This commit is contained in:
Jay D Dee
2020-01-26 04:33:39 -05:00
parent 103e6ad36c
commit 88f81fda0b
43 changed files with 861 additions and 1183 deletions

View File

@@ -80,7 +80,6 @@ cpuminer_SOURCES = \
algo/cryptonight/cryptonight-common.c\ algo/cryptonight/cryptonight-common.c\
algo/cryptonight/cryptonight-aesni.c\ algo/cryptonight/cryptonight-aesni.c\
algo/cryptonight/cryptonight.c\ algo/cryptonight/cryptonight.c\
algo/cubehash/sph_cubehash.c \
algo/cubehash/cubehash_sse2.c\ algo/cubehash/cubehash_sse2.c\
algo/cubehash/cube-hash-2way.c \ algo/cubehash/cube-hash-2way.c \
algo/echo/sph_echo.c \ algo/echo/sph_echo.c \
@@ -121,6 +120,8 @@ cpuminer_SOURCES = \
algo/keccak/keccak-hash-4way.c \ algo/keccak/keccak-hash-4way.c \
algo/keccak/keccak-4way.c\ algo/keccak/keccak-4way.c\
algo/keccak/keccak-gate.c \ algo/keccak/keccak-gate.c \
algo/keccak/sha3d-4way.c \
algo/keccak/sha3d.c \
algo/lanehash/lane.c \ algo/lanehash/lane.c \
algo/luffa/sph_luffa.c \ algo/luffa/sph_luffa.c \
algo/luffa/luffa.c \ algo/luffa/luffa.c \
@@ -180,6 +181,7 @@ cpuminer_SOURCES = \
algo/sha/sph_sha2big.c \ algo/sha/sph_sha2big.c \
algo/sha/sha256-hash-4way.c \ algo/sha/sha256-hash-4way.c \
algo/sha/sha512-hash-4way.c \ algo/sha/sha512-hash-4way.c \
algo/sha/hmac-sha256-hash.c \
algo/sha/sha2.c \ algo/sha/sha2.c \
algo/sha/sha256t-gate.c \ algo/sha/sha256t-gate.c \
algo/sha/sha256t-4way.c \ algo/sha/sha256t-4way.c \
@@ -292,12 +294,11 @@ cpuminer_SOURCES = \
algo/x22/x25x.c \ algo/x22/x25x.c \
algo/x22/x25x-4way.c \ algo/x22/x25x-4way.c \
algo/yescrypt/yescrypt.c \ algo/yescrypt/yescrypt.c \
algo/yescrypt/sha256_Y.c \
algo/yescrypt/yescrypt-best.c \ algo/yescrypt/yescrypt-best.c \
algo/yespower/yespower-gate.c \ algo/yespower/yespower-gate.c \
algo/yespower/yespower-blake2b.c \ algo/yespower/yespower-blake2b.c \
algo/yespower/crypto/blake2b-yp.c \ algo/yespower/crypto/blake2b-yp.c \
algo/yespower/sha256_p.c \ algo/yespower/yescrypt-r8g.c \
algo/yespower/yespower-opt.c algo/yespower/yespower-opt.c
disable_flags = disable_flags =

View File

@@ -97,10 +97,10 @@ Supported Algorithms
qubit Qubit qubit Qubit
scrypt scrypt(1024, 1, 1) (default) scrypt scrypt(1024, 1, 1) (default)
scrypt:N scrypt(N, 1, 1) scrypt:N scrypt(N, 1, 1)
scryptjane:nf
sha256d Double SHA-256 sha256d Double SHA-256
sha256q Quad SHA-256, Pyrite (PYE) sha256q Quad SHA-256, Pyrite (PYE)
sha256t Triple SHA-256, Onecoin (OC) sha256t Triple SHA-256, Onecoin (OC)
sha3d Double keccak256 (BSHA3)
shavite3 Shavite3 shavite3 Shavite3
skein Skein+Sha (Skeincoin) skein Skein+Sha (Skeincoin)
skein2 Double Skein (Woodcoin) skein2 Double Skein (Woodcoin)
@@ -134,6 +134,7 @@ Supported Algorithms
xevan Bitsend (BSD) xevan Bitsend (BSD)
yescrypt Globalboost-Y (BSTY) yescrypt Globalboost-Y (BSTY)
yescryptr8 BitZeny (ZNY) yescryptr8 BitZeny (ZNY)
yescryptr8g Koto (KOTO)
yescryptr16 Eli yescryptr16 Eli
yescryptr32 WAVI yescryptr32 WAVI
yespower Cryply yespower Cryply

View File

@@ -65,6 +65,17 @@ If not what makes it happen or not happen?
Change Log Change Log
---------- ----------
v3.11.7
Added yescryptr8g algo fotr KOTO, including support for block version 5.
Added sha3d algo for BSHA3.
Removed memcmp and clean_job checks from get_new_work, now only check job_id.
Small improvement to sha512 and sha256 parallel implementations that don't
use SHA.
v3.11.6 v3.11.6
Fixed CPU temperature regression from v3.11.5. Fixed CPU temperature regression from v3.11.5.

View File

@@ -209,6 +209,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
case ALGO_SHA256D: register_sha256d_algo ( gate ); break; case ALGO_SHA256D: register_sha256d_algo ( gate ); break;
case ALGO_SHA256Q: register_sha256q_algo ( gate ); break; case ALGO_SHA256Q: register_sha256q_algo ( gate ); break;
case ALGO_SHA256T: register_sha256t_algo ( gate ); break; case ALGO_SHA256T: register_sha256t_algo ( gate ); break;
case ALGO_SHA3D: register_sha3d_algo ( gate ); break;
case ALGO_SHAVITE3: register_shavite_algo ( gate ); break; case ALGO_SHAVITE3: register_shavite_algo ( gate ); break;
case ALGO_SKEIN: register_skein_algo ( gate ); break; case ALGO_SKEIN: register_skein_algo ( gate ); break;
case ALGO_SKEIN2: register_skein2_algo ( gate ); break; case ALGO_SKEIN2: register_skein2_algo ( gate ); break;
@@ -247,6 +248,7 @@ bool register_algo_gate( int algo, algo_gate_t *gate )
*/ */
case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break; case ALGO_YESCRYPT: register_yescrypt_algo ( gate ); break;
case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break; case ALGO_YESCRYPTR8: register_yescryptr8_algo ( gate ); break;
case ALGO_YESCRYPTR8G: register_yescryptr8g_algo ( gate ); break;
case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break; case ALGO_YESCRYPTR16: register_yescryptr16_algo ( gate ); break;
case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break; case ALGO_YESCRYPTR32: register_yescryptr32_algo ( gate ); break;
case ALGO_YESPOWER: register_yespower_algo ( gate ); break; case ALGO_YESPOWER: register_yespower_algo ( gate ); break;

View File

@@ -121,54 +121,55 @@ void ( *hash_suw ) ( void*, const void* );
// Allocate thread local buffers and other initialization specific to miner // Allocate thread local buffers and other initialization specific to miner
// threads. // threads.
bool ( *miner_thread_init ) ( int ); bool ( *miner_thread_init ) ( int );
// Generate global blockheader from stratum data. // Generate global blockheader from stratum data.
void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* ); void ( *stratum_gen_work ) ( struct stratum_ctx*, struct work* );
// Get thread local copy of blockheader with unique nonce. // Get thread local copy of blockheader with unique nonce.
void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t*, void ( *get_new_work ) ( struct work*, struct work*, int, uint32_t* );
bool );
// Return pointer to nonce in blockheader. // Return pointer to nonce in blockheader.
uint32_t *( *get_nonceptr ) ( uint32_t* ); uint32_t *( *get_nonceptr ) ( uint32_t* );
// Decode getwork blockheader // Decode getwork blockheader
bool ( *work_decode ) ( const json_t*, struct work* ); bool ( *work_decode ) ( const json_t*, struct work* );
// Extra getwork data // Extra getwork data
void ( *decode_extra_data ) ( struct work*, uint64_t* ); void ( *decode_extra_data ) ( struct work*, uint64_t* );
bool ( *submit_getwork_result ) ( CURL*, struct work* ); bool ( *submit_getwork_result ) ( CURL*, struct work* );
void ( *gen_merkle_root ) ( char*, struct stratum_ctx* ); void ( *gen_merkle_root ) ( char*, struct stratum_ctx* );
// Increment extranonce // Increment extranonce
void ( *build_extraheader ) ( struct work*, struct stratum_ctx* ); void ( *build_extraheader ) ( struct work*, struct stratum_ctx* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t,
unsigned char* );
void ( *build_block_header ) ( struct work*, uint32_t, uint32_t*,
uint32_t*, uint32_t, uint32_t );
// Build mining.submit message // Build mining.submit message
void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* ); void ( *build_stratum_request ) ( char*, struct work*, struct stratum_ctx* );
char* ( *malloc_txs_request ) ( struct work* ); char* ( *malloc_txs_request ) ( struct work* );
// Big or little // Big or little
void ( *set_work_data_endian ) ( struct work* ); void ( *set_work_data_endian ) ( struct work* );
double ( *calc_network_diff ) ( struct work* ); double ( *calc_network_diff ) ( struct work* );
// Wait for first work // Wait for first work
bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int ); bool ( *ready_to_mine ) ( struct work*, struct stratum_ctx*, int );
// Diverge mining threads // Diverge mining threads
bool ( *do_this_thread ) ( int ); bool ( *do_this_thread ) ( int );
// After do_this_thread // After do_this_thread
void ( *resync_threads ) ( struct work* ); void ( *resync_threads ) ( struct work* );
json_t* (*longpoll_rpc_call) ( CURL*, int*, char* ); json_t* (*longpoll_rpc_call) ( CURL*, int*, char* );
bool ( *stratum_handle_response )( json_t* ); bool ( *stratum_handle_response ) ( json_t* );
set_t optimizations; set_t optimizations;
int ( *get_work_data_size ) (); int ( *get_work_data_size ) ();
int ntime_index; int ntime_index;
@@ -225,7 +226,7 @@ uint32_t *std_get_nonceptr( uint32_t *work_data );
uint32_t *jr2_get_nonceptr( uint32_t *work_data ); uint32_t *jr2_get_nonceptr( uint32_t *work_data );
void std_get_new_work( struct work *work, struct work *g_work, int thr_id, void std_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job ); uint32_t* end_nonce_ptr );
void jr2_get_new_work( struct work *work, struct work *g_work, int thr_id, void jr2_get_new_work( struct work *work, struct work *g_work, int thr_id,
uint32_t* end_nonce_ptr ); uint32_t* end_nonce_ptr );
@@ -256,7 +257,8 @@ double std_calc_network_diff( struct work *work );
void std_build_block_header( struct work* g_work, uint32_t version, void std_build_block_header( struct work* g_work, uint32_t version,
uint32_t *prevhash, uint32_t *merkle_root, uint32_t *prevhash, uint32_t *merkle_root,
uint32_t ntime, uint32_t nbits ); uint32_t ntime, uint32_t nbits,
unsigned char *final_sapling_hash );
void std_build_extraheader( struct work *work, struct stratum_ctx *sctx ); void std_build_extraheader( struct work *work, struct stratum_ctx *sctx );

View File

@@ -28,26 +28,28 @@ int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
__m512i *noncev = (__m512i*)vdata + 9; // aligned __m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7]; const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata ); mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do { do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
keccakhash_8way( hash, vdata ); keccakhash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ ) for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] <= Htarg ) if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{ {
extr_lane_8x64( lane_hash, hash, lane, 256 ); extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark ) if ( valid_hash( lane_hash, ptarget ) )
{ {
pdata[19] = n + lane; pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane ); submit_lane_solution( work, lane_hash, mythr, lane );
} }
} }
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8; n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart); } while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
@@ -79,27 +81,28 @@ int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned __m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7]; const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata ); mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do { do {
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
keccakhash_4way( hash, vdata ); keccakhash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ ) for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane<<1 ] <= Htarg ) if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{ {
extr_lane_4x64( lane_hash, hash, lane, 256 ); extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark ) if ( valid_hash( lane_hash, ptarget ))
{ {
pdata[19] = n + lane; pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane ); submit_lane_solution( work, lane_hash, mythr, lane );
} }
} }
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4; n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart); } while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1; *hashes_done = n - first_nonce + 1;

