This commit is contained in:
Jay D Dee
2019-07-30 10:16:43 -04:00
parent a51f59086b
commit 9d49e0be7a
66 changed files with 1949 additions and 1470 deletions

View File

@@ -308,12 +308,12 @@ static const sph_u32 CS[16] = {
#define GS_4WAY( m0, m1, c0, c1, a, b, c, d ) \
do { \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set_epi32( c1, c1, c1, c1 ), m0 ), b ), a ); \
_mm_set1_epi32( c1 ), m0 ), b ), a ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 16 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 12 ); \
a = _mm_add_epi32( _mm_add_epi32( _mm_xor_si128( \
_mm_set_epi32( c0, c0, c0, c0 ), m1 ), b ), a ); \
_mm_set1_epi32( c0 ), m1 ), b ), a ); \
d = mm128_ror_32( _mm_xor_si128( d, a ), 8 ); \
c = _mm_add_epi32( c, d ); \
b = mm128_ror_32( _mm_xor_si128( b, c ), 7 ); \
@@ -508,14 +508,18 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm_xor_si128( S0, _mm_set1_epi32( CS0 ) ); \
V9 = _mm_xor_si128( S1, _mm_set1_epi32( CS1 ) ); \
VA = _mm_xor_si128( S2, _mm_set1_epi32( CS2 ) ); \
VB = _mm_xor_si128( S3, _mm_set1_epi32( CS3 ) ); \
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS4 ) ); \
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), _mm_set1_epi32( CS5 ) ); \
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS6 ) ); \
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), _mm_set1_epi32( CS7 ) ); \
V8 = _mm_xor_si128( S0, m128_const1_64( 0x243F6A88243F6A88 ) ); \
V9 = _mm_xor_si128( S1, m128_const1_64( 0x85A308D385A308D3 ) ); \
VA = _mm_xor_si128( S2, m128_const1_64( 0x13198A2E13198A2E ) ); \
VB = _mm_xor_si128( S3, m128_const1_64( 0x0370734403707344 ) ); \
VC = _mm_xor_si128( _mm_set1_epi32( T0 ), \
m128_const1_64( 0xA4093822A4093822 ) ); \
VD = _mm_xor_si128( _mm_set1_epi32( T0 ), \
m128_const1_64( 0x299F31D0299F31D0 ) ); \
VE = _mm_xor_si128( _mm_set1_epi32( T1 ), \
m128_const1_64( 0x082EFA98082EFA98 ) ); \
VF = _mm_xor_si128( _mm_set1_epi32( T1 ), \
m128_const1_64( 0xEC4E6C89EC4E6C89 ) ); \
BLAKE256_4WAY_BLOCK_BSWAP32; \
ROUND_S_4WAY(0); \
ROUND_S_4WAY(1); \
@@ -631,16 +635,20 @@ do { \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set1_epi32( CS0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set1_epi32( CS1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set1_epi32( CS2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set1_epi32( CS3 ) ); \
VC = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS4 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ), _mm256_set1_epi32( CS5 ) ); \
VE = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS6 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), _mm256_set1_epi32( CS7 ) ); \
shuf_bswap32 = _mm256_set_epi64x( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
V8 = _mm256_xor_si256( S0, m256_const1_64( 0x243F6A88243F6A88 ) ); \
V9 = _mm256_xor_si256( S1, m256_const1_64( 0x85A308D385A308D3 ) ); \
VA = _mm256_xor_si256( S2, m256_const1_64( 0x13198A2E13198A2E ) ); \
VB = _mm256_xor_si256( S3, m256_const1_64( 0x0370734403707344 ) ); \
VC = _mm256_xor_si256( _mm256_set1_epi32( T0 ),\
m256_const1_64( 0xA4093822A4093822 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi32( T0 ),\
m256_const1_64( 0x299F31D0299F31D0 ) ); \
VE = _mm256_xor_si256( _mm256_set1_epi32( T1 ), \
m256_const1_64( 0x082EFA98082EFA98 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), \
m256_const1_64( 0xEC4E6C89EC4E6C89 ) ); \
shuf_bswap32 = m256_const_64( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
M0 = _mm256_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap32 ); \
@@ -696,14 +704,14 @@ blake32_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
const uint32_t *salt, int rounds )
{
__m128i zero = m128_zero;
casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] );
casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] );
casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] );
casti_m128i( ctx->H, 3 ) = _mm_set1_epi32( iv[3] );
casti_m128i( ctx->H, 4 ) = _mm_set1_epi32( iv[4] );
casti_m128i( ctx->H, 5 ) = _mm_set1_epi32( iv[5] );
casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] );
casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] );
casti_m128i( ctx->H, 0 ) = m128_const1_64( 0x6A09E6676A09E667 );
casti_m128i( ctx->H, 1 ) = m128_const1_64( 0xBB67AE85BB67AE85 );
casti_m128i( ctx->H, 2 ) = m128_const1_64( 0x3C6EF3723C6EF372 );
casti_m128i( ctx->H, 3 ) = m128_const1_64( 0xA54FF53AA54FF53A );
casti_m128i( ctx->H, 4 ) = m128_const1_64( 0x510E527F510E527F );
casti_m128i( ctx->H, 5 ) = m128_const1_64( 0x9B05688C9B05688C );
casti_m128i( ctx->H, 6 ) = m128_const1_64( 0x1F83D9AB1F83D9AB );
casti_m128i( ctx->H, 7 ) = m128_const1_64( 0x5BE0CD195BE0CD19 );
casti_m128i( ctx->S, 0 ) = zero;
casti_m128i( ctx->S, 1 ) = zero;
@@ -778,12 +786,13 @@ blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n,
else
ctx->T0 -= 512 - bit_len;
buf[vptr] = _mm_set1_epi32( 0x80 );
buf[vptr] = m128_const1_64( 0x0000008000000080 );
if ( vptr < 12 )
{
memset_zero_128( buf + vptr + 1, 13 - vptr );
buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) );
buf[ 13 ] = _mm_or_si128( buf[ 13 ],
m128_const1_64( 0x0100000001000000ULL ) );
buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) );
buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) );
blake32_4way( ctx, buf + vptr, 64 - ptr );
@@ -795,7 +804,8 @@ blake32_4way_close( blake_4way_small_context *ctx, unsigned ub, unsigned n,
ctx->T0 = 0xFFFFFE00UL;
ctx->T1 = 0xFFFFFFFFUL;
memset_zero_128( buf, 56>>2 );
buf[ 13 ] = _mm_or_si128( buf[ 13 ], _mm_set1_epi32( 0x01000000UL ) );
buf[ 13 ] = _mm_or_si128( buf[ 13 ],
m128_const1_64( 0x0100000001000000ULL ) );
buf[ 14 ] = mm128_bswap_32( _mm_set1_epi32( th ) );
buf[ 15 ] = mm128_bswap_32( _mm_set1_epi32( tl ) );
blake32_4way( ctx, buf, 64 );
@@ -815,20 +825,18 @@ blake32_8way_init( blake_8way_small_context *sc, const sph_u32 *iv,
const sph_u32 *salt, int rounds )
{
__m256i zero = m256_zero;
casti_m256i( sc->H, 0 ) = _mm256_set1_epi32( iv[0] );
casti_m256i( sc->H, 1 ) = _mm256_set1_epi32( iv[1] );
casti_m256i( sc->H, 2 ) = _mm256_set1_epi32( iv[2] );
casti_m256i( sc->H, 3 ) = _mm256_set1_epi32( iv[3] );
casti_m256i( sc->H, 4 ) = _mm256_set1_epi32( iv[4] );
casti_m256i( sc->H, 5 ) = _mm256_set1_epi32( iv[5] );
casti_m256i( sc->H, 6 ) = _mm256_set1_epi32( iv[6] );
casti_m256i( sc->H, 7 ) = _mm256_set1_epi32( iv[7] );
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E6676A09E667 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE85BB67AE85 );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF3723C6EF372 );
casti_m256i( sc->H, 3 ) = m256_const1_64( 0xA54FF53AA54FF53A );
casti_m256i( sc->H, 4 ) = m256_const1_64( 0x510E527F510E527F );
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C9B05688C );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9AB1F83D9AB );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD195BE0CD19 );
casti_m256i( sc->S, 0 ) = zero;
casti_m256i( sc->S, 1 ) = zero;
casti_m256i( sc->S, 2 ) = zero;
casti_m256i( sc->S, 3 ) = zero;
sc->T0 = sc->T1 = 0;
sc->ptr = 0;
sc->rounds = rounds;
@@ -887,7 +895,7 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
ptr = sc->ptr;
bit_len = ((unsigned)ptr << 3);
buf[ptr>>2] = _mm256_set1_epi32( 0x80 );
buf[ptr>>2] = m256_const1_64( 0x0000008000000080ULL );
tl = sc->T0 + bit_len;
th = sc->T1;
@@ -909,7 +917,7 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
memset_zero_256( buf + (ptr>>2) + 1, (52 - ptr) >> 2 );
if ( out_size_w32 == 8 )
buf[52>>2] = _mm256_or_si256( buf[52>>2],
_mm256_set1_epi32( 0x01000000UL ) );
m256_const1_64( 0x0100000001000000ULL ) );
*(buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) );
*(buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) );
blake32_8way( sc, buf + (ptr>>2), 64 - ptr );
@@ -922,7 +930,7 @@ blake32_8way_close( blake_8way_small_context *sc, unsigned ub, unsigned n,
sc->T1 = SPH_C32(0xFFFFFFFFUL);
memset_zero_256( buf, 56>>2 );
if ( out_size_w32 == 8 )
buf[52>>2] = _mm256_set1_epi32( 0x01000000UL );
buf[52>>2] = m256_const1_64( 0x0100000001000000ULL );
*(buf+(56>>2)) = mm256_bswap_32( _mm256_set1_epi32( th ) );
*(buf+(60>>2)) = mm256_bswap_32( _mm256_set1_epi32( tl ) );
blake32_8way( sc, buf, 64 );

