in0 += BLOCK_LEN_M256I;
in1 += BLOCK_LEN_M256I;
//Output: goes to previous column
out -= BLOCK_LEN_M256I * 2;
}
_mm512_store_si256( (__m512i*)State, state0 );
_mm512_store_si256( (__m512i*)State + 1, state1 );
_mm512_store_si256( (__m512i*)State + 2, state2 );
_mm512_store_si256( (__m512i*)State + 3, state3 );
}
}
inline void reducedDuplexRowSetup_2way( uint64_t *State, uint64_t *rowIn,
uint64_t *rowInOut, uint64_t *rowOut, uint64_t nCols )
{
int i;
register __m512i state0, state1, state2, state3;
__m512i* in = (__m512i*)rowIn;
__m512i* inout = (__m512i*)rowInOut;
__m512i* out = (__m512i*)rowOut + ( (nCols-1) * BLOCK_LEN_M256I * 2 );
__m512i t0, t1, t2;
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
for ( i = 0; i < nCols; i++ )
{
state0 = _mm512_xor_si512( state0,
_mm512_add_epi64( in[0], inout[0] ) );
state1 = _mm512_xor_si512( state1,
_mm512_add_epi64( in[1], inout[1] ) );
state2 = _mm512_xor_si512( state2,
_mm512_add_epi64( in[2], inout[2] ) );
LYRA_ROUND_2WAY AVX512( state0, state1, state2, state3 );
out[0] = _mm512_xor_si512( state0, in[0] );
out[1] = _mm512_xor_si512( state1, in[1] );
out[2] = _mm512_xor_si512( state2, in[2] );
//M[row*][col] = M[row*][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi32( t2, t1, 0x03 ) );
//Inputs: next column (i.e., next block in sequence)
in += BLOCK_LEN_M256I * 2;
inout += BLOCK_LEN_M256I * 2;
//Output: goes to previous column
out -= BLOCK_LEN_M256I * 2;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
inline void reducedDuplexRow_2way( uint64_t *State, uint64_t *rowIn1,
uint64_t *rowIn0, uint64_t *rowInOut, uint64_t *rowOut,
uint64_t nCols )
{
int i;
register __m512i state0, state1, state2, state3;
__m256i *in0 = (__m256i*)rowIn0;
__m256i *in0 = (__m256i*)rowIn0;
__m2512* in = (__m512i*)rowIn;
__m2512* inout = (__m512i*)rowInOut;
__m512i* out = (__m512i*)rowOut;
__m512i t0, t1, t2;
_mm_prefetch( in0, _MM_HINT_T0 );
_mm_prefetch( in1, _MM_HINT_T0 );
_mm_prefetch( in0 + 2, _MM_HINT_T0 );
_mm_prefetch( in1 + 2, _MM_HINT_T0 );
_mm_prefetch( in0 + 4, _MM_HINT_T0 );
_mm_prefetch( in1 + 4, _MM_HINT_T0 );
_mm_prefetch( in0 + 6, _MM_HINT_T0 );
_mm_prefetch( in1 + 6, _MM_HINT_T0 );
state0 = _mm512_load_si512( (__m512i*)State );
state1 = _mm512_load_si512( (__m512i*)State + 1 );
state2 = _mm512_load_si512( (__m512i*)State + 2 );
state3 = _mm512_load_si512( (__m512i*)State + 3 );
//Absorbing "M[prev] [+] M[row*]"
// state0 = _mm512_xor_si512( state0, mm512_concat_256( in1[0], in0[0] );
// state1 = _mm512_xor_si512( state1, mm512_concat_256( in1[1], in0[1] );
// state2 = _mm512_xor_si512( state2, mm512_concat_256( in1[2], in0[2] );
t0 = mm512_concat_256( in1[0], in0[0] );
t1 = mm512_concat_256( in1[1], in0[1] );
t2 = mm512_concat_256( in1[2], in0[2] );
state0 = _mm512_xor_si512( state0,
_mm512_add_epi64( t0, inout[0] ) );
state1 = _mm512_xor_si512( state1,
_mm512_add_epi64( t1, inout[1] ) );
state2 = _mm512_xor_si512( state2,
_mm512_add_epi64( t2, inout[2] ) );
//Applies the reduced-round transformation f to the sponge's state
LYRA_ROUND_2WAY_AVX512( state0, state1, state2, state3 );
//M[rowOut][col] = M[rowOut][col] XOR rand
out[0] = _mm512_xor_si512( out[0], state0 );
out[1] = _mm512_xor_si512( out[1], state1 );
out[2] = _mm512_xor_si512( out[2], state2 );
//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
t0 = _mm512_permutex_epi64( state0, 0x93 );
t1 = _mm512_permutex_epi64( state1, 0x93 );
t2 = _mm512_permutex_epi64( state2, 0x93 );
inout[0] = _mm512_xor_si512( inout[0],
_mm512_mask_blend_epi32( t0, t2, 0x03 ) );
inout[1] = _mm512_xor_si512( inout[1],
_mm512_mask_blend_epi32( t1, t0, 0x03 ) );
inout[2] = _mm512_xor_si512( inout[2],
_mm512_mask_blend_epi32( t2, t1, 0x03 ) );
//Goes to next block
in += BLOCK_LEN_M256I * 2;
out += BLOCK_LEN_M256I * 2;
inout += BLOCK_LEN_M256I * 2;
}
_mm512_store_si512( (__m512i*)State, state0 );
_mm512_store_si512( (__m512i*)State + 1, state1 );
_mm512_store_si512( (__m512i*)State + 2, state2 );
_mm512_store_si512( (__m512i*)State + 3, state3 );
}
#endif // AVX512