View File

@@ -1,5 +1,9 @@
#include "keccak-gate.h" #include "keccak-gate.h"
#include "sph_keccak.h"
int hard_coded_eb = 1;
// KECCAK
bool register_keccak_algo( algo_gate_t* gate ) bool register_keccak_algo( algo_gate_t* gate )
{ {
@@ -19,6 +23,8 @@ bool register_keccak_algo( algo_gate_t* gate )
return true; return true;
}; };
// KECCAKC
bool register_keccakc_algo( algo_gate_t* gate ) bool register_keccakc_algo( algo_gate_t* gate )
{ {
gate->optimizations = AVX2_OPT | AVX512_OPT; gate->optimizations = AVX2_OPT | AVX512_OPT;
@@ -37,3 +43,50 @@ bool register_keccakc_algo( algo_gate_t* gate )
return true; return true;
}; };
// SHA3D
void sha3d( void *state, const void *input, int len )
{
uint32_t _ALIGN(64) buffer[16], hash[16];
sph_keccak_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, len );
sph_keccak256_close( &ctx_keccak, (void*) buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, (void*) hash );
memcpy(state, hash, 32);
}
void sha3d_gen_merkle_root( char* merkle_root, struct stratum_ctx* sctx )
{
sha3d( merkle_root, sctx->job.coinbase, (int) sctx->job.coinbase_size );
for ( int i = 0; i < sctx->job.merkle_count; i++ )
{
memcpy( merkle_root + 32, sctx->job.merkle[i], 32 );
sha256d( merkle_root, merkle_root, 64 );
}
}
bool register_sha3d_algo( algo_gate_t* gate )
{
hard_coded_eb = 6;
opt_extranonce = false;
gate->optimizations = AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&sha3d_gen_merkle_root;
#if defined (KECCAK_8WAY)
gate->scanhash = (void*)&scanhash_sha3d_8way;
gate->hash = (void*)&sha3d_hash_8way;
#elif defined (KECCAK_4WAY)
gate->scanhash = (void*)&scanhash_sha3d_4way;
gate->hash = (void*)&sha3d_hash_4way;
#else
gate->scanhash = (void*)&scanhash_sha3d;
gate->hash = (void*)&sha3d_hash;
#endif
return true;
};

View File

@@ -10,24 +10,37 @@
#define KECCAK_4WAY 1 #define KECCAK_4WAY 1
#endif #endif
extern int hard_coded_eb;
#if defined(KECCAK_8WAY) #if defined(KECCAK_8WAY)
void keccakhash_8way( void *state, const void *input ); void keccakhash_8way( void *state, const void *input );
int scanhash_keccak_8way( struct work *work, uint32_t max_nonce, int scanhash_keccak_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ); uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_8way( void *state, const void *input );
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(KECCAK_4WAY) #elif defined(KECCAK_4WAY)
void keccakhash_4way( void *state, const void *input ); void keccakhash_4way( void *state, const void *input );
int scanhash_keccak_4way( struct work *work, uint32_t max_nonce, int scanhash_keccak_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ); uint64_t *hashes_done, struct thr_info *mythr );
void sha3d_hash_4way( void *state, const void *input );
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else #else
void keccakhash( void *state, const void *input ); void keccakhash( void *state, const void *input );
int scanhash_keccak( struct work *work, uint32_t max_nonce, int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ); uint64_t *hashes_done, struct thr_info *mythr );
#endif void sha3d_hash( void *state, const void *input );
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif #endif
#endif

View File

@@ -1,6 +1,7 @@
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include "keccak-hash-4way.h" #include "keccak-hash-4way.h"
#include "keccak-gate.h"
static const uint64_t RC[] = { static const uint64_t RC[] = {
0x0000000000000001, 0x0000000000008082, 0x0000000000000001, 0x0000000000008082,
@@ -168,7 +169,7 @@ static void keccak64_8way_close( keccak64_ctx_m512i *kc, void *dst,
size_t j; size_t j;
size_t m512_len = byte_len >> 3; size_t m512_len = byte_len >> 3;
eb = 0x100 >> 8; eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) ) if ( kc->ptr == (lim - 8) )
{ {
const uint64_t t = eb | 0x8000000000000000; const uint64_t t = eb | 0x8000000000000000;
@@ -349,7 +350,7 @@ static void keccak64_close( keccak64_ctx_m256i *kc, void *dst, size_t byte_len,
size_t j; size_t j;
size_t m256_len = byte_len >> 3; size_t m256_len = byte_len >> 3;
eb = 0x100 >> 8; eb = hard_coded_eb;
if ( kc->ptr == (lim - 8) ) if ( kc->ptr == (lim - 8) )
{ {
const uint64_t t = eb | 0x8000000000000000; const uint64_t t = eb | 0x8000000000000000;

View File

@@ -18,36 +18,34 @@ void keccakhash(void *state, const void *input)
memcpy(state, hash, 32); memcpy(state, hash, 32);
} }
int scanhash_keccak( struct work *work, int scanhash_keccak( struct work *work, uint32_t max_nonce,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) uint64_t *hashes_done, struct thr_info *mythr )
{ {
uint32_t *pdata = work->data; uint32_t _ALIGN(64) hash64[8];
uint32_t *ptarget = work->target; uint32_t _ALIGN(64) endiandata[32];
uint32_t n = pdata[19] - 1; uint32_t *pdata = work->data;
const uint32_t first_nonce = pdata[19]; uint32_t *ptarget = work->target;
//const uint32_t Htarg = ptarget[7]; uint32_t n = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
uint32_t _ALIGN(32) hash64[8]; for ( int i=0; i < 19; i++ )
uint32_t endiandata[32]; be32enc( &endiandata[i], pdata[i] );
for (int i=0; i < 19; i++) do {
be32enc(&endiandata[i], pdata[i]); be32enc( &endiandata[19], n );
keccakhash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
do { *hashes_done = n - first_nonce;
pdata[19] = n;
pdata[19] = ++n; return 0;
be32enc(&endiandata[19], n);
keccakhash(hash64, endiandata);
if (((hash64[7]&0xFFFFFF00)==0) &&
fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
} }

126
algo/keccak/sha3d-4way.c Normal file
View File

@@ -0,0 +1,126 @@
#include "keccak-gate.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
#include "keccak-hash-4way.h"
#if defined(KECCAK_8WAY)
void sha3d_hash_8way(void *state, const void *input)
{
uint32_t buffer[16*8] __attribute__ ((aligned (128)));
keccak256_8way_context ctx;
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, input, 80 );
keccak256_8way_close( &ctx, buffer );
keccak256_8way_init( &ctx );
keccak256_8way_update( &ctx, buffer, 32 );
keccak256_8way_close( &ctx, state );
}
int scanhash_sha3d_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*8] __attribute__ ((aligned (128)));
uint32_t hash[16*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]); // 3*16+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ), *noncev );
do {
sha3d_hash_8way( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(KECCAK_4WAY)
void sha3d_hash_4way(void *state, const void *input)
{
uint32_t buffer[16*4] __attribute__ ((aligned (64)));
keccak256_4way_context ctx;
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, input, 80 );
keccak256_4way_close( &ctx, buffer );
keccak256_4way_init( &ctx );
keccak256_4way_update( &ctx, buffer, 32 );
keccak256_4way_close( &ctx, state );
}
int scanhash_sha3d_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t hash[16*4] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash7 = &(hash[25]); // 3*8+1
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do {
sha3d_hash_4way( hash, vdata );
for ( int lane = 0; lane < 4; lane++ )
if unlikely( hash7[ lane<<1 ] <= Htarg && !bench )
{
extr_lane_4x64( lane_hash, hash, lane, 256 );
if ( valid_hash( lane_hash, ptarget ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce;
return 0;
}
#endif

50
algo/keccak/sha3d.c Normal file
View File

@@ -0,0 +1,50 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include "sph_keccak.h"
void sha3d_hash(void *state, const void *input)
{
uint32_t buffer[16];
sph_keccak256_context ctx_keccak;
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, input, 80 );
sph_keccak256_close( &ctx_keccak, buffer );
sph_keccak256_init( &ctx_keccak );
sph_keccak256 ( &ctx_keccak, buffer, 32 );
sph_keccak256_close( &ctx_keccak, state );
}
int scanhash_sha3d( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[32];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
for ( int i=0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
do {
be32enc( &endiandata[19], n );
sha3d_hash( hash64, endiandata );
if ( valid_hash( hash64, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < last_nonce && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -32,8 +32,8 @@
#include <stddef.h> #include <stddef.h>
#include <string.h> #include <string.h>
#include "sph_keccak.h" #include "sph_keccak.h"
#include "keccak-gate.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C"{ extern "C"{
@@ -1616,7 +1616,7 @@ keccak_core(sph_keccak_context *kc, const void *data, size_t len, size_t lim)
} u; \ } u; \
size_t j; \ size_t j; \
\ \
eb = (0x100 | (ub & 0xFF)) >> (8 - n); \ eb = hard_coded_eb; \
if (kc->ptr == (lim - 1)) { \ if (kc->ptr == (lim - 1)) { \
if (n == 7) { \ if (n == 7) { \
u.tmp[0] = eb; \ u.tmp[0] = eb; \

View File

@@ -263,37 +263,31 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce; uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 16; const uint32_t last_nonce = max_nonce - 16;
const uint32_t Htarg = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 19; // aligned __m512i *noncev = (__m512i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark ) if ( bench ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm512_bswap32_intrlv80_16x32( vdata, pdata ); mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
blake256_16way_init( &allium_16way_ctx.blake ); blake256_16way_init( &allium_16way_ctx.blake );
blake256_16way_update( &allium_16way_ctx.blake, vdata, 64 ); blake256_16way_update( &allium_16way_ctx.blake, vdata, 64 );
do { do {
*noncev = mm512_bswap_32( _mm512_set_epi32( n+15, n+14, n+13, n+12,
n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4,
n+ 3, n+ 2, n +1, n ) );
allium_16way_hash( hash, vdata ); allium_16way_hash( hash, vdata );
pdata[19] = n;
for ( int lane = 0; lane < 16; lane++ ) if ( (hash+(lane<<3))[7] <= Htarg ) for ( int lane = 0; lane < 16; lane++ )
if unlikely( valid_hash( hash+(lane<<3), ptarget ) && !bench )
{ {
if ( fulltest( hash+(lane<<3), ptarget ) && !opt_benchmark ) pdata[19] = bswap_32( n + lane );
{ submit_lane_solution( work, hash+(lane<<3), mythr, lane );
pdata[19] = n + lane;
submit_lane_solution( work, hash+(lane<<3), mythr, lane );
}
} }
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16; n += 16;
} while ( (n < last_nonce) && !work_restart[thr_id].restart); } while ( (n < last_nonce) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce; *hashes_done = n - first_nonce;
return 0; return 0;
} }
@@ -433,14 +427,10 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
const uint32_t first_nonce = pdata[19]; const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8; const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce; uint32_t n = first_nonce;
const uint64_t Htarg = ptarget[3];
__m256i *noncev = (__m256i*)vdata + 19; // aligned __m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id; const int thr_id = mythr->id;
const bool bench = opt_benchmark; const bool bench = opt_benchmark;
if unlikely( bench )
( (uint32_t*)ptarget )[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata ); mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ); *noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
@@ -453,14 +443,10 @@ int scanhash_allium_8way( struct work *work, uint32_t max_nonce,
for ( int lane = 0; lane < 8; lane++ ) for ( int lane = 0; lane < 8; lane++ )
{ {
const uint64_t *lane_hash = hash + (lane<<2); const uint64_t *lane_hash = hash + (lane<<2);
if unlikely( lane_hash[3] <= Htarg ) if unlikely( valid_hash( lane_hash, ptarget ) && !bench )
{
if likely( ( lane_hash[3] < Htarg && !bench )
|| valid_hash( lane_hash, ptarget ) )
{ {
pdata[19] = bswap_32( n + lane ); pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane ); submit_lane_solution( work, lane_hash, mythr, lane );
}
} }
} }
n += 8; n += 8;

View File

@@ -220,7 +220,7 @@ void phi2_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
// Assemble block header // Assemble block header
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ), algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree, (uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) ); le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits), NULL );
for ( t = 0; t < 16; t++ ) for ( t = 0; t < 16; t++ )
g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t]; g_work->data[ 20+t ] = ((uint32_t*)sctx->job.extra)[t];
} }

View File

@@ -154,14 +154,13 @@ int scanhash_zr5( struct work *work, uint32_t max_nonce,
} }
void zr5_get_new_work( struct work* work, struct work* g_work, int thr_id, void zr5_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job ) uint32_t* end_nonce_ptr )
{ {
// ignore POK in first word // ignore POK in first word
// const int nonce_i = 19;
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t) const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data ); uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz ) if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) ) ) || ( *nonceptr >= *end_nonce_ptr ) )
{ {
work_free( work ); work_free( work );
work_copy( work, g_work ); work_copy( work, g_work );