View File

@@ -1,322 +0,0 @@
// convert blake256 32 bit to use 64 bit with serial vectoring
//
// cut calls to GS in half
//
// combine V
// v0 = {V0,V1}
// v1 = {V2,V3}
// v2 = {V4,V5}
// v3 = {V6,V7}
// v4 = {V8,V9}
// v5 = {VA,VB}
// v6 = {VC,VD}
// v7 = {CE,VF}
//
// v6x = {VD,VC} swap(VC,VD) swap(v6)
// v7x = {VF,VE} swap(VE,VF) swap(v7)
//
// V0 = v1v0
// V1 = v3v2
// V2 = v5v4
// V3 = v7v6
// V4 = v9v8
// V5 = vbva
// V6 = vdvc
// V7 = vfve
//
// The rotate in ROUND is to effect straddle and unstraddle for the third
// and 4th iteration of GS.
// It concatenates 2 contiguous 256 bit vectors and extracts the middle
// 256 bits. After the transform they must be restored with only the
// chosen bits modified in the original 2 vectors.
// ror1x128 achieves this by putting the chosen bits in arg1, the "low"
// 256 bit vector and saves the untouched bits temporailly in arg0, the
// "high" 256 bit vector. Simply reverse the process to restore data back
// to original positions.
// Use standard 4way when AVX2 is not available use x2 mode with AVX2.
//
// Data is organised the same as 32 bit 4 way, in effect serial vectoring
// on top of parallel vectoring. Same data in the same place just taking
// two chunks at a time.
//
// Transparent to user, x2 mode used when AVX2 detected.
// Use existing 4way context but revert to scalar types.
// Same interleave function (128 bit) or x2 with 256 bit?
// User trsnaparency would have to apply to interleave as well.
//
// Use common 4way update and close
/*
typedef struct {
unsigned char buf[64<<2];
uint32_t H[8<<2];
uint32_t S[4<<2];
size_t ptr;
uint32_t T0, T1;
int rounds; // 14 for blake, 8 for blakecoin & vanilla
} blakex2_4way_small_context __attribute__ ((aligned (64)));
*/
static void
blake32x2_4way_init( blake_4way_small_context *ctx, const uint32_t *iv,
const uint32_t *salt, int rounds )
{
casti_m128i( ctx->H, 0 ) = _mm_set1_epi32( iv[0] );
casti_m128i( ctx->H, 1 ) = _mm_set1_epi32( iv[1] );
casti_m128i( ctx->H, 2 ) = _mm_set1_epi32( iv[2] );
casti_m128i( ctx->H, 3 ) = _mm_set1_epi32( iv[3] );
casti_m128i( ctx->H, 4 ) = _mm_set1_epi32( iv[4] );
casti_m128i( ctx->H, 5 ) = _mm_set1_epi32( iv[5] );
casti_m128i( ctx->H, 6 ) = _mm_set1_epi32( iv[6] );
casti_m128i( ctx->H, 7 ) = _mm_set1_epi32( iv[7] );
casti_m128i( ctx->S, 0 ) = m128_zero;
casti_m128i( ctx->S, 1 ) = m128_zero;
casti_m128i( ctx->S, 2 ) = m128_zero;
casti_m128i( ctx->S, 3 ) = m128_zero;
/*
sc->S[0] = _mm_set1_epi32( salt[0] );
sc->S[1] = _mm_set1_epi32( salt[1] );
sc->S[2] = _mm_set1_epi32( salt[2] );
sc->S[3] = _mm_set1_epi32( salt[3] );
*/
ctx->T0 = ctx->T1 = 0;
ctx->ptr = 0;
ctx->rounds = rounds;
}
static void
blake32x2( blake_4way_small_context *ctx, const void *data, size_t len )
{
__m128i *buf = (__m256i*)ctx->buf;
size_t bptr = ctx->ptr << 2;
size_t vptr = ctx->ptr >> 3;
size_t blen = len << 2;
// unsigned char *buf = ctx->buf;
// size_t ptr = ctx->ptr<<4; // repurposed
DECL_STATE32x2
// buf = sc->buf;
// ptr = sc->ptr;
// adjust len for use with ptr, clen, all absolute bytes.
// int blen = len<<2;
if ( blen < (sizeof ctx->buf) - bptr )
{
memcpy( buf + vptr, data, blen );
ptr += blen;
ctx->ptr = bptr >> 2;;
return;
}
READ_STATE32( ctx );
while ( blen > 0 )
{
size_t clen;
clen = ( sizeof sc->buf ) - ptr;
if ( clen > blen )
clen = blen;
memcpy( buf + vptr, data, clen );
bptr += clen;
vptr = bptr >> 5;
data = (const unsigned char *)data + clen;
blen -= clen;
if ( bptr == sizeof ctx->buf )
{
if ( ( T0 = T0 + 512 ) < 512 ) // not needed, will never rollover
T1 += 1;
COMPRESS32x2_4WAY( ctx->rounds );
ptr = 0;
}
}
WRITE_STATE32x2( ctx );
ctx->ptr = bptr >> 2;
}
static void
blake32x2_4way_close( blake_4way_small_context *ctx, void *dst )
{
__m256i buf[8] __attribute__ ((aligned (64)));
size_t ptr = ctx->ptr;
size_t vptr = ctx->ptr>>2;
unsigned bit_len = ( (unsigned)ptr << 3 ); // one lane
uint32_t th = ctx->T1;
uint32_t tl = ctx->T0 + bit_len;
if ( ptr == 0 )
{
ctx->T0 = 0xFFFFFE00UL;
ctx->T1 = 0xFFFFFFFFUL;
}
else if ( ctx->T0 == 0 )
{
ctx->T0 = 0xFFFFFE00UL + bit_len;
ctx->T1 -= 1;
}
else
ctx->T0 -= 512 - bit_len;
// memset doesn't do ints
buf[ vptr ] = _mm256_set_epi32( 0,0,0,0, 0x80, 0x80, 0x80, 0x80 );
if ( vptr < 5 )
{
memset_zero_256( buf + vptr + 1, 6 - vptr );
buf[ 6 ] = _mm256_or_si256( vbuf[ 6 ], _mm256_set_epi32(