View File

@@ -28,46 +28,10 @@
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#include "simd-utils.h"
#include "sysendian.h" #include "hmac-sha256-hash.h"
#include "sha256_p.h"
#include "compat.h" #include "compat.h"
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
*/
/** /**
* SHA256_Buf(in, len, digest): * SHA256_Buf(in, len, digest):
* Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}. * Compute the SHA256 hash of ${len} bytes from ${in} and write it to ${digest}.
@@ -76,9 +40,9 @@ void
SHA256_Buf( const void * in, size_t len, uint8_t digest[32] ) SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
{ {
SHA256_CTX ctx; SHA256_CTX ctx;
SHA256_Init( &ctx ); SHA256_Init( &ctx );
SHA256_Update( &ctx, in, len ); SHA256_Update( &ctx, in, len );
SHA256_Final( digest, &ctx ); SHA256_Final( digest, &ctx );
} }
/** /**
@@ -87,19 +51,18 @@ SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
* length ${Klen}, and write the result to ${digest}. * length ${Klen}, and write the result to ${digest}.
*/ */
void void
HMAC_SHA256_Buf(const void * K, size_t Klen, const void * in, size_t len, HMAC_SHA256_Buf( const void *K, size_t Klen, const void *in, size_t len,
uint8_t digest[32]) uint8_t digest[32])
{ {
HMAC_SHA256_CTX ctx; HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init( &ctx, K, Klen );
HMAC_SHA256_Init( &ctx, K, Klen ); HMAC_SHA256_Update( &ctx, in, len );
HMAC_SHA256_Update( &ctx, in, len ); HMAC_SHA256_Final( digest, &ctx );
HMAC_SHA256_Final( digest, &ctx );
} }
/* Initialize an HMAC-SHA256 operation with the given key. */ /* Initialize an HMAC-SHA256 operation with the given key. */
void void
HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen ) HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
{ {
unsigned char pad[64]; unsigned char pad[64];
unsigned char khash[32]; unsigned char khash[32];
@@ -107,7 +70,8 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
size_t i; size_t i;
/* If Klen > 64, the key is really SHA256(K). */ /* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) { if ( Klen > 64 )
{
SHA256_Init( &ctx->ictx ); SHA256_Init( &ctx->ictx );
SHA256_Update( &ctx->ictx, K, Klen ); SHA256_Update( &ctx->ictx, K, Klen );
SHA256_Final( khash, &ctx->ictx ); SHA256_Final( khash, &ctx->ictx );
@@ -116,7 +80,7 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
} }
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init( &ctx->ictx ); SHA256_Init( &ctx->ictx );
memset( pad, 0x36, 64 ); memset( pad, 0x36, 64 );
for ( i = 0; i < Klen; i++ ) for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i]; pad[i] ^= K[i];
@@ -128,23 +92,19 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen )
for ( i = 0; i < Klen; i++ ) for ( i = 0; i < Klen; i++ )
pad[i] ^= K[i]; pad[i] ^= K[i];
SHA256_Update( &ctx->octx, pad, 64 ); SHA256_Update( &ctx->octx, pad, 64 );
/* Clean the stack. */
//memset(khash, 0, 32);
} }
/* Add bytes to the HMAC-SHA256 operation. */ /* Add bytes to the HMAC-SHA256 operation. */
void void
HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) HMAC_SHA256_Update( HMAC_SHA256_CTX *ctx, const void *in, size_t len )
{ {
/* Feed data to the inner SHA256 operation. */ /* Feed data to the inner SHA256 operation. */
SHA256_Update( &ctx->ictx, in, len ); SHA256_Update( &ctx->ictx, in, len );
} }
/* Finish an HMAC-SHA256 operation. */ /* Finish an HMAC-SHA256 operation. */
void void
HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx ) HMAC_SHA256_Final( unsigned char digest[32], HMAC_SHA256_CTX *ctx )
{ {
unsigned char ihash[32]; unsigned char ihash[32];
@@ -156,9 +116,6 @@ HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
/* Finish the outer SHA256 operation. */ /* Finish the outer SHA256 operation. */
SHA256_Final( digest, &ctx->octx ); SHA256_Final( digest, &ctx->octx );
/* Clean the stack. */
//memset(ihash, 0, 32);
} }
/** /**
@@ -167,52 +124,51 @@ HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx )
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/ */
void void
PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen )
{ {
HMAC_SHA256_CTX PShctx, hctx; HMAC_SHA256_CTX PShctx, hctx;
uint8_t _ALIGN(128) T[32]; uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32]; uint8_t _ALIGN(128) U[32];
uint8_t ivec[4]; uint32_t ivec;
size_t i, clen; size_t i, clen;
uint64_t j; uint64_t j;
int k; int k;
/* Compute HMAC state after processing P and S. */ /* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init(&PShctx, passwd, passwdlen); HMAC_SHA256_Init( &PShctx, passwd, passwdlen );
HMAC_SHA256_Update(&PShctx, salt, saltlen); HMAC_SHA256_Update( &PShctx, salt, saltlen );
/* Iterate through the blocks. */ /* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) { for ( i = 0; i * 32 < dkLen; i++ )
{
/* Generate INT(i + 1). */ /* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1)); ivec = bswap_32( i+1 );
/* Compute U_1 = PRF(P, S || INT(i)). */ /* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); memcpy( &hctx, &PShctx, sizeof(HMAC_SHA256_CTX) );
HMAC_SHA256_Update(&hctx, ivec, 4); HMAC_SHA256_Update( &hctx, &ivec, 4 );
HMAC_SHA256_Final(U, &hctx); HMAC_SHA256_Final( U, &hctx );
/* T_i = U_1 ... */ /* T_i = U_1 ... */
memcpy(T, U, 32); memcpy( T, U, 32 );
for (j = 2; j <= c; j++) { for ( j = 2; j <= c; j++ )
{
/* Compute U_j. */ /* Compute U_j. */
HMAC_SHA256_Init(&hctx, passwd, passwdlen); HMAC_SHA256_Init( &hctx, passwd, passwdlen );
HMAC_SHA256_Update(&hctx, U, 32); HMAC_SHA256_Update( &hctx, U, 32 );
HMAC_SHA256_Final(U, &hctx); HMAC_SHA256_Final( U, &hctx );
/* ... xor U_j ... */ /* ... xor U_j ... */
for (k = 0; k < 32; k++) for ( k = 0; k < 32; k++ )
T[k] ^= U[k]; T[k] ^= U[k];
} }
/* Copy as many bytes as necessary into buf. */ /* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32; clen = dkLen - i * 32;
if (clen > 32) if ( clen > 32 )
clen = 32; clen = 32;
memcpy(&buf[i * 32], T, clen); memcpy( &buf[i * 32], T, clen );
} }
/* Clean PShctx, since we never called _Final on it. */
//memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
} }

View File

@@ -26,23 +26,24 @@
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $ * $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/ */
#ifndef _SHA256_H_ #ifndef HMAC_SHA256_H__
#define _SHA256_H_ #define HMAC_SHA256_H__
#include <sys/types.h> #include <sys/types.h>
#include <stdint.h> #include <stdint.h>
#include <openssl/sha.h> #include <openssl/sha.h>
typedef struct HMAC_SHA256Context { typedef struct HMAC_SHA256Context
SHA256_CTX ictx; {
SHA256_CTX octx; SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX; } HMAC_SHA256_CTX;
void SHA256_Buf( const void * in, size_t len, uint8_t digest[32] ); void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void HMAC_SHA256_Init( HMAC_SHA256_CTX *, const void *, size_t ); void HMAC_SHA256_Init( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Update( HMAC_SHA256_CTX *, const void *, size_t ); void HMAC_SHA256_Update( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Final( unsigned char [32], HMAC_SHA256_CTX * ); void HMAC_SHA256_Final( unsigned char [32], HMAC_SHA256_CTX * );
void HMAC_SHA256_Buf( const void * K, size_t Klen, const void * in, void HMAC_SHA256_Buf( const void *, size_t Klen, const void *,
size_t len, uint8_t digest[32] ); size_t len, uint8_t digest[32] );
/** /**
@@ -53,4 +54,4 @@ void HMAC_SHA256_Buf( const void * K, size_t Klen, const void * in,
void PBKDF2_SHA256( const uint8_t *, size_t, const uint8_t *, size_t, void PBKDF2_SHA256( const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t); uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */ #endif // HMAC_SHA256_H__

View File

@@ -94,6 +94,37 @@ static const uint32_t K256[64] =
_mm_xor_si128( _mm_xor_si128( \ _mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) ) mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) )
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i K = _mm_set1_epi32( K256[( (j)+(i) )] ); \
__m128i T1 = mm128_ror_32( E, 14 ); \
__m128i T2 = mm128_ror_32( A, 9 ); \
__m128i T3 = _mm_xor_si128( F, G ); \
__m128i T4 = _mm_or_si128( A, B ); \
__m128i T5 = _mm_and_si128( A, B ); \
K = _mm_add_epi32( K, W[i] ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T3 = _mm_and_si128( T3, E ); \
T4 = _mm_and_si128( T4, C ); \
K = _mm_add_epi32( H, K ); \
T1 = mm128_ror_32( T1, 5 ); \
T2 = mm128_ror_32( T2, 11 ); \
T3 = _mm_xor_si128( T3, G ); \
T4 = _mm_or_si128( T4, T5 ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T1 = mm128_ror_32( T1, 6 ); \
T2 = mm128_ror_32( T2, 2 ); \
T1 = _mm_add_epi32( T1, T3 ); \
T2 = _mm_add_epi32( T2, T4 ); \
T1 = _mm_add_epi32( T1, K ); \
H = _mm_add_epi32( T1, T2 ); \
D = _mm_add_epi32( D, T1 ); \
} while (0)
/*
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \ #define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \ do { \
__m128i T1, T2; \ __m128i T1, T2; \
@@ -104,6 +135,8 @@ do { \
D = _mm_add_epi32( D, T1 ); \ D = _mm_add_epi32( D, T1 ); \
H = _mm_add_epi32( T1, T2 ); \ H = _mm_add_epi32( T1, T2 ); \
} while (0) } while (0)
*/
static void static void
sha256_4way_round( sha256_4way_context *ctx, __m128i *in, __m128i r[8] ) sha256_4way_round( sha256_4way_context *ctx, __m128i *in, __m128i r[8] )

View File

@@ -319,7 +319,7 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
// SHA-512 4 way 64 bit // SHA-512 4 way 64 bit
/*
#define CH(X, Y, Z) \ #define CH(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z ) _mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
@@ -327,6 +327,15 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
_mm256_or_si256( _mm256_and_si256( X, Y ), \ _mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) ) _mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
#define BSG5_0(x) \
mm256_ror_64( _mm256_xor_si256( mm256_ror_64( \
_mm256_xor_si256( mm256_ror_64( x, 5 ), x ), 6 ), x ), 28 )
#define BSG5_1(x) \
mm256_ror_64( _mm256_xor_si256( mm256_ror_64( \
_mm256_xor_si256( mm256_ror_64( x, 23 ), x ), 4 ), x ), 14 )
*/
/*
#define BSG5_0(x) \ #define BSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \ _mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 28), mm256_ror_64(x, 34) ), mm256_ror_64(x, 39) ) mm256_ror_64(x, 28), mm256_ror_64(x, 34) ), mm256_ror_64(x, 39) )
@@ -334,7 +343,8 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
#define BSG5_1(x) \ #define BSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \ _mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 14), mm256_ror_64(x, 18) ), mm256_ror_64(x, 41) ) mm256_ror_64(x, 14), mm256_ror_64(x, 18) ), mm256_ror_64(x, 41) )
*/
/*
#define SSG5_0(x) \ #define SSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \ _mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 1), mm256_ror_64(x, 8) ), _mm256_srli_epi64(x, 7) ) mm256_ror_64(x, 1), mm256_ror_64(x, 8) ), _mm256_srli_epi64(x, 7) )
@@ -342,7 +352,7 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
#define SSG5_1(x) \ #define SSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \ _mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 19), mm256_ror_64(x, 61) ), _mm256_srli_epi64(x, 6) ) mm256_ror_64(x, 19), mm256_ror_64(x, 61) ), _mm256_srli_epi64(x, 6) )
*/
// Interleave SSG0 & SSG1 for better throughput. // Interleave SSG0 & SSG1 for better throughput.
// return ssg0(w0) + ssg1(w1) // return ssg0(w0) + ssg1(w1)
static inline __m256i ssg512_add( __m256i w0, __m256i w1 ) static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
@@ -361,7 +371,7 @@ static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
return _mm256_add_epi64( w0a, w1a ); return _mm256_add_epi64( w0a, w1a );
} }
/*
#define SSG512x2_0( w0, w1, i ) do \ #define SSG512x2_0( w0, w1, i ) do \
{ \ { \
__m256i X0a, X1a, X0b, X1b; \ __m256i X0a, X1a, X0b, X1b; \
@@ -391,7 +401,51 @@ static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
w0 = _mm256_xor_si256( X0a, X0b ); \ w0 = _mm256_xor_si256( X0a, X0b ); \
w1 = _mm256_xor_si256( X1a, X1b ); \ w1 = _mm256_xor_si256( X1a, X1b ); \
} while(0) } while(0)
*/
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i K = _mm256_set1_epi64x( K512[ i ] ); \
__m256i T1 = mm256_ror_64( E, 23 ); \
__m256i T2 = mm256_ror_64( A, 5 ); \
__m256i T3 = _mm256_xor_si256( F, G ); \
__m256i T4 = _mm256_or_si256( A, B ); \
__m256i T5 = _mm256_and_si256( A, B ); \
K = _mm256_add_epi64( K, W[i] ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T3 = _mm256_and_si256( T3, E ); \
T4 = _mm256_and_si256( T4, C ); \
K = _mm256_add_epi64( H, K ); \
T1 = mm256_ror_64( T1, 4 ); \
T2 = mm256_ror_64( T2, 6 ); \
T3 = _mm256_xor_si256( T3, G ); \
T4 = _mm256_or_si256( T4, T5 ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T1 = mm256_ror_64( T1, 14 ); \
T2 = mm256_ror_64( T2, 28 ); \
T1 = _mm256_add_epi64( T1, T3 ); \
T2 = _mm256_add_epi64( T2, T4 ); \
T1 = _mm256_add_epi64( T1, K ); \
H = _mm256_add_epi64( T1, T2 ); \
D = _mm256_add_epi64( D, T1 ); \
} while (0)
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i K = _mm256_add_epi64( W[i], _mm256_set1_epi64x( K512[ i ] ) ); \
__m256i T1 = BSG5_1(E); \
__m256i T2 = BSG5_0(A); \
T1 = mm256_add4_64( T1, H, CH(E, F, G), K ); \
T2 = _mm256_add_epi64( T2, MAJ(A, B, C) ); \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
*/
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \ #define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \ do { \
__m256i T1, T2; \ __m256i T1, T2; \
@@ -402,7 +456,7 @@ do { \
D = _mm256_add_epi64( D, T1 ); \ D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \ H = _mm256_add_epi64( T1, T2 ); \
} while (0) } while (0)
*/
static void static void
sha512_4way_round( sha512_4way_context *ctx, __m256i *in, __m256i r[8] ) sha512_4way_round( sha512_4way_context *ctx, __m256i *in, __m256i r[8] )

View File

@@ -214,14 +214,14 @@ int scanhash_drop( struct work *work, uint32_t max_nonce,
} }
void drop_get_new_work( struct work* work, struct work* g_work, int thr_id, void drop_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr, bool clean_job ) uint32_t* end_nonce_ptr )
{ {
// ignore POK in first word // ignore POK in first word
// const int nonce_i = 19; // const int nonce_i = 19;
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t) const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data ); uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz ) if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
&& ( clean_job || ( *nonceptr >= *end_nonce_ptr ) ) ) || ( *nonceptr >= *end_nonce_ptr ) )
{ {
work_free( work ); work_free( work );
work_copy( work, g_work ); work_copy( work, g_work );

View File

@@ -299,25 +299,28 @@ int scanhash_x17_8way( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce; uint32_t n = first_nonce;
const int thr_id = mythr->id; const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7]; const uint32_t Htarg = ptarget[7];
const bool bench = opt_benchmark;
mm512_bswap32_intrlv80_8x64( vdata, pdata ); mm512_bswap32_intrlv80_8x64( vdata, pdata );
*noncev = mm512_intrlv_blend_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do do
{ {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x17_8way_hash( hash, vdata ); x17_8way_hash( hash, vdata );
for ( int lane = 0; lane < 8; lane++ ) for ( int lane = 0; lane < 8; lane++ )
if unlikely( ( hash7[ lane ] <= Htarg ) ) if unlikely( ( hash7[ lane ] <= Htarg ) && !bench )
{ {
extr_lane_8x32( lane_hash, hash, lane, 256 ); extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) ) if likely( valid_hash( lane_hash, ptarget ) )
{ {
pdata[19] = n + lane; pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane ); submit_lane_solution( work, lane_hash, mythr, lane );
} }
} }
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8; n += 8;
} while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) ); } while ( likely( ( n < last_nonce ) && !work_restart[thr_id].restart ) );
@@ -496,7 +499,7 @@ int scanhash_x17_4way( struct work *work, uint32_t max_nonce,
if ( unlikely( hash7[ lane ] <= Htarg && !bench ) ) if ( unlikely( hash7[ lane ] <= Htarg && !bench ) )
{ {
extr_lane_4x32( lane_hash, hash, lane, 256 ); extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( ( hash7[ lane ] < Htarg ) || valid_hash( lane_hash, ptarget ) ) if ( valid_hash( lane_hash, ptarget ) )
{ {
pdata[19] = bswap_32( n + lane ); pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane ); submit_lane_solution( work, lane_hash, mythr, lane );

View File

@@ -1,409 +0,0 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256_Y.h"
#include "compat.h"
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform_Y(uint32_t * state, const unsigned char block[64])
{
uint32_t _ALIGN(128) W[64], S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
#if 0
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
#endif
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad_Y(SHA256_CTX_Y * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256_Update_Y(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
SHA256_Update_Y(ctx, len, 8);
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void
SHA256_Init_Y(SHA256_CTX_Y * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void
SHA256_Update_Y(SHA256_CTX_Y * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform_Y(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform_Y(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
SHA256_Final_Y(unsigned char digest[32], SHA256_CTX_Y * ctx)
{
/* Add padding */
SHA256_Pad_Y(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
HMAC_SHA256_Init_Y(HMAC_SHA256_CTX_Y * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
SHA256_Init(&ctx->ictx);
SHA256_Update(&ctx->ictx, K, Klen);
SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
//memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
HMAC_SHA256_Update_Y(HMAC_SHA256_CTX_Y * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final_Y(unsigned char digest[32], HMAC_SHA256_CTX_Y * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
//memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256_Y(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX_Y PShctx, hctx;
uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32];
uint8_t ivec[4];
size_t i, clen;
uint64_t j;
int k;
/* Compute HMAC state after processing P and S. */
HMAC_SHA256_Init_Y(&PShctx, passwd, passwdlen);
HMAC_SHA256_Update_Y(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX_Y));
HMAC_SHA256_Update_Y(&hctx, ivec, 4);
HMAC_SHA256_Final_Y(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
HMAC_SHA256_Init_Y(&hctx, passwd, passwdlen);
HMAC_SHA256_Update_Y(&hctx, U, 32);
HMAC_SHA256_Final_Y(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
//memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX_Y));
}

View File

@@ -1,124 +0,0 @@
/*-
* Copyright 2007-2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifndef _SYSENDIAN_H_
#define _SYSENDIAN_H_
/* If we don't have be64enc, the <sys/endian.h> we have isn't usable. */
#if !HAVE_DECL_BE64ENC
#undef HAVE_SYS_ENDIAN_H
#endif
#ifdef HAVE_SYS_ENDIAN_H
#include <sys/endian.h>
#else
#include <stdint.h>
static __inline uint64_t
be64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) +
((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) +
((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) +
((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56));
}
static __inline void
be64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[7] = x & 0xff;
p[6] = (x >> 8) & 0xff;
p[5] = (x >> 16) & 0xff;
p[4] = (x >> 24) & 0xff;
p[3] = (x >> 32) & 0xff;
p[2] = (x >> 40) & 0xff;
p[1] = (x >> 48) & 0xff;
p[0] = (x >> 56) & 0xff;
}
static __inline uint64_t
le64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) +
((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) +
((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) +
((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56));
}
static __inline void
le64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
p[4] = (x >> 32) & 0xff;
p[5] = (x >> 40) & 0xff;
p[6] = (x >> 48) & 0xff;
p[7] = (x >> 56) & 0xff;
}
static __inline uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static __inline void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
#endif /* !HAVE_SYS_ENDIAN_H */
#endif /* !_SYSENDIAN_H_ */

View File

@@ -48,9 +48,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "sha256_Y.h" #include "algo/sha/hmac-sha256-hash.h"
#include "sysendian.h"
#include "yescrypt.h" #include "yescrypt.h"
#include "yescrypt-platform.h" #include "yescrypt-platform.h"
@@ -1312,7 +1310,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
} }
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
PBKDF2_SHA256_Y(passwd, passwdlen, salt, saltlen, 1, B, B_size); PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, B_size);
if (t || flags) if (t || flags)
memcpy(sha256, B, sizeof(sha256)); memcpy(sha256, B, sizeof(sha256));
@@ -1342,7 +1340,7 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
} }
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
PBKDF2_SHA256_Y(passwd, passwdlen, B, B_size, 1, buf, buflen); PBKDF2_SHA256(passwd, passwdlen, B, B_size, 1, buf, buflen);
/* /*
* Except when computing classic scrypt, allow all computation so far * Except when computing classic scrypt, allow all computation so far
@@ -1354,14 +1352,14 @@ yescrypt_kdf(const yescrypt_shared_t * shared, yescrypt_local_t * local,
if ((t || flags) && buflen == sizeof(sha256)) { if ((t || flags) && buflen == sizeof(sha256)) {
/* Compute ClientKey */ /* Compute ClientKey */
{ {
HMAC_SHA256_CTX_Y ctx; HMAC_SHA256_CTX ctx;
HMAC_SHA256_Init_Y(&ctx, buf, buflen); HMAC_SHA256_Init(&ctx, buf, buflen);
if ( yescrypt_client_key ) if ( yescrypt_client_key )
HMAC_SHA256_Update_Y( &ctx, (uint8_t*)yescrypt_client_key, HMAC_SHA256_Update( &ctx, (uint8_t*)yescrypt_client_key,
yescrypt_client_key_len ); yescrypt_client_key_len );
else else
HMAC_SHA256_Update_Y( &ctx, salt, saltlen ); HMAC_SHA256_Update( &ctx, salt, saltlen );
HMAC_SHA256_Final_Y(sha256, &ctx); HMAC_SHA256_Final(sha256, &ctx);
} }
/* Compute StoredKey */ /* Compute StoredKey */
{ {

View File

@@ -25,7 +25,7 @@
#include "compat.h" #include "compat.h"
#include "yescrypt.h" #include "yescrypt.h"
#include "sha256_Y.h" #include "algo/sha/hmac-sha256-hash.h"
#include "algo-gate-api.h" #include "algo-gate-api.h"
#define BYTES2CHARS(bytes) \ #define BYTES2CHARS(bytes) \
@@ -385,35 +385,30 @@ void yescrypthash(void *output, const void *input)
int scanhash_yescrypt( struct work *work, uint32_t max_nonce, int scanhash_yescrypt( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ) uint64_t *hashes_done, struct thr_info *mythr )
{ {
uint32_t _ALIGN(64) vhash[8]; uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) endiandata[20]; uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data; uint32_t *pdata = work->data;
uint32_t *ptarget = work->target; uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7]; for ( int k = 0; k < 19; k++ )
const uint32_t first_nonce = pdata[19]; be32enc( &endiandata[k], pdata[k] );
uint32_t n = first_nonce; endiandata[19] = n;
int thr_id = mythr->id; // thr_id arg is deprecated do {
yescrypt_hash((char*) endiandata, (char*) vhash, 80);
for (int k = 0; k < 19; k++) if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
be32enc(&endiandata[k], pdata[k]); {
be32enc( pdata+19, n );
do { submit_solution( work, vhash, mythr );
be32enc(&endiandata[19], n); }
yescrypt_hash((char*) endiandata, (char*) vhash, 80); endiandata[19] = ++n;
if (vhash[7] <= Htarg && fulltest(vhash, ptarget ) } while ( n < last_nonce && !work_restart[thr_id].restart );
&& !opt_benchmark ) *hashes_done = n - first_nonce;
{ pdata[19] = n;
pdata[19] = n; return 0;
submit_solution( work, vhash, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
} }
void yescrypt_gate_base(algo_gate_t *gate ) void yescrypt_gate_base(algo_gate_t *gate )