0x01000000UL,0x01000000UL,0x01000000UL,0x01000000UL, 0,0,0,0 ) );
buf[ 7 ] = mm256_bswap_32( _mm256_set_epi32( tl,tl,tl,tl,
th,th,th,th ) );
blake32x2_4way( ctx, buf + vptr, 64 - ptr );
}
else
{
memset_zero_256( vbuf + vptr + 1, 7 - vptr );
blake32x2_4way( ctx, vbuf + ptr, 64 - ptr );
ctx->T0 = 0xFFFFFE00UL;
ctx->T1 = 0xFFFFFFFFUL;
buf[ 6 ] = mm256_zero;
buf[ 6 ] = _mm256_set_epi32( 0,0,0,0,
0x01000000UL,0x01000000UL,0x01000000UL,0x01000000UL );
buf[ 7 ] = mm256_bswap_32( _mm256_set_epi32( tl, tl, tl, tl,
th, th, th, th );
blake32x2_4way( ctx, buf, 64 );
}
casti_m256i( dst, 0 ) = mm256_bswap_32( casti_m256i( ctx->H, 0 ) );
casti_m256i( dst, 1 ) = mm256_bswap_32( casti_m256i( ctx->H, 1 ) );
casti_m256i( dst, 2 ) = mm256_bswap_32( casti_m256i( ctx->H, 2 ) );
casti_m256i( dst, 3 ) = mm256_bswap_32( casti_m256i( ctx->H, 3 ) );
}
#define DECL_STATE32x2_4WAY \
__m256i H0, H1, H2, H3; \
__m256i S0, S1; \
uint32_t T0, T1;
#define READ_STATE32x2_4WAY(state) do \
{ \
H0 = casti_m256i( state->H, 0 ); \
H1 = casti_m256i( state->H, 1 ); \
H2 = casti_m256i( state->H, 2 ); \
H3 = casti_m256i( state->H, 3 ); \
S0 = casti_m256i( state->S, 0 ); \
S1 = casti_m256i( state->S, 1 ); \
T0 = state->T0; \
T1 = state->T1; \
#define WRITE_STATE32x2_4WAY(state) do { \
casti_m256i( state->H, 0 ) = H0; \
casti_m256i( state->H, 1 ) = H1; \
casti_m256i( state->H, 2 ) = H2; \
casti_m256i( state->H, 3 ) = H3; \
casti_m256i( state->S, 0 ) = S0; \
casti_m256i( state->S, 1 ) = S1; \
state->T0 = T0; \
state->T1 = T1; \
} while (0)
#define GSx2_4WAY( m0m2, m1m3, c0c2, c1c3, a, b, c, d ) do \
{ \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set_epi32( c1,c3, c1,c3, c1,c3, c1,c3 ), \
_mm256_set_epi32( m0,m2, m0,m2, m0,m2, m0,m2 ) ), b ), a ); \
d = mm256_ror_32( _mm_xor_si128( d, a ), 16 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 12 ); \
a = _mm256_add_epi32( _mm256_add_epi32( _mm256_xor_si256( \
_mm256_set_epi32( c0,c2, c0,c2, c0,c2, c0,c2 ), \
_mm256_set_epi32( m1,m3, m1,m3, m1,m3, m1,m3 ) ), b ), a ); \
d = mm256_ror_32( _mm256_xor_si256( d, a ), 8 ); \
c = _mm256_add_epi32( c, d ); \
b = mm256_ror_32( _mm256_xor_si256( b, c ), 7 ); \
} while (0)
#define ROUND_Sx2_4WAY(r) do \
{ \
GS2_4WAY( Mx(r, 0), Mx(r, 1), Mx(r, 2), Mx(r, 3), \
CSx(r, 0), CSx(r, 1), CSx(r, 2), CSx(r, 3), V0, V2, V4, V6 ); \
GS2_4WAY( Mx(r, 4), Mx(r, 5), Mx(r, 6), Mx(r, 7), \
CSx(r, 4), CSx(r, 5), CSx(r, 6), CSx(r, 7), V1, V3, V5, V7 ); \
mm256_ror1x128_512( V3, V2 ); \
mm256_ror1x128_512( V6, V7 ); \
GS2_4WAY( Mx(r, 8), Mx(r, 9), Mx(r, A), Mx(r, B), \
CSx(r, 8), CSx(r, 9), CSx(r, A), CSx(r, B), V0, V2, V5, V7 ); \
GS2_4WAY( Mx(r, C), Mx(r, D), Mx(r, C), Mx(r, D), \
CSx(r, C), CSx(r, D), CSx(r, C), CSx(r, D), V1, V3, V4, V6 ); \
mm256_rol1x128_512( V2, V3 ); \
mm256_rol1x128_512( V7, V6 );
#define COMPRESS32x2_4WAY( rounds ) do \
{ \
__m256i M0, M1, M2, M3, M4, M5, M6, M7; \
__m256i V0, V1, V2, V3, V4, V5, V6, V7; \
unsigned r; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = _mm256_xor_si256( S0, _mm256_set_epi32( CS1, CS1, CS1, CS1, \
CS0, CS0, CS0, CS0 ) ); \
V5 = _mm256_xor_si256( S1, _mm256_set_epi32( CS3, CS3, CS3, CS3, \
CS2, CS2, CS2, CS2 ) ); \
V6 = _mm256_xor_si256( _mm256_set1_epi32( T0 ), \
_mm256_set_epi32( CS5, CS5, CS5, CS5, \
CS4, CS4, CS4, CS4 ) ); \
V7 = _mm256_xor_si256( _mm256_set1_epi32( T1 ), \
_mm256_set_epi32( CS7, CS7, CS7, CS7, \
CS6, CS6, CS6, CS6 ) ); \
M0 = mm256_bswap_32( buf[ 0] ); \
M1 = mm256_bswap_32( buf[ 1] ); \
M2 = mm256_bswap_32( buf[ 2] ); \
M3 = mm256_bswap_32( buf[ 3] ); \
M4 = mm256_bswap_32( buf[ 4] ); \
M5 = mm256_bswap_32( buf[ 5] ); \
M6 = mm256_bswap_32( buf[ 6] ); \
M7 = mm256_bswap_32( buf[ 7] ); \
ROUND_Sx2_4WAY(0); \
ROUND_Sx2_4WAY(1); \
ROUND_Sx2_4WAY(2); \
ROUND_Sx2_4WAY(3); \
ROUND_Sx2_4WAY(4); \
ROUND_Sx2_4WAY(5); \
ROUND_Sx2_4WAY(6); \
ROUND_Sx2_4WAY(7); \
if (rounds == 14) \
{ \
ROUND_Sx2_4WAY(8); \
ROUND_Sx2_4WAY(9); \
ROUND_Sx2_4WAY(0); \
ROUND_Sx2_4WAY(1); \
ROUND_Sx2_4WAY(2); \
ROUND_Sx2_4WAY(3); \
} \
H0 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( V8, V0 ), S0 ), H0 ); \
H1 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( V9, V1 ), S1 ), H1 ); \
H2 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( VA, V2 ), S2 ), H2 ); \
H3 = _mm256_xor_si256( _mm256_xor_si256( \
_mm256_xor_si256( VB, V3 ), S3 ), H3 ); \
} while (0)