View File

@@ -30,9 +30,8 @@
#include <stdlib.h> #include <stdlib.h>
#include <stdint.h> #include <stdint.h>
#include <string.h> #include <string.h>
#include "simd-utils.h"
#include <algo/yespower/crypto/sph_types.h> #include <algo/yespower/crypto/sph_types.h>
#include <algo/yespower/utils/sysendian.h>
#include "blake2b-yp.h" #include "blake2b-yp.h"
// Cyclic right rotation. // Cyclic right rotation.
@@ -272,7 +271,7 @@ void pbkdf2_blake2b_yp(const uint8_t * passwd, size_t passwdlen, const uint8_t *
{ {
hmac_yp_ctx PShctx, hctx; hmac_yp_ctx PShctx, hctx;
size_t i; size_t i;
uint8_t ivec[4]; uint32_t ivec;
uint8_t U[32]; uint8_t U[32];
uint8_t T[32]; uint8_t T[32];
uint64_t j; uint64_t j;
@@ -286,11 +285,11 @@ void pbkdf2_blake2b_yp(const uint8_t * passwd, size_t passwdlen, const uint8_t *
/* Iterate through the blocks. */ /* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) { for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */ /* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1)); ivec = bswap_32( i+1 );
/* Compute U_1 = PRF(P, S || INT(i)). */ /* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(hmac_yp_ctx)); memcpy(&hctx, &PShctx, sizeof(hmac_yp_ctx));
hmac_blake2b_yp_update(&hctx, ivec, 4); hmac_blake2b_yp_update(&hctx, &ivec, 4);
hmac_blake2b_yp_final(&hctx, U); hmac_blake2b_yp_final(&hctx, U);
/* T_i = U_1 ... */ /* T_i = U_1 ... */

View File

@@ -1 +0,0 @@
#define insecure_memzero(buf, len) /* empty */

View File

@@ -1,94 +0,0 @@
/*-
* Copyright 2007-2014 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SYSENDIAN_H_
#define _SYSENDIAN_H_
#include <stdint.h>
/* Avoid namespace collisions with BSD <sys/endian.h>. */
#define be32dec libcperciva_be32dec
#define be32enc libcperciva_be32enc
#define be64enc libcperciva_be64enc
#define le32dec libcperciva_le32dec
#define le32enc libcperciva_le32enc
static inline uint32_t
be32dec(const void * pp)
{
const uint8_t * p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void
be32enc(void * pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline void
be64enc(void * pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[7] = x & 0xff;
p[6] = (x >> 8) & 0xff;
p[5] = (x >> 16) & 0xff;
p[4] = (x >> 24) & 0xff;
p[3] = (x >> 32) & 0xff;
p[2] = (x >> 40) & 0xff;
p[1] = (x >> 48) & 0xff;
p[0] = (x >> 56) & 0xff;
}
static inline uint32_t
le32dec(const void * pp)
{
const uint8_t * p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void
le32enc(void * pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
#endif /* !_SYSENDIAN_H_ */

View File

@@ -1 +0,0 @@
#define insecure_memzero(buf, len) /* empty */

View File

@@ -1,94 +0,0 @@
/*-
* Copyright 2007-2014 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _SYSENDIAN_H_
#define _SYSENDIAN_H_
#include <stdint.h>
/* Avoid namespace collisions with BSD <sys/endian.h>. */
#define be32dec libcperciva_be32dec
#define be32enc libcperciva_be32enc
#define be64enc libcperciva_be64enc
#define le32dec libcperciva_le32dec
#define le32enc libcperciva_le32enc
static inline uint32_t
be32dec(const void * pp)
{
const uint8_t * p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void
be32enc(void * pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline void
be64enc(void * pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[7] = x & 0xff;
p[6] = (x >> 8) & 0xff;
p[5] = (x >> 16) & 0xff;
p[4] = (x >> 24) & 0xff;
p[3] = (x >> 32) & 0xff;
p[2] = (x >> 40) & 0xff;
p[1] = (x >> 48) & 0xff;
p[0] = (x >> 56) & 0xff;
}
static inline uint32_t
le32dec(const void * pp)
{
const uint8_t * p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void
le32enc(void * pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
#endif /* !_SYSENDIAN_H_ */

View File

@@ -0,0 +1,80 @@
/*-
* Copyright 2013-2018 Alexander Peslyak
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cpuminer-config.h"
#include "miner.h"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "yescrypt-r8g.h"
int scanhash_yespower_r8g( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint64_t hash[4] __attribute__((aligned(64)));
uint32_t endiandata[32];
uint32_t *pdata = work->data;
const uint64_t *ptarget = (const uint64_t*)work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id;
yespower_params_t params =
{
.version = YESPOWER_0_5,
.N = 2048,
.r = 8,
.pers = (const uint8_t *)endiandata,
.perslen = work->sapling ? 112 : 80,
};
//we need bigendian data...
for ( int i = 0 ; i < 32; i++ )
be32enc( &endiandata[ i], pdata[ i ]);
endiandata[19] = n;
do {
yespower_tls( (unsigned char *)endiandata, params.perslen,
&params, (yespower_binary_t*)hash );
if unlikely( valid_hash( hash, ptarget ) && !opt_benchmark )
{
be32enc( pdata+19, n );
submit_solution( work, hash, mythr );
}
endiandata[19] = ++n;
} while (n < last_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_yescryptr8g_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | SHA_OPT;
gate->scanhash = (void*)&scanhash_yespower_r8g;
gate->hash = (void*)&yespower_tls;
opt_target_factor = 65536.0;
return true;
};

View File

@@ -1,5 +1,6 @@
/*- /*-
* Copyright 2005,2007,2009 Colin Percival * Copyright 2009 Colin Percival
* Copyright 2013-2018 Alexander Peslyak
* All rights reserved. * All rights reserved.
* *
* Redistribution and use in source and binary forms, with or without * Redistribution and use in source and binary forms, with or without
@@ -23,47 +24,26 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE. * SUCH DAMAGE.
* *
* $FreeBSD: src/lib/libmd/sha256_Y.h,v 1.2 2006/01/17 15:35:56 phk Exp $ * This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/ */
#ifndef _YESPOWERR8G_H_
#define _YESPOWERR8G_H_
#ifndef _SHA256_H_
#define _SHA256_H_
#include <sys/types.h>
#include <stdint.h> #include <stdint.h>
#include <openssl/sha.h> #include <stdlib.h> /* for size_t */
#include "algo-gate-api.h"
#include "algo/yespower/yespower.h"
typedef struct SHA256Context { #ifdef __cplusplus
uint32_t state[8]; extern "C" {
uint32_t count[2]; #endif
unsigned char buf[64];
} SHA256_CTX_Y;
/* extern int yespowerr8g_tls(const uint8_t *src, size_t srclen,
typedef struct HMAC_SHA256Context { const yespower_params_t *params, yespower_binary_t *dst);
SHA256_CTX_Y ictx;
SHA256_CTX_Y octx;
} HMAC_SHA256_CTX_Y;
*/
typedef struct HMAC_SHA256Context { #ifdef __cplusplus
SHA256_CTX ictx; }
SHA256_CTX octx; #endif
} HMAC_SHA256_CTX_Y;
void SHA256_Init_Y(SHA256_CTX_Y *); #endif /* !_YESPOWERR8G_H_ */
void SHA256_Update_Y(SHA256_CTX_Y *, const void *, size_t);
void SHA256_Final_Y(unsigned char [32], SHA256_CTX_Y *);
void HMAC_SHA256_Init_Y(HMAC_SHA256_CTX_Y *, const void *, size_t);
void HMAC_SHA256_Update_Y(HMAC_SHA256_CTX_Y *, const void *, size_t);
void HMAC_SHA256_Final_Y(unsigned char [32], HMAC_SHA256_CTX_Y *);
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void PBKDF2_SHA256_Y(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */

View File

@@ -95,11 +95,7 @@
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "utils/insecure_memzero.h"
#include "utils/sysendian.h"
#include "crypto/blake2b-yp.h" #include "crypto/blake2b-yp.h"
#include "yespower.h" #include "yespower.h"
#ifdef __unix__ #ifdef __unix__
@@ -952,7 +948,7 @@ static void smix1(uint8_t *B, size_t r, uint32_t N,
salsa20_blk_t *dst = &X[i]; salsa20_blk_t *dst = &X[i];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_shuffle(tmp, dst); salsa20_simd_shuffle(tmp, dst);
} }
@@ -999,7 +995,7 @@ static void smix1(uint8_t *B, size_t r, uint32_t N,
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_unshuffle(tmp, dst); salsa20_simd_unshuffle(tmp, dst);
} }
} }
@@ -1025,7 +1021,7 @@ static void smix2(uint8_t *B, size_t r, uint32_t N, uint32_t Nloop,
salsa20_blk_t *dst = &X[i]; salsa20_blk_t *dst = &X[i];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_shuffle(tmp, dst); salsa20_simd_shuffle(tmp, dst);
} }
@@ -1055,7 +1051,7 @@ static void smix2(uint8_t *B, size_t r, uint32_t N, uint32_t Nloop,
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_unshuffle(tmp, dst); salsa20_simd_unshuffle(tmp, dst);
} }
} }

View File

@@ -32,6 +32,8 @@
static yespower_params_t yespower_params; static yespower_params_t yespower_params;
// YESPOWER
void yespower_hash( const char *input, char *output, uint32_t len ) void yespower_hash( const char *input, char *output, uint32_t len )
{ {
yespower_tls( input, len, &yespower_params, (yespower_binary_t*)output ); yespower_tls( input, len, &yespower_params, (yespower_binary_t*)output );
@@ -40,36 +42,33 @@ void yespower_hash( const char *input, char *output, uint32_t len )
int scanhash_yespower( struct work *work, uint32_t max_nonce, int scanhash_yespower( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ) uint64_t *hashes_done, struct thr_info *mythr )
{ {
uint32_t _ALIGN(64) vhash[8]; uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) endiandata[20]; uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data; uint32_t *pdata = work->data;
uint32_t *ptarget = work->target; uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const uint32_t Htarg = ptarget[7]; for ( int k = 0; k < 19; k++ )
const uint32_t first_nonce = pdata[19]; be32enc( &endiandata[k], pdata[k] );
uint32_t n = first_nonce; endiandata[19] = n;
int thr_id = mythr->id; // thr_id arg is deprecated do {
yespower_hash( (char*)endiandata, (char*)vhash, 80 );
for (int k = 0; k < 19; k++) if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
be32enc(&endiandata[k], pdata[k]); {
do { be32enc( pdata+19, n );
be32enc(&endiandata[19], n); submit_solution( work, vhash, mythr );
yespower_hash((char*) endiandata, (char*) vhash, 80); }
if ( vhash[7] <= Htarg && fulltest( vhash, ptarget ) endiandata[19] = ++n;
&& !opt_benchmark ) } while ( n < last_nonce && !work_restart[thr_id].restart );
{ *hashes_done = n - first_nonce;
pdata[19] = n; pdata[19] = n;
submit_solution( work, vhash, mythr ); return 0;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
} }
// YESPOWER-B2B
void yespower_b2b_hash( const char *input, char *output, uint32_t len ) void yespower_b2b_hash( const char *input, char *output, uint32_t len )
{ {
@@ -79,34 +78,30 @@ void yespower_b2b_hash( const char *input, char *output, uint32_t len )
int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce, int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr ) uint64_t *hashes_done, struct thr_info *mythr )
{ {
uint32_t _ALIGN(64) vhash[8]; uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) endiandata[20]; uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data; uint32_t *pdata = work->data;
uint32_t *ptarget = work->target; uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce;
const int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7]; for ( int k = 0; k < 19; k++ )
const uint32_t first_nonce = pdata[19]; be32enc( &endiandata[k], pdata[k] );
uint32_t n = first_nonce; endiandata[19] = n;
int thr_id = mythr->id; // thr_id arg is deprecated do {
yespower_b2b_hash( (char*) endiandata, (char*) vhash, 80 );
for (int k = 0; k < 19; k++) if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )
be32enc(&endiandata[k], pdata[k]); {
do { be32enc( pdata+19, n );
be32enc(&endiandata[19], n); submit_solution( work, vhash, mythr );
yespower_b2b_hash((char*) endiandata, (char*) vhash, 80); }
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) endiandata[19] = ++n;
&& !opt_benchmark ) } while ( n < last_nonce && !work_restart[thr_id].restart );
{ *hashes_done = n - first_nonce;
pdata[19] = n; pdata[19] = n;
submit_solution( work, vhash, mythr ); return 0;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
} }
bool register_yespower_algo( algo_gate_t* gate ) bool register_yespower_algo( algo_gate_t* gate )
@@ -156,7 +151,7 @@ bool register_yespowerr16_algo( algo_gate_t* gate )
return true; return true;
}; };
/* not used
bool register_yescrypt_05_algo( algo_gate_t* gate ) bool register_yescrypt_05_algo( algo_gate_t* gate )
{ {
gate->optimizations = SSE2_OPT | SHA_OPT; gate->optimizations = SSE2_OPT | SHA_OPT;
@@ -208,6 +203,9 @@ bool register_yescryptr32_05_algo( algo_gate_t* gate )
opt_target_factor = 65536.0; opt_target_factor = 65536.0;
return true; return true;
} }
*/
// POWER2B
bool register_power2b_algo( algo_gate_t* gate ) bool register_power2b_algo( algo_gate_t* gate )
{ {

View File

@@ -95,13 +95,8 @@
#include <stdint.h> #include <stdint.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "algo/sha/hmac-sha256-hash.h"
#include "insecure_memzero.h"
#include "sha256_p.h"
#include "sysendian.h"
#include "yespower.h" #include "yespower.h"
#include "yespower-platform.c" #include "yespower-platform.c"
#if __STDC_VERSION__ >= 199901L #if __STDC_VERSION__ >= 199901L
@@ -861,7 +856,7 @@ static void smix1(uint8_t *B, size_t r, uint32_t N,
salsa20_blk_t *dst = &X[i]; salsa20_blk_t *dst = &X[i];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_shuffle(tmp, dst); salsa20_simd_shuffle(tmp, dst);
} }
@@ -908,7 +903,7 @@ static void smix1(uint8_t *B, size_t r, uint32_t N,
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_unshuffle(tmp, dst); salsa20_simd_unshuffle(tmp, dst);
} }
} }
@@ -934,7 +929,7 @@ static void smix2(uint8_t *B, size_t r, uint32_t N, uint32_t Nloop,
salsa20_blk_t *dst = &X[i]; salsa20_blk_t *dst = &X[i];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
tmp->w[k] = le32dec(&src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_shuffle(tmp, dst); salsa20_simd_shuffle(tmp, dst);
} }
@@ -966,7 +961,7 @@ static void smix2(uint8_t *B, size_t r, uint32_t N, uint32_t Nloop,
salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64]; salsa20_blk_t *dst = (salsa20_blk_t *)&B[i * 64];
size_t k; size_t k;
for (k = 0; k < 16; k++) for (k = 0; k < 16; k++)
le32enc(&tmp->w[k], src->w[k]); tmp->w[k] = src->w[k];
salsa20_simd_unshuffle(tmp, dst); salsa20_simd_unshuffle(tmp, dst);
} }
} }

View File

@@ -51,8 +51,8 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "sha256_p.h" #include "algo/sha/hmac-sha256-hash.h"
#include "sysendian.h" //#include "sysendian.h"
#include "yespower.h" #include "yespower.h"
@@ -346,7 +346,7 @@ static void smix1(uint32_t *B, size_t r, uint32_t N,
/* 1: X <-- B */ /* 1: X <-- B */
for (k = 0; k < 2 * r; k++) for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++) for (i = 0; i < 16; i++)
X[k * 16 + i] = le32dec(&B[k * 16 + (i * 5 % 16)]); X[k * 16 + i] = B[k * 16 + (i * 5 % 16)];
if (ctx->version != YESPOWER_0_5) { if (ctx->version != YESPOWER_0_5) {
for (k = 1; k < r; k++) { for (k = 1; k < r; k++) {
@@ -378,7 +378,7 @@ static void smix1(uint32_t *B, size_t r, uint32_t N,
/* B' <-- X */ /* B' <-- X */
for (k = 0; k < 2 * r; k++) for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++) for (i = 0; i < 16; i++)
le32enc(&B[k * 16 + (i * 5 % 16)], X[k * 16 + i]); B[k * 16 + (i * 5 % 16)] = X[k * 16 + i];
} }
/** /**
@@ -398,7 +398,7 @@ static void smix2(uint32_t *B, size_t r, uint32_t N, uint32_t Nloop,
/* X <-- B */ /* X <-- B */
for (k = 0; k < 2 * r; k++) for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++) for (i = 0; i < 16; i++)
X[k * 16 + i] = le32dec(&B[k * 16 + (i * 5 % 16)]); X[k * 16 + i] = B[k * 16 + (i * 5 % 16)];
/* 6: for i = 0 to N - 1 do */ /* 6: for i = 0 to N - 1 do */
for (i = 0; i < Nloop; i++) { for (i = 0; i < Nloop; i++) {
@@ -418,7 +418,7 @@ static void smix2(uint32_t *B, size_t r, uint32_t N, uint32_t Nloop,
/* 10: B' <-- X */ /* 10: B' <-- X */
for (k = 0; k < 2 * r; k++) for (k = 0; k < 2 * r; k++)
for (i = 0; i < 16; i++) for (i = 0; i < 16; i++)
le32enc(&B[k * 16 + (i * 5 % 16)], X[k * 16 + i]); B[k * 16 + (i * 5 % 16)] = X[k * 16 + i];
} }
/** /**

View File

@@ -71,7 +71,7 @@ typedef struct {
*/ */
typedef struct { typedef struct {
unsigned char uc[32]; unsigned char uc[32];
} yespower_binary_t; } yespower_binary_t __attribute__ ((aligned (64)));
/** /**
* yespower_init_local(local): * yespower_init_local(local):

20
configure vendored
View File

@@ -1,6 +1,6 @@
#! /bin/sh #! /bin/sh
# Guess values for system-dependent variables and create Makefiles. # Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.69 for cpuminer-opt 3.11.6. # Generated by GNU Autoconf 2.69 for cpuminer-opt 3.11.7.
# #
# #
# Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc. # Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
@@ -577,8 +577,8 @@ MAKEFLAGS=
# Identity of this package. # Identity of this package.
PACKAGE_NAME='cpuminer-opt' PACKAGE_NAME='cpuminer-opt'
PACKAGE_TARNAME='cpuminer-opt' PACKAGE_TARNAME='cpuminer-opt'
PACKAGE_VERSION='3.11.6' PACKAGE_VERSION='3.11.7'
PACKAGE_STRING='cpuminer-opt 3.11.6' PACKAGE_STRING='cpuminer-opt 3.11.7'
PACKAGE_BUGREPORT='' PACKAGE_BUGREPORT=''
PACKAGE_URL='' PACKAGE_URL=''
@@ -1332,7 +1332,7 @@ if test "$ac_init_help" = "long"; then
# Omit some internal or obsolete options to make the list less imposing. # Omit some internal or obsolete options to make the list less imposing.
# This message is too long to be a string in the A/UX 3.1 sh. # This message is too long to be a string in the A/UX 3.1 sh.
cat <<_ACEOF cat <<_ACEOF
\`configure' configures cpuminer-opt 3.11.6 to adapt to many kinds of systems. \`configure' configures cpuminer-opt 3.11.7 to adapt to many kinds of systems.
Usage: $0 [OPTION]... [VAR=VALUE]... Usage: $0 [OPTION]... [VAR=VALUE]...
@@ -1404,7 +1404,7 @@ fi
if test -n "$ac_init_help"; then if test -n "$ac_init_help"; then
case $ac_init_help in case $ac_init_help in
short | recursive ) echo "Configuration of cpuminer-opt 3.11.6:";; short | recursive ) echo "Configuration of cpuminer-opt 3.11.7:";;
esac esac
cat <<\_ACEOF cat <<\_ACEOF
@@ -1509,7 +1509,7 @@ fi
test -n "$ac_init_help" && exit $ac_status test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then if $ac_init_version; then
cat <<\_ACEOF cat <<\_ACEOF
cpuminer-opt configure 3.11.6 cpuminer-opt configure 3.11.7
generated by GNU Autoconf 2.69 generated by GNU Autoconf 2.69
Copyright (C) 2012 Free Software Foundation, Inc. Copyright (C) 2012 Free Software Foundation, Inc.
@@ -2012,7 +2012,7 @@ cat >config.log <<_ACEOF
This file contains any messages produced by compilers while This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake. running configure, to aid debugging if configure makes a mistake.
It was created by cpuminer-opt $as_me 3.11.6, which was It was created by cpuminer-opt $as_me 3.11.7, which was
generated by GNU Autoconf 2.69. Invocation command line was generated by GNU Autoconf 2.69. Invocation command line was
$ $0 $@ $ $0 $@
@@ -2993,7 +2993,7 @@ fi
# Define the identity of the package. # Define the identity of the package.
PACKAGE='cpuminer-opt' PACKAGE='cpuminer-opt'
VERSION='3.11.6' VERSION='3.11.7'
cat >>confdefs.h <<_ACEOF cat >>confdefs.h <<_ACEOF
@@ -6690,7 +6690,7 @@ cat >>$CONFIG_STATUS <<\_ACEOF || ac_write_fail=1
# report actual input values of CONFIG_FILES etc. instead of their # report actual input values of CONFIG_FILES etc. instead of their
# values after options handling. # values after options handling.
ac_log=" ac_log="
This file was extended by cpuminer-opt $as_me 3.11.6, which was This file was extended by cpuminer-opt $as_me 3.11.7, which was
generated by GNU Autoconf 2.69. Invocation command line was generated by GNU Autoconf 2.69. Invocation command line was
CONFIG_FILES = $CONFIG_FILES CONFIG_FILES = $CONFIG_FILES
@@ -6756,7 +6756,7 @@ _ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1 cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`" ac_cs_config="`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`"
ac_cs_version="\\ ac_cs_version="\\
cpuminer-opt config.status 3.11.6 cpuminer-opt config.status 3.11.7
configured by $0, generated by GNU Autoconf 2.69, configured by $0, generated by GNU Autoconf 2.69,
with options \\"\$ac_cs_config\\" with options \\"\$ac_cs_config\\"

View File

@@ -1,4 +1,4 @@
AC_INIT([cpuminer-opt], [3.11.6]) AC_INIT([cpuminer-opt], [3.11.7])
AC_PREREQ([2.59c]) AC_PREREQ([2.59c])
AC_CANONICAL_SYSTEM AC_CANONICAL_SYSTEM