67
algo/blake/blake2b-4way.c Normal file
View File

@@ -0,0 +1,67 @@
/**
* Blake2-B Implementation
* tpruvot@github 2015-2016
*/
#include "blake2b-gate.h"
#if defined(BLAKE2B_4WAY)
#include <string.h>
#include <stdint.h>
#include "blake2b-hash-4way.h"
// Function not used, code inlined.
void blake2b_4way_hash(void *output, const void *input)
{
blake2b_4way_ctx ctx;
blake2b_4way_init( &ctx );
blake2b_4way_update( &ctx, input, 80 );
blake2b_4way_final( &ctx, output );
}
int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));;
uint32_t vdata[20*4] __attribute__ ((aligned (32)));;
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
blake2b_4way_ctx ctx __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
blake2b_4way_init( &ctx );
blake2b_4way_update( &ctx, vdata, 80 );
blake2b_4way_final( &ctx, hash );
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
return 0;
}
#endif

25
algo/blake/blake2b-gate.c Normal file
View File

@@ -0,0 +1,25 @@
#include "blake2b-gate.h"
/*
// changed to get_max64_0x3fffffLL in cpuminer-multi-decred
int64_t blake2s_get_max64 ()
{
return 0x7ffffLL;
}
*/
bool register_blake2b_algo( algo_gate_t* gate )
{
#if defined(BLAKE2B_4WAY)
gate->scanhash = (void*)&scanhash_blake2b_4way;
gate->hash = (void*)&blake2b_4way_hash;
#else
gate->scanhash = (void*)&scanhash_blake2b;
gate->hash = (void*)&blake2b_hash;
#endif
// gate->get_max64 = (void*)&blake2s_get_max64;
gate->optimizations = AVX2_OPT;
return true;
};