View File

@@ -506,6 +506,7 @@ static bool gbt_work_decode( const json_t *val, struct work *work )
uint32_t version, curtime, bits; uint32_t version, curtime, bits;
uint32_t prevhash[8]; uint32_t prevhash[8];
uint32_t target[8]; uint32_t target[8];
unsigned char final_sapling_hash[32];
int cbtx_size; int cbtx_size;
uchar *cbtx = NULL; uchar *cbtx = NULL;
int tx_count, tx_size; int tx_count, tx_size;
@@ -529,8 +530,8 @@ static bool gbt_work_decode( const json_t *val, struct work *work )
continue; continue;
if ( !strcmp( s, "coinbase/append" ) ) coinbase_append = true; if ( !strcmp( s, "coinbase/append" ) ) coinbase_append = true;
else if ( !strcmp( s, "submit/coinbase" ) ) submit_coinbase = true; else if ( !strcmp( s, "submit/coinbase" ) ) submit_coinbase = true;
else if ( !strcmp( s, "version/force" ) ) version_force = true; else if ( !strcmp( s, "version/force" ) ) version_force = true;
else if ( !strcmp( s, "version/reduce" ) ) version_reduce = true; else if ( !strcmp( s, "version/reduce" ) ) version_reduce = true;
} }
} }
@@ -550,12 +551,13 @@ static bool gbt_work_decode( const json_t *val, struct work *work )
goto out; goto out;
} }
version = (uint32_t) json_integer_value( tmp ); version = (uint32_t) json_integer_value( tmp );
if ( (version & 0xffU) > BLOCK_VERSION_CURRENT ) if ( version == 5 )
work->sapling = true;
else if ( version > 4 )
// if ( (version & 0xffU) > BLOCK_VERSION_CURRENT )
{ {
if ( version_reduce ) if ( version_reduce )
{
version = ( version & ~0xffU ) | BLOCK_VERSION_CURRENT; version = ( version & ~0xffU ) | BLOCK_VERSION_CURRENT;
}
else if ( have_gbt && allow_getwork && !version_force ) else if ( have_gbt && allow_getwork && !version_force )
{ {
applog( LOG_DEBUG, "Switching to getwork, gbt version %d", version ); applog( LOG_DEBUG, "Switching to getwork, gbt version %d", version );
@@ -590,6 +592,16 @@ static bool gbt_work_decode( const json_t *val, struct work *work )
goto out; goto out;
} }
if ( work->sapling )
{
if ( unlikely( !jobj_binary( val, "finalsaplingroothash",
final_sapling_hash, sizeof(final_sapling_hash) ) ) )
{
applog( LOG_ERR, "JSON invalid finalsaplingroothash" );
goto out;
}
}
/* find count and size of transactions */ /* find count and size of transactions */
txa = json_object_get(val, "transactions" ); txa = json_object_get(val, "transactions" );
if ( !txa || !json_is_array( txa ) ) if ( !txa || !json_is_array( txa ) )
@@ -772,7 +784,8 @@ static bool gbt_work_decode( const json_t *val, struct work *work )
/* assemble block header */ /* assemble block header */
algo_gate.build_block_header( work, swab32( version ), algo_gate.build_block_header( work, swab32( version ),
(uint32_t*) prevhash, (uint32_t*) merkle_tree, (uint32_t*) prevhash, (uint32_t*) merkle_tree,
swab32( curtime ), le32dec( &bits ) ); swab32( curtime ), le32dec( &bits ),
final_sapling_hash );
if ( unlikely( !jobj_binary(val, "target", target, sizeof(target)) ) ) if ( unlikely( !jobj_binary(val, "target", target, sizeof(target)) ) )
{ {
@@ -1175,13 +1188,13 @@ static int share_result( int result, struct work *null_work,
char str3[65]; char str3[65];
// display share hash and target for troubleshooting // display share hash and target for troubleshooting
diff_to_target( str1, my_stats.share_diff ); diff_to_target( (uint64_t*)str1, my_stats.share_diff );
for ( int i = 0; i < 8; i++ ) for ( int i = 0; i < 8; i++ )
be32enc( str2 + i, str1[7 - i] ); be32enc( str2 + i, str1[7 - i] );
bin2hex( str3, (unsigned char*)str2, 12 ); bin2hex( str3, (unsigned char*)str2, 12 );
applog2( LOG_INFO, "Hash: %s...", str3 ); applog2( LOG_INFO, "Hash: %s...", str3 );
diff_to_target( str1, my_stats.target_diff ); diff_to_target( (uint64_t*)str1, my_stats.target_diff );
for ( int i = 0; i < 8; i++ ) for ( int i = 0; i < 8; i++ )
be32enc( str2 + i, str1[7 - i] ); be32enc( str2 + i, str1[7 - i] );
bin2hex( str3, (unsigned char*)str2, 12 ); bin2hex( str3, (unsigned char*)str2, 12 );
@@ -1364,9 +1377,11 @@ char* std_malloc_txs_request( struct work *work )
char data_str[2 * sizeof(work->data) + 1]; char data_str[2 * sizeof(work->data) + 1];
int i; int i;
int datasize = work->sapling ? 112 : 80;
for ( i = 0; i < ARRAY_SIZE(work->data); i++ ) for ( i = 0; i < ARRAY_SIZE(work->data); i++ )
be32enc( work->data + i, work->data[i] ); be32enc( work->data + i, work->data[i] );
bin2hex( data_str, (unsigned char *)work->data, 80 ); bin2hex( data_str, (unsigned char *)work->data, datasize );
if ( work->workid ) if ( work->workid )
{ {
char *params; char *params;
@@ -1374,7 +1389,7 @@ char* std_malloc_txs_request( struct work *work )
json_object_set_new( val, "workid", json_string( work->workid ) ); json_object_set_new( val, "workid", json_string( work->workid ) );
params = json_dumps( val, 0 ); params = json_dumps( val, 0 );
json_decref( val ); json_decref( val );
req = (char*) malloc( 128 + 2 * 80 + strlen( work->txs ) req = (char*) malloc( 128 + 2 * datasize + strlen( work->txs )
+ strlen( params ) ); + strlen( params ) );
sprintf( req, sprintf( req,
"{\"method\": \"submitblock\", \"params\": [\"%s%s\", %s], \"id\":4}\r\n", "{\"method\": \"submitblock\", \"params\": [\"%s%s\", %s], \"id\":4}\r\n",
@@ -1383,7 +1398,7 @@ char* std_malloc_txs_request( struct work *work )
} }
else else
{ {
req = (char*) malloc( 128 + 2 * 80 + strlen( work->txs ) ); req = (char*) malloc( 128 + 2 * datasize + strlen( work->txs ) );
sprintf( req, sprintf( req,
"{\"method\": \"submitblock\", \"params\": [\"%s%s\"], \"id\":4}\r\n", "{\"method\": \"submitblock\", \"params\": [\"%s%s\"], \"id\":4}\r\n",
data_str, work->txs); data_str, work->txs);
@@ -1777,7 +1792,7 @@ static bool get_work(struct thr_info *thr, struct work *work)
return true; return true;
} }
static bool submit_work( const struct thr_info *thr, static bool submit_work( struct thr_info *thr,
const struct work *work_in ) const struct work *work_in )
{ {
struct workio_cmd *wc; struct workio_cmd *wc;
@@ -1843,7 +1858,7 @@ void work_set_target_ratio( struct work* work, const void *hash )
} }
bool submit_solution( struct work *work, const void *hash, bool submit_solution( struct work *work, const void *hash,
const struct thr_info *thr ) struct thr_info *thr )
{ {
if ( likely( submit_work( thr, work ) ) ) if ( likely( submit_work( thr, work ) ) )
{ {
@@ -1861,7 +1876,7 @@ bool submit_solution( struct work *work, const void *hash,
} }
bool submit_lane_solution( struct work *work, const void *hash, bool submit_lane_solution( struct work *work, const void *hash,
const struct thr_info *thr, const int lane ) struct thr_info *thr, const int lane )
{ {
if ( likely( submit_work( thr, work ) ) ) if ( likely( submit_work( thr, work ) ) )
{ {
@@ -1992,7 +2007,7 @@ uint32_t *jr2_get_nonceptr( uint32_t *work_data )
} }
void std_get_new_work( struct work* work, struct work* g_work, int thr_id, void std_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t *end_nonce_ptr, bool clean_job ) uint32_t *end_nonce_ptr )
{ {
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data ); uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
@@ -2000,9 +2015,7 @@ void std_get_new_work( struct work* work, struct work* g_work, int thr_id,
strtoul( g_work->job_id, NULL, 16 ) strtoul( g_work->job_id, NULL, 16 )
: true; : true;
if ( force_new_work || *nonceptr >= *end_nonce_ptr if ( force_new_work || *nonceptr >= *end_nonce_ptr )
|| ( memcmp( work->data, g_work->data, algo_gate.work_cmp_size )
&& clean_job ) )
{ {
work_free( work ); work_free( work );
work_copy( work, g_work ); work_copy( work, g_work );
@@ -2165,8 +2178,7 @@ static void *miner_thread( void *userdata )
pthread_mutex_lock( &g_work_lock ); pthread_mutex_lock( &g_work_lock );
if ( *algo_gate.get_nonceptr( work.data ) >= end_nonce ) if ( *algo_gate.get_nonceptr( work.data ) >= end_nonce )
algo_gate.stratum_gen_work( &stratum, &g_work ); algo_gate.stratum_gen_work( &stratum, &g_work );
algo_gate.get_new_work( &work, &g_work, thr_id, &end_nonce, algo_gate.get_new_work( &work, &g_work, thr_id, &end_nonce );
stratum.job.clean );
pthread_mutex_unlock( &g_work_lock ); pthread_mutex_unlock( &g_work_lock );
} }
else else
@@ -2186,7 +2198,7 @@ static void *miner_thread( void *userdata )
} }
g_work_time = time(NULL); g_work_time = time(NULL);
} }
algo_gate.get_new_work( &work, &g_work, thr_id, &end_nonce, true ); algo_gate.get_new_work( &work, &g_work, thr_id, &end_nonce );
pthread_mutex_unlock( &g_work_lock ); pthread_mutex_unlock( &g_work_lock );
} }
@@ -2579,13 +2591,14 @@ out:
// used by stratum and gbt // used by stratum and gbt
void std_build_block_header( struct work* g_work, uint32_t version, void std_build_block_header( struct work* g_work, uint32_t version,
uint32_t *prevhash, uint32_t *merkle_tree, uint32_t *prevhash, uint32_t *merkle_tree, uint32_t ntime,
uint32_t ntime, uint32_t nbits ) uint32_t nbits, unsigned char *final_sapling_hash )
{ {
int i; int i;
memset( g_work->data, 0, sizeof(g_work->data) ); memset( g_work->data, 0, sizeof(g_work->data) );
g_work->data[0] = version; g_work->data[0] = version;
g_work->sapling = be32dec( &version ) == 5 ? true : false;
if ( have_stratum ) if ( have_stratum )
for ( i = 0; i < 8; i++ ) for ( i = 0; i < 8; i++ )
@@ -2599,8 +2612,27 @@ void std_build_block_header( struct work* g_work, uint32_t version,
g_work->data[ algo_gate.ntime_index ] = ntime; g_work->data[ algo_gate.ntime_index ] = ntime;
g_work->data[ algo_gate.nbits_index ] = nbits; g_work->data[ algo_gate.nbits_index ] = nbits;
g_work->data[20] = 0x80000000; if ( g_work->sapling )
g_work->data[31] = 0x00000280; {
if ( have_stratum )
for ( i = 0; i < 8; i++ )
g_work->data[20 + i] = le32dec( (uint32_t*)final_sapling_hash + i );
else
{
for ( i = 0; i < 8; i++ )
g_work->data[27 - i] = le32dec( (uint32_t*)final_sapling_hash + i );
g_work->data[19] = 0;
}
g_work->data[28] = 0x80000000;
g_work->data[29] = 0x00000000;
g_work->data[30] = 0x00000000;
g_work->data[31] = 0x00000380;
}
else
{
g_work->data[20] = 0x80000000;
g_work->data[31] = 0x00000280;
}
} }
void std_build_extraheader( struct work* g_work, struct stratum_ctx* sctx ) void std_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
@@ -2614,7 +2646,8 @@ void std_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
// Assemble block header // Assemble block header
algo_gate.build_block_header( g_work, le32dec( sctx->job.version ), algo_gate.build_block_header( g_work, le32dec( sctx->job.version ),
(uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree, (uint32_t*) sctx->job.prevhash, (uint32_t*) merkle_tree,
le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits) ); le32dec( sctx->job.ntime ), le32dec(sctx->job.nbits),
sctx->job.final_sapling_hash );
} }
void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *g_work ) void std_stratum_gen_work( struct stratum_ctx *sctx, struct work *g_work )
@@ -3766,6 +3799,9 @@ int main(int argc, char *argv[])
*/ */
} }
applog( LOG_INFO, "Extranonce subscribe: %s",
opt_extranonce ? "YES" : "NO" );
#ifdef HAVE_SYSLOG_H #ifdef HAVE_SYSLOG_H
if (use_syslog) if (use_syslog)
openlog("cpuminer", LOG_PID, LOG_USER); openlog("cpuminer", LOG_PID, LOG_USER);