26
algo/blake/blake2b-gate.h Normal file
View File

@@ -0,0 +1,26 @@
#ifndef __BLAKE2B_GATE_H__
#define __BLAKE2B_GATE_H__ 1
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__AVX2__)
#define BLAKE2B_4WAY
#endif
bool register_blake2b_algo( algo_gate_t* gate );
#if defined(BLAKE2B_4WAY)
void blake2b_4way_hash( void *state, const void *input );
int scanhash_blake2b_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void blake2b_hash( void *state, const void *input );
int scanhash_blake2b( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -0,0 +1,215 @@
/*
* Copyright 2009 Colin Percival, 2014 savale
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "blake2b-hash-4way.h"
#if defined(__AVX2__)
// G Mixing function.
#define B2B_G(a, b, c, d, x, y) \
{ \
v[a] = _mm256_add_epi64( _mm256_add_epi64( v[a], v[b] ), x ); \
v[d] = mm256_ror_64( _mm256_xor_si256( v[d], v[a] ), 32 ); \
v[c] = _mm256_add_epi64( v[c], v[d] ); \
v[b] = mm256_ror_64( _mm256_xor_si256( v[b], v[c] ), 24 ); \
v[a] = _mm256_add_epi64( _mm256_add_epi64( v[a], v[b] ), y ); \
v[d] = mm256_ror_64( _mm256_xor_si256( v[d], v[a] ), 16 ); \
v[c] = _mm256_add_epi64( v[c], v[d] ); \
v[b] = mm256_ror_64( _mm256_xor_si256( v[b], v[c] ), 63 ); \
}
// Initialization Vector.
/*
static const uint64_t blake2b_iv[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
*/
static void blake2b_4way_compress( blake2b_4way_ctx *ctx, int last )
{
const uint8_t sigma[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
int i;
__m256i v[16], m[16];
v[ 0] = ctx->h[0];
v[ 1] = ctx->h[1];
v[ 2] = ctx->h[2];
v[ 3] = ctx->h[3];
v[ 4] = ctx->h[4];
v[ 5] = ctx->h[5];
v[ 6] = ctx->h[6];
v[ 7] = ctx->h[7];
v[ 8] = m256_const1_64( 0x6A09E667F3BCC908 );
v[ 9] = m256_const1_64( 0xBB67AE8584CAA73B );
v[10] = m256_const1_64( 0x3C6EF372FE94F82B );
v[11] = m256_const1_64( 0xA54FF53A5F1D36F1 );
v[12] = m256_const1_64( 0x510E527FADE682D1 );
v[13] = m256_const1_64( 0x9B05688C2B3E6C1F );
v[14] = m256_const1_64( 0x1F83D9ABFB41BD6B );
v[15] = m256_const1_64( 0x5BE0CD19137E2179 );
v[12] = _mm256_xor_si256( v[12], _mm256_set1_epi64x( ctx->t[0] ) );
v[13] = _mm256_xor_si256( v[13], _mm256_set1_epi64x( ctx->t[1] ) );
if ( last )
v[14] = mm256_not( v[14] );
m[ 0] = ctx->b[ 0];
m[ 1] = ctx->b[ 1];
m[ 2] = ctx->b[ 2];
m[ 3] = ctx->b[ 3];
m[ 4] = ctx->b[ 4];
m[ 5] = ctx->b[ 5];
m[ 6] = ctx->b[ 6];
m[ 7] = ctx->b[ 7];
m[ 8] = ctx->b[ 8];
m[ 9] = ctx->b[ 9];
m[10] = ctx->b[10];
m[11] = ctx->b[11];
m[12] = ctx->b[12];
m[13] = ctx->b[13];
m[14] = ctx->b[14];
m[15] = ctx->b[15];
for ( i = 0; i < 12; i++ )
{
B2B_G( 0, 4, 8, 12, m[ sigma[i][ 0] ], m[ sigma[i][ 1] ] );
B2B_G( 1, 5, 9, 13, m[ sigma[i][ 2] ], m[ sigma[i][ 3] ] );
B2B_G( 2, 6, 10, 14, m[ sigma[i][ 4] ], m[ sigma[i][ 5] ] );
B2B_G( 3, 7, 11, 15, m[ sigma[i][ 6] ], m[ sigma[i][ 7] ] );
B2B_G( 0, 5, 10, 15, m[ sigma[i][ 8] ], m[ sigma[i][ 9] ] );
B2B_G( 1, 6, 11, 12, m[ sigma[i][10] ], m[ sigma[i][11] ] );
B2B_G( 2, 7, 8, 13, m[ sigma[i][12] ], m[ sigma[i][13] ] );
B2B_G( 3, 4, 9, 14, m[ sigma[i][14] ], m[ sigma[i][15] ] );
}
ctx->h[0] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[0], v[0] ), v[ 8] );
ctx->h[1] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[1], v[1] ), v[ 9] );
ctx->h[2] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[2], v[2] ), v[10] );
ctx->h[3] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[3], v[3] ), v[11] );
ctx->h[4] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[4], v[4] ), v[12] );
ctx->h[5] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[5], v[5] ), v[13] );
ctx->h[6] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[6], v[6] ), v[14] );
ctx->h[7] = _mm256_xor_si256( _mm256_xor_si256( ctx->h[7], v[7] ), v[15] );
}
int blake2b_4way_init( blake2b_4way_ctx *ctx )
{
size_t i;
ctx->h[0] = m256_const1_64( 0x6A09E667F3BCC908 );
ctx->h[1] = m256_const1_64( 0xBB67AE8584CAA73B );
ctx->h[2] = m256_const1_64( 0x3C6EF372FE94F82B );
ctx->h[3] = m256_const1_64( 0xA54FF53A5F1D36F1 );
ctx->h[4] = m256_const1_64( 0x510E527FADE682D1 );
ctx->h[5] = m256_const1_64( 0x9B05688C2B3E6C1F );
ctx->h[6] = m256_const1_64( 0x1F83D9ABFB41BD6B );
ctx->h[7] = m256_const1_64( 0x5BE0CD19137E2179 );
ctx->h[0] = _mm256_xor_si256( ctx->h[0], m256_const1_64( 0x01010020 ) );
ctx->t[0] = 0;
ctx->t[1] = 0;
ctx->c = 0;
ctx->outlen = 32;
for ( i = 0; i < 16; i++ )
ctx->b[i] = m256_zero;
return 0;
}
void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
size_t inlen )
{
__m256i* in =(__m256i*)input;
size_t i, c;
c = ctx->c >> 3;
for ( i = 0; i < (inlen >> 3); i++ )
{
if ( ctx->c == 128 )
{
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
blake2b_4way_compress( ctx, 0 );
ctx->c = 0;
}
ctx->b[ c++ ] = in[i];
ctx->c += 8;
}
}
void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out )
{
size_t c;
c = ctx->c >> 3;
ctx->t[0] += ctx->c;
if ( ctx->t[0] < ctx->c )
ctx->t[1]++;
while ( ctx->c < 128 )
{
ctx->b[c++] = m256_zero;
ctx->c += 8;
}
blake2b_4way_compress( ctx, 1 ); // final block flag = 1
casti_m256i( out, 0 ) = ctx->h[0];
casti_m256i( out, 1 ) = ctx->h[1];
casti_m256i( out, 2 ) = ctx->h[2];
casti_m256i( out, 3 ) = ctx->h[3];
}
#endif