21
miner.h
View File

@@ -317,7 +317,7 @@ bool valid_hash( const void*, const void* );
void work_set_target( struct work* work, double diff ); void work_set_target( struct work* work, double diff );
double target_to_diff( uint32_t* target ); double target_to_diff( uint32_t* target );
extern void diff_to_target(uint32_t *target, double diff); extern void diff_to_target( uint64_t *target, double diff );
double hash_target_ratio( uint32_t* hash, uint32_t* target ); double hash_target_ratio( uint32_t* hash, uint32_t* target );
void work_set_target_ratio( struct work* work, const void *hash ); void work_set_target_ratio( struct work* work, const void *hash );
@@ -333,9 +333,9 @@ struct thr_info {
//struct thr_info *thr_info; //struct thr_info *thr_info;
bool submit_solution( struct work *work, const void *hash, bool submit_solution( struct work *work, const void *hash,
const struct thr_info *thr ); struct thr_info *thr );
bool submit_lane_solution( struct work *work, const void *hash, bool submit_lane_solution( struct work *work, const void *hash,
const struct thr_info *thr, const int lane ); struct thr_info *thr, const int lane );
//bool submit_work( struct thr_info *thr, const struct work *work_in ); //bool submit_work( struct thr_info *thr, const struct work *work_in );
@@ -363,7 +363,7 @@ float cpu_temp( int core );
struct work { struct work {
uint32_t data[48] __attribute__ ((aligned (64))); uint32_t data[48] __attribute__ ((aligned (64)));
uint32_t target[8]; uint32_t target[8] __attribute__ ((aligned (64)));
double targetdiff; double targetdiff;
// double shareratio; // double shareratio;
@@ -376,6 +376,8 @@ struct work {
char *job_id; char *job_id;
size_t xnonce2_len; size_t xnonce2_len;
unsigned char *xnonce2; unsigned char *xnonce2;
bool sapling;
// x16rt // x16rt
uint32_t merkleroothash[8]; uint32_t merkleroothash[8];
uint32_t witmerkleroothash[8]; uint32_t witmerkleroothash[8];
@@ -387,8 +389,9 @@ struct work {
} __attribute__ ((aligned (64))); } __attribute__ ((aligned (64)));
struct stratum_job { struct stratum_job {
char *job_id;
unsigned char prevhash[32]; unsigned char prevhash[32];
unsigned char final_sapling_hash[32];
char *job_id;
size_t coinbase_size; size_t coinbase_size;
unsigned char *coinbase; unsigned char *coinbase;
unsigned char *xnonce2; unsigned char *xnonce2;
@@ -571,6 +574,7 @@ enum algos {
ALGO_SHA256D, ALGO_SHA256D,
ALGO_SHA256Q, ALGO_SHA256Q,
ALGO_SHA256T, ALGO_SHA256T,
ALGO_SHA3D,
ALGO_SHAVITE3, ALGO_SHAVITE3,
ALGO_SKEIN, ALGO_SKEIN,
ALGO_SKEIN2, ALGO_SKEIN2,
@@ -604,6 +608,7 @@ enum algos {
ALGO_XEVAN, ALGO_XEVAN,
ALGO_YESCRYPT, ALGO_YESCRYPT,
ALGO_YESCRYPTR8, ALGO_YESCRYPTR8,
ALGO_YESCRYPTR8G,
ALGO_YESCRYPTR16, ALGO_YESCRYPTR16,
ALGO_YESCRYPTR32, ALGO_YESCRYPTR32,
ALGO_YESPOWER, ALGO_YESPOWER,
@@ -669,6 +674,7 @@ static const char* const algo_names[] = {
"sha256d", "sha256d",
"sha256q", "sha256q",
"sha256t", "sha256t",
"sha3d",
"shavite3", "shavite3",
"skein", "skein",
"skein2", "skein2",
@@ -702,6 +708,7 @@ static const char* const algo_names[] = {
"xevan", "xevan",
"yescrypt", "yescrypt",
"yescryptr8", "yescryptr8",
"yescryptr8g",
"yescryptr16", "yescryptr16",
"yescryptr32", "yescryptr32",
"yespower", "yespower",
@@ -834,7 +841,8 @@ Options:\n\
sha256d Double SHA-256\n\ sha256d Double SHA-256\n\
sha256q Quad SHA-256, Pyrite (PYE)\n\ sha256q Quad SHA-256, Pyrite (PYE)\n\
sha256t Triple SHA-256, Onecoin (OC)\n\ sha256t Triple SHA-256, Onecoin (OC)\n\
shavite3 Shavite3\n\ sha3d Double Keccak256 (BSHA3)\n\
shavite3 Shavite3\n\
skein Skein+Sha (Skeincoin)\n\ skein Skein+Sha (Skeincoin)\n\
skein2 Double Skein (Woodcoin)\n\ skein2 Double Skein (Woodcoin)\n\
skunk Signatum (SIGT)\n\ skunk Signatum (SIGT)\n\
@@ -867,6 +875,7 @@ Options:\n\
xevan Bitsend (BSD)\n\ xevan Bitsend (BSD)\n\
yescrypt Globalboost-Y (BSTY)\n\ yescrypt Globalboost-Y (BSTY)\n\
yescryptr8 BitZeny (ZNY)\n\ yescryptr8 BitZeny (ZNY)\n\
yescryptr8g Koto (KOTO)\n\
yescryptr16 Eli\n\ yescryptr16 Eli\n\
yescryptr32 WAVI\n\ yescryptr32 WAVI\n\
yespower Cryply\n\ yespower Cryply\n\

116
util.c
View File

@@ -923,7 +923,7 @@ bool jobj_binary(const json_t *obj, const char *key, void *buf, size_t buflen)
size_t address_to_script(unsigned char *out, size_t outsz, const char *addr) size_t address_to_script(unsigned char *out, size_t outsz, const char *addr)
{ {
unsigned char addrbin[25]; unsigned char addrbin[26];
int addrver; int addrver;
size_t rv; size_t rv;
@@ -1038,27 +1038,33 @@ bool fulltest( const uint32_t *hash, const uint32_t *target )
return rc; return rc;
} }
void diff_to_target(uint32_t *target, double diff) void diff_to_target(uint64_t *target, double diff)
{ {
uint64_t m; uint64_t m;
int k; int k;
for (k = 6; k > 0 && diff > 1.0; k--) const double exp64 = (double)0xffffffffffffffff + 1.;
diff /= 4294967296.0; for ( k = 3; k > 0 && diff > 1.0; k-- )
m = (uint64_t)(4294901760.0 / diff); diff /= exp64;
if (m == 0 && k == 6)
memset(target, 0xff, 32); // for (k = 6; k > 0 && diff > 1.0; k--)
else { // diff /= 4294967296.0;
memset(target, 0, 32); m = (uint64_t)( 0xffff0000 / diff );
target[k] = (uint32_t)m; if unlikely( m == 0 && k == 3 )
target[k + 1] = (uint32_t)(m >> 32); memset( target, 0xff, 32 );
else
{
memset( target, 0, 32 );
target[k] = m;
// target[k] = (uint32_t)m;
// target[k + 1] = (uint32_t)(m >> 32);
} }
} }
// Only used by stratum pools // Only used by stratum pools
void work_set_target(struct work* work, double diff) void work_set_target(struct work* work, double diff)
{ {
diff_to_target(work->target, diff); diff_to_target( (uint64_t*)work->target, diff );
work->targetdiff = diff; work->targetdiff = diff;
} }
@@ -1830,6 +1836,7 @@ static uint32_t getblocheight(struct stratum_ctx *sctx)
static bool stratum_notify(struct stratum_ctx *sctx, json_t *params) static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
{ {
const char *job_id, *prevhash, *coinb1, *coinb2, *version, *nbits, *stime; const char *job_id, *prevhash, *coinb1, *coinb2, *version, *nbits, *stime;
const char *finalsaplinghash = NULL;
const char *denom10 = NULL, *denom100 = NULL, *denom1000 = NULL, const char *denom10 = NULL, *denom100 = NULL, *denom1000 = NULL,
*denom10000 = NULL, *prooffullnode = NULL; *denom10000 = NULL, *prooffullnode = NULL;
const char *extradata = NULL; const char *extradata = NULL;
@@ -1890,6 +1897,18 @@ static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
goto out; goto out;
} }
hex2bin( sctx->job.version, version, 4 );
int ver = be32dec( sctx->job.version );
if ( ver == 5 )
{
finalsaplinghash = json_string_value( json_array_get( params, 9 ) );
if ( !finalsaplinghash || strlen(finalsaplinghash) != 64 )
{
applog( LOG_ERR, "Stratum notify: invalid version 5 parameters" );
goto out;
}
}
if ( is_veil ) if ( is_veil )
{ {
if ( !denom10 || !denom100 || !denom1000 || !denom10000 if ( !denom10 || !denom100 || !denom1000 || !denom10000
@@ -1903,66 +1922,69 @@ static bool stratum_notify(struct stratum_ctx *sctx, json_t *params)
} }
if ( merkle_count ) if ( merkle_count )
merkle = (uchar**) malloc(merkle_count * sizeof(char *)); merkle = (uchar**) malloc( merkle_count * sizeof(char *) );
for ( i = 0; i < merkle_count; i++ ) for ( i = 0; i < merkle_count; i++ )
{ {
const char *s = json_string_value(json_array_get(merkle_arr, i)); const char *s = json_string_value( json_array_get( merkle_arr, i ) );
if (!s || strlen(s) != 64) { if ( !s || strlen(s) != 64 )
while (i--) {
free(merkle[i]); while ( i-- ) free( merkle[i] );
free(merkle); free( merkle );
applog(LOG_ERR, "Stratum notify: invalid Merkle branch"); applog( LOG_ERR, "Stratum notify: invalid Merkle branch" );
goto out; goto out;
} }
merkle[i] = (uchar*) malloc(32); merkle[i] = (uchar*) malloc( 32 );
hex2bin(merkle[i], s, 32); hex2bin( merkle[i], s, 32 );
} }
pthread_mutex_lock(&sctx->work_lock); pthread_mutex_lock( &sctx->work_lock );
coinb1_size = strlen(coinb1) / 2; coinb1_size = strlen( coinb1 ) / 2;
coinb2_size = strlen(coinb2) / 2; coinb2_size = strlen( coinb2 ) / 2;
sctx->job.coinbase_size = coinb1_size + sctx->xnonce1_size + sctx->job.coinbase_size = coinb1_size + sctx->xnonce1_size +
sctx->xnonce2_size + coinb2_size; sctx->xnonce2_size + coinb2_size;
sctx->job.coinbase = (uchar*) realloc(sctx->job.coinbase, sctx->job.coinbase_size); sctx->job.coinbase = (uchar*) realloc( sctx->job.coinbase,
sctx->job.coinbase_size );
sctx->job.xnonce2 = sctx->job.coinbase + coinb1_size + sctx->xnonce1_size; sctx->job.xnonce2 = sctx->job.coinbase + coinb1_size + sctx->xnonce1_size;
hex2bin(sctx->job.coinbase, coinb1, coinb1_size); hex2bin( sctx->job.coinbase, coinb1, coinb1_size );
memcpy(sctx->job.coinbase + coinb1_size, sctx->xnonce1, sctx->xnonce1_size); memcpy( sctx->job.coinbase + coinb1_size,
if (!sctx->job.job_id || strcmp(sctx->job.job_id, job_id)) sctx->xnonce1, sctx->xnonce1_size );
if ( !sctx->job.job_id || strcmp( sctx->job.job_id, job_id ) )
memset(sctx->job.xnonce2, 0, sctx->xnonce2_size); memset(sctx->job.xnonce2, 0, sctx->xnonce2_size);
hex2bin(sctx->job.xnonce2 + sctx->xnonce2_size, coinb2, coinb2_size); hex2bin( sctx->job.xnonce2 + sctx->xnonce2_size, coinb2, coinb2_size );
free(sctx->job.job_id); free( sctx->job.job_id );
sctx->job.job_id = strdup(job_id); sctx->job.job_id = strdup( job_id );
hex2bin(sctx->job.prevhash, prevhash, 32); hex2bin( sctx->job.prevhash, prevhash, 32 );
if (has_claim) hex2bin(sctx->job.extra, extradata, 32); if ( has_claim ) hex2bin( sctx->job.extra, extradata, 32 );
if (has_roots) hex2bin(sctx->job.extra, extradata, 64); if ( has_roots ) hex2bin( sctx->job.extra, extradata, 64 );
if ( ver == 5 )
hex2bin( sctx->job.final_sapling_hash, finalsaplinghash, 32 );
if ( is_veil ) if ( is_veil )
{ {
hex2bin(sctx->job.denom10, denom10, 32); hex2bin( sctx->job.denom10, denom10, 32 );
hex2bin(sctx->job.denom100, denom100, 32); hex2bin( sctx->job.denom100, denom100, 32 );
hex2bin(sctx->job.denom1000, denom1000, 32); hex2bin( sctx->job.denom1000, denom1000, 32 );
hex2bin(sctx->job.denom10000, denom10000, 32); hex2bin( sctx->job.denom10000, denom10000, 32 );
hex2bin(sctx->job.proofoffullnode, prooffullnode, 32); hex2bin( sctx->job.proofoffullnode, prooffullnode, 32 );
} }
sctx->block_height = getblocheight(sctx); sctx->block_height = getblocheight( sctx );
for (i = 0; i < sctx->job.merkle_count; i++) for ( i = 0; i < sctx->job.merkle_count; i++ )
free(sctx->job.merkle[i]); free( sctx->job.merkle[i] );
free(sctx->job.merkle); free( sctx->job.merkle );
sctx->job.merkle = merkle; sctx->job.merkle = merkle;
sctx->job.merkle_count = merkle_count; sctx->job.merkle_count = merkle_count;
hex2bin(sctx->job.version, version, 4); hex2bin( sctx->job.nbits, nbits, 4 );
hex2bin(sctx->job.nbits, nbits, 4); hex2bin( sctx->job.ntime, stime, 4 );
hex2bin(sctx->job.ntime, stime, 4);
sctx->job.clean = clean; sctx->job.clean = clean;
sctx->job.diff = sctx->next_diff; sctx->job.diff = sctx->next_diff;
pthread_mutex_unlock(&sctx->work_lock); pthread_mutex_unlock( &sctx->work_lock );
ret = true; ret = true;