View File

@@ -0,0 +1,35 @@
#pragma once
#ifndef __BLAKE2B_HASH_4WAY_H__
#define __BLAKE2B_HASH_4WAY_H__
#if defined(__AVX2__)
#include "simd-utils.h"
#include <stddef.h>
#include <stdint.h>
#if defined(_MSC_VER)
#include <inttypes.h>
#define inline __inline
#define ALIGN(x) __declspec(align(x))
#else
#define ALIGN(x) __attribute__((aligned(x)))
#endif
// state context
ALIGN(64) typedef struct {
__m256i b[16]; // input buffer
__m256i h[8]; // chained state
uint64_t t[2]; // total number of bytes
size_t c; // pointer for b[]
size_t outlen; // digest size
} blake2b_4way_ctx __attribute__((aligned(64)));
int blake2b_4way_init( blake2b_4way_ctx *ctx );
void blake2b_4way_update( blake2b_4way_ctx *ctx, const void *input,
size_t inlen );
void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out );
#endif
#endif

View File

@@ -3,13 +3,11 @@
* tpruvot@github 2015-2016
*/
#include "algo-gate-api.h"
#include "blake2b-gate.h"
#include <string.h>
#include <stdint.h>
#include "algo/blake/sph_blake2b.h"
//static __thread sph_blake2b_ctx s_midstate;
//static __thread sph_blake2b_ctx s_ctx;
#define MIDLEN 76
#define A 64
@@ -25,16 +23,6 @@ void blake2b_hash(void *output, const void *input)
memcpy(output, hash, 32);
}
/*
static void blake2b_hash_end(uint32_t *output, const uint32_t *input)
{
s_ctx.outlen = MIDLEN;
memcpy(&s_ctx, &s_midstate, 32 + 16 + MIDLEN);
sph_blake2b_update(&s_ctx, (uint8_t*) &input[MIDLEN/4], 80 - MIDLEN);
sph_blake2b_final(&s_ctx, (uint8_t*) output);
}
*/
int scanhash_blake2b( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
@@ -45,7 +33,7 @@ int scanhash_blake2b( struct work *work, uint32_t max_nonce,
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[8];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
@@ -53,179 +41,23 @@ int scanhash_blake2b( struct work *work, uint32_t max_nonce,
be32enc(&endiandata[i], pdata[i]);
}
// midstate (untested yet)
//blake2b_init(&s_midstate, 32, NULL, 0);
//blake2b_update(&s_midstate, (uint8_t*) endiandata, MIDLEN);
//memcpy(&s_ctx, &s_midstate, sizeof(blake2b_ctx));
do {
be32enc(&endiandata[8], n);
be32enc(&endiandata[19], n);
//blake2b_hash_end(vhashcpu, endiandata);
blake2b_hash(vhashcpu, endiandata);
if (vhashcpu[7] < Htarg && fulltest(vhashcpu, ptarget)) {
work_set_target_ratio(work, vhashcpu);
*hashes_done = n - first_nonce + 1;
pdata[8] = n;
pdata[19] = n;
return 1;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[8] = n;
pdata[19] = n;
return 0;
}
static inline void swab256(void *dest_p, const void *src_p)
{
uint32_t *dest = (uint32_t *)dest_p;
const uint32_t *src = (uint32_t *)src_p;
dest[0] = swab32(src[7]);
dest[1] = swab32(src[6]);
dest[2] = swab32(src[5]);
dest[3] = swab32(src[4]);
dest[4] = swab32(src[3]);
dest[5] = swab32(src[2]);
dest[6] = swab32(src[1]);
dest[7] = swab32(src[0]);
}
/* compute nbits to get the network diff */
void blake2b_calc_network_diff(struct work *work)
{
// sample for diff 43.281 : 1c05ea29
uint32_t nbits = work->data[11]; // unsure if correct
uint32_t bits = (nbits & 0xffffff);
int16_t shift = (swab32(nbits) & 0xff); // 0x1c = 28
double d = (double)0x0000ffff / (double)bits;
for (int m=shift; m < 29; m++) d *= 256.0;
for (int m=29; m < shift; m++) d /= 256.0;
if (opt_debug_diff)
applog(LOG_DEBUG, "net diff: %f -> shift %u, bits %08x", d, shift, bits);
net_diff = d;
}
void blake2b_be_build_stratum_request( char *req, struct work *work )
{
unsigned char *xnonce2str;
uint32_t ntime, nonce;
char ntimestr[9], noncestr[9];
be32enc( &ntime, work->data[ algo_gate.ntime_index ] );
be32enc( &nonce, work->data[ algo_gate.nonce_index ] );
bin2hex( ntimestr, (char*)(&ntime), sizeof(uint32_t) );
bin2hex( noncestr, (char*)(&nonce), sizeof(uint32_t) );
uint16_t high_nonce = swab32(work->data[9]) >> 16;
xnonce2str = abin2hex((unsigned char*)(&high_nonce), 2);
snprintf( req, JSON_BUF_LEN,
"{\"method\": \"mining.submit\", \"params\": [\"%s\", \"%s\", \"%s\", \"%s\", \"%s\"], \"id\":4}",
rpc_user, work->job_id, xnonce2str, ntimestr, noncestr );
free( xnonce2str );
}
#define min(a,b) (a>b ? (b) :(a))
// merkle root handled here, no need for gen_merkle_root gate target
void blake2b_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
{
uchar merkle_root[64] = { 0 };
uint32_t extraheader[32] = { 0 };
int headersize = 0;
size_t t;
int i;
// merkle root
memcpy( merkle_root, sctx->job.coinbase, 32 );
headersize = min( (int)sctx->job.coinbase_size - 32, sizeof(extraheader) );
memcpy( extraheader, &sctx->job.coinbase[32], headersize );
// Increment extranonce2
for ( t = 0; t < sctx->xnonce2_size && !( ++sctx->job.xnonce2[t] ); t++ );
// Assemble block header
memset( g_work->data, 0, sizeof(g_work->data) );
// g_work->data[0] = le32dec( sctx->job.version );
// for ( i = 0; i < 8; i++ )
// g_work->data[1 + i] = le32dec( (uint32_t *) sctx->job.prevhash + i );
for ( i = 0; i < 8; i++ )
g_work->data[i] = ((uint32_t*)sctx->job.prevhash)[7-i];
// for ( i = 0; i < 8; i++ )
// g_work->data[9 + i] = be32dec( (uint32_t *) merkle_root + i );
g_work->data[8] = 0; // nonce
g_work->data[9] = swab32( extraheader[0] ) | ( rand() & 0xf0 );
g_work->data[10] = be32dec( sctx->job.ntime );
g_work->data[11] = be32dec( sctx->job.nbits );
for ( i = 0; i < 8; i++ )
g_work->data[12+i] = ( (uint32_t*)merkle_root )[i];
}
#undef min
void blake2b_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job )
{
const int wkcmp_sz = 32; // bytes
const int wkcmp_off = 32 + 16;
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[ wkcmp_off ], &g_work->data[ wkcmp_off ], wkcmp_sz )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr )
|| strcmp( work->job_id, g_work->job_id ) ) )
{
work_free( work );
work_copy( work, g_work );
*nonceptr = ( 0xffffffffU / opt_n_threads ) * thr_id;
if ( opt_randomize )
*nonceptr += ( (rand() *4 ) & UINT32_MAX ) / opt_n_threads;
*end_nonce_ptr = ( 0xffffffffU / opt_n_threads ) * (thr_id+1) - 0x20;
}
else
++(*nonceptr);
// suprnova job_id check without data/target/height change...
// we just may have copied new g_wwork to work so why this test here?
// if ( have_stratum && strcmp( work->job_id, g_work->job_id ) )
// exit thread loop
// continue;
// else
// {
// nonceptr[1] += 0x10;
// nonceptr[1] |= thr_id;
// }
}
bool blake2b_ready_to_mine( struct work* work, struct stratum_ctx* stratum,
int thr_id )
{
if ( have_stratum && strcmp( stratum->job.job_id, work->job_id ) )
// need to regen g_work..
return false;
// extradata: prevent duplicates
work->data[ 8 ] += 0x10;
work->data[ 8 + 1 ] |= thr_id;
return true;
}
double blake2b_get_max64() { return 0x1fffffLL; }
bool register_blake2b_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->ntime_index = 10;
gate->nbits_index = 11;
gate->nonce_index = 8;
gate->work_cmp_size = 32;
gate->scanhash = (void*)&scanhash_blake2b;
gate->hash = (void*)&blake2b_hash;
gate->calc_network_diff = (void*)&blake2b_calc_network_diff;
gate->build_stratum_request = (void*)&blake2b_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
gate->build_extraheader = (void*)&blake2b_build_extraheader;
gate->get_new_work = (void*)&blake2b_get_new_work;
gate->get_max64 = (void*)&blake2b_get_max64;
gate->ready_to_mine = (void*)&blake2b_ready_to_mine;
have_gbt = false;
return true;
}

View File

@@ -20,7 +20,7 @@ bool register_blake2s_algo( algo_gate_t* gate )
gate->hash = (void*)&blake2s_hash;
#endif
gate->get_max64 = (void*)&blake2s_get_max64;
gate->optimizations = SSE42_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AVX2_OPT;
return true;
};

View File

@@ -4,7 +4,8 @@
#include <stdint.h>
#include "algo-gate-api.h"
#if defined(__SSE4_2__)
//#if defined(__SSE4_2__)
#if defined(__SSE2__)
#define BLAKE2S_4WAY
#endif
#if defined(__AVX2__)

View File

@@ -17,7 +17,9 @@
#include <string.h>
#include <stdio.h>
#if defined(__SSE4_2__)
//#if defined(__SSE4_2__)
#if defined(__SSE2__)
static const uint32_t blake2s_IV[8] =
{
@@ -57,8 +59,18 @@ int blake2s_4way_init( blake2s_4way_state *S, const uint8_t outlen )
memset( P->personal, 0, sizeof( P->personal ) );
memset( S, 0, sizeof( blake2s_4way_state ) );
for( int i = 0; i < 8; ++i )
S->h[i] = _mm_set1_epi32( blake2s_IV[i] );
S->h[0] = m128_const1_64( 0x6A09E6676A09E667ULL );
S->h[1] = m128_const1_64( 0xBB67AE85BB67AE85ULL );
S->h[2] = m128_const1_64( 0x3C6EF3723C6EF372ULL );
S->h[3] = m128_const1_64( 0xA54FF53AA54FF53AULL );
S->h[4] = m128_const1_64( 0x510E527F510E527FULL );
S->h[5] = m128_const1_64( 0x9B05688C9B05688CULL );
S->h[6] = m128_const1_64( 0x1F83D9AB1F83D9ABULL );
S->h[7] = m128_const1_64( 0x5BE0CD195BE0CD19ULL );
// for( int i = 0; i < 8; ++i )
// S->h[i] = _mm_set1_epi32( blake2s_IV[i] );
uint32_t *p = ( uint32_t * )( P );
@@ -267,8 +279,18 @@ int blake2s_8way_init( blake2s_8way_state *S, const uint8_t outlen )
memset( P->personal, 0, sizeof( P->personal ) );
memset( S, 0, sizeof( blake2s_8way_state ) );
for( int i = 0; i < 8; ++i )
S->h[i] = _mm256_set1_epi32( blake2s_IV[i] );
S->h[0] = m256_const1_64( 0x6A09E6676A09E667ULL );
S->h[1] = m256_const1_64( 0xBB67AE85BB67AE85ULL );
S->h[2] = m256_const1_64( 0x3C6EF3723C6EF372ULL );
S->h[3] = m256_const1_64( 0xA54FF53AA54FF53AULL );
S->h[4] = m256_const1_64( 0x510E527F510E527FULL );
S->h[5] = m256_const1_64( 0x9B05688C9B05688CULL );
S->h[6] = m256_const1_64( 0x1F83D9AB1F83D9ABULL );
S->h[7] = m256_const1_64( 0x5BE0CD195BE0CD19ULL );
// for( int i = 0; i < 8; ++i )
// S->h[i] = _mm256_set1_epi32( blake2s_IV[i] );
uint32_t *p = ( uint32_t * )( P );

View File

@@ -14,7 +14,8 @@
#ifndef __BLAKE2S_HASH_4WAY_H__
#define __BLAKE2S_HASH_4WAY_H__ 1
#if defined(__SSE4_2__)
//#if defined(__SSE4_2__)
#if defined(__SSE2__)
#include "simd-utils.h"

View File

@@ -307,12 +307,12 @@ static const sph_u64 CB[16] = {
#define GB_4WAY(m0, m1, c0, c1, a, b, c, d) do { \
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
_mm256_set_epi64x( c1, c1, c1, c1 ), m0 ), b ), a ); \
_mm256_set1_epi64x( c1 ), m0 ), b ), a ); \
d = mm256_ror_64( _mm256_xor_si256( d, a ), 32 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_ror_64( _mm256_xor_si256( b, c ), 25 ); \
a = _mm256_add_epi64( _mm256_add_epi64( _mm256_xor_si256( \
_mm256_set_epi64x( c0, c0, c0, c0 ), m1 ), b ), a ); \
_mm256_set1_epi64x( c0 ), m1 ), b ), a ); \
d = mm256_ror_64( _mm256_xor_si256( d, a ), 16 ); \
c = _mm256_add_epi64( c, d ); \
b = mm256_ror_64( _mm256_xor_si256( b, c ), 11 ); \
@@ -479,20 +479,20 @@ static const sph_u64 CB[16] = {
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = _mm256_xor_si256( S0, _mm256_set1_epi64x( CB0 ) ); \
V9 = _mm256_xor_si256( S1, _mm256_set1_epi64x( CB1 ) ); \
VA = _mm256_xor_si256( S2, _mm256_set1_epi64x( CB2 ) ); \
VB = _mm256_xor_si256( S3, _mm256_set1_epi64x( CB3 ) ); \
V8 = _mm256_xor_si256( S0, m256_const1_64( CB0 ) ); \
V9 = _mm256_xor_si256( S1, m256_const1_64( CB1 ) ); \
VA = _mm256_xor_si256( S2, m256_const1_64( CB2 ) ); \
VB = _mm256_xor_si256( S3, m256_const1_64( CB3 ) ); \
VC = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
_mm256_set1_epi64x( CB4 ) ); \
m256_const1_64( CB4 ) ); \
VD = _mm256_xor_si256( _mm256_set1_epi64x( T0 ), \
_mm256_set1_epi64x( CB5 ) ); \
m256_const1_64( CB5 ) ); \
VE = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
_mm256_set1_epi64x( CB6 ) ); \
m256_const1_64( CB6 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi64x( T1 ), \
_mm256_set1_epi64x( CB7 ) ); \
shuf_bswap64 = _mm256_set_epi64x( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
m256_const1_64( CB7 ) ); \
shuf_bswap64 = m256_const_64( 0x08090a0b0c0d0e0f, 0x0001020304050607, \
0x08090a0b0c0d0e0f, 0x0001020304050607 ); \
M0 = _mm256_shuffle_epi8( *(buf+ 0), shuf_bswap64 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap64 ); \
M2 = _mm256_shuffle_epi8( *(buf+ 2), shuf_bswap64 ); \
@@ -544,14 +544,14 @@ blake64_4way_init( blake_4way_big_context *sc, const sph_u64 *iv,
const sph_u64 *salt )
{
__m256i zero = m256_zero;
casti_m256i( sc->H, 0 ) = _mm256_set1_epi64x( iv[0] );
casti_m256i( sc->H, 1 ) = _mm256_set1_epi64x( iv[1] );
casti_m256i( sc->H, 2 ) = _mm256_set1_epi64x( iv[2] );
casti_m256i( sc->H, 3 ) = _mm256_set1_epi64x( iv[3] );
casti_m256i( sc->H, 4 ) = _mm256_set1_epi64x( iv[4] );
casti_m256i( sc->H, 5 ) = _mm256_set1_epi64x( iv[5] );
casti_m256i( sc->H, 6 ) = _mm256_set1_epi64x( iv[6] );
casti_m256i( sc->H, 7 ) = _mm256_set1_epi64x( iv[7] );
casti_m256i( sc->H, 0 ) = m256_const1_64( 0x6A09E667F3BCC908 );
casti_m256i( sc->H, 1 ) = m256_const1_64( 0xBB67AE8584CAA73B );
casti_m256i( sc->H, 2 ) = m256_const1_64( 0x3C6EF372FE94F82B );
casti_m256i( sc->H, 3 ) = m256_const1_64( 0xA54FF53A5F1D36F1 );
casti_m256i( sc->H, 4 ) = m256_const1_64( 0x510E527FADE682D1 );
casti_m256i( sc->H, 5 ) = m256_const1_64( 0x9B05688C2B3E6C1F );
casti_m256i( sc->H, 6 ) = m256_const1_64( 0x1F83D9ABFB41BD6B );
casti_m256i( sc->H, 7 ) = m256_const1_64( 0x5BE0CD19137E2179 );
casti_m256i( sc->S, 0 ) = zero;
casti_m256i( sc->S, 1 ) = zero;
@@ -642,11 +642,9 @@ blake64_4way_close( blake_4way_big_context *sc,
memset_zero_256( buf + (ptr>>3) + 1, (104-ptr) >> 3 );
if ( out_size_w64 == 8 )
buf[(104>>3)] = _mm256_or_si256( buf[(104>>3)],
_mm256_set1_epi64x( 0x0100000000000000ULL ) );
*(buf+(112>>3)) = mm256_bswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(buf+(120>>3)) = mm256_bswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
m256_const1_64( 0x0100000000000000ULL ) );
*(buf+(112>>3)) = _mm256_set1_epi64x( bswap_64( th ) );
*(buf+(120>>3)) = _mm256_set1_epi64x( bswap_64( tl ) );
blake64_4way( sc, buf + (ptr>>3), 128 - ptr );
}
@@ -659,11 +657,9 @@ blake64_4way_close( blake_4way_big_context *sc,
sc->T1 = SPH_C64(0xFFFFFFFFFFFFFFFFULL);
memset_zero_256( buf, 112>>3 );
if ( out_size_w64 == 8 )
buf[104>>3] = _mm256_set1_epi64x( 0x0100000000000000ULL );
*(buf+(112>>3)) = mm256_bswap_64(
_mm256_set_epi64x( th, th, th, th ) );
*(buf+(120>>3)) = mm256_bswap_64(
_mm256_set_epi64x( tl, tl, tl, tl ) );
buf[104>>3] = m256_const1_64( 0x0100000000000000ULL );
*(buf+(112>>3)) = _mm256_set1_epi64x( bswap_64( th ) );
*(buf+(120>>3)) = _mm256_set1_epi64x( bswap_64( tl ) );
blake64_4way( sc, buf, 128 );
}

View File

@@ -103,7 +103,6 @@ static void blake2b_compress( sph_blake2b_ctx *ctx, int last )
v[13] ^= ctx->t[1]; // high 64 bits
if (last) // last block flag set ?
v[14] = ~v[14];
for (i = 0; i < 16; i++) // get little-endian words
m[i] = B2B_GET64(&ctx->b[8 * i]);
@@ -184,7 +183,8 @@ void sph_blake2b_final( sph_blake2b_ctx *ctx, void *out )
while (ctx->c < 128) // fill up with zeros
ctx->b[ctx->c++] = 0;
blake2b_compress(ctx, 1); // final block flag = 1
blake2b_compress(ctx, 1); // final block flag = 1
// little endian convert and store
for (i = 0; i < ctx->outlen; i++) {