This commit is contained in:
Jay D Dee
2023-10-28 16:22:14 -04:00
parent 160608cce5
commit 46dca7a493
20 changed files with 3092 additions and 2297 deletions

View File

@@ -7,15 +7,15 @@
#include "sph_sha2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define SHA256DT_16X64 1
#define SHA256DT_16X32 1
#elif defined(__x86_64__) && defined(__SHA__)
#define SHA256DT_X86_SHA256 1
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_SHA2)
#define SHA256DT_NEON_SHA256 1
#elif defined(__AVX2__)
#define SHA256DT_8X64 1
#define SHA256DT_8X32 1
#elif defined (__SSE2__) || defined(__ARM_NEON)
#define SHA256DT_4X64 1
#define SHA256DT_4X32 1
#endif
// else ref, should never happen
@@ -183,9 +183,9 @@ int scanhash_sha256dt_neon_x2sha( struct work *work, uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_16X64)
#elif defined(SHA256DT_16X32)
int scanhash_sha256dt_16x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_16x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m512i block[16] __attribute__ ((aligned (128)));
@@ -275,9 +275,9 @@ int scanhash_sha256dt_16x64( struct work *work, const uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_8X64)
#elif defined(SHA256DT_8X32)
int scanhash_sha256dt_8x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_8x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m256i vdata[32] __attribute__ ((aligned (64)));
@@ -355,16 +355,18 @@ int scanhash_sha256dt_8x64( struct work *work, const uint32_t max_nonce,
return 0;
}
#elif defined(SHA256DT_4X64)
#elif defined(SHA256DT_4X32)
int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_4x32( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash[8] __attribute__ ((aligned (32)));
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t iv[8] __attribute__ ((aligned (32)));
v128_t mhash1[8] __attribute__ ((aligned (32)));
v128_t mhash2[8] __attribute__ ((aligned (32)));
v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lhash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
@@ -373,26 +375,24 @@ int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
memset( block, 0, 16*4*4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = v128_set32( n+ 3, n+ 2, n+1, n );
vdata[i] = v128_32( pdata[i] );
vdata[16+3] = v128_set32( n+3, n+2, n+1, n );
vdata[16+4] = last_byte;
v128_memset_zero( vdata+16 + 5, 10 );
v128_memset_zero( vdata+16 + 5, 9 );
vdata[16+15] = v128_32( 0x480 );
block[ 8] = last_byte;
v128_memset_zero( block + 9, 6 );
v128_memset_zero( block + 9, 5 );
block[15] = v128_32( 0x300 );
// initialize state
iv[0] = v128_32( sha256dt_iv[0] );
iv[1] = v128_32( sha256dt_iv[1] );
iv[2] = v128_32( sha256dt_iv[2] );
@@ -402,62 +402,15 @@ int scanhash_sha256dt_4x64( struct work *work, const uint32_t max_nonce,
iv[6] = v128_32( sha256dt_iv[6] );
iv[7] = v128_32( sha256dt_iv[7] );
// hash first 64 bytes of data
sha256_4x32_transform_le( mhash, vdata, iv );
/*
uint32_t m1 [8] __attribute__ ((aligned (32)));
uint32_t h1 [8] __attribute__ ((aligned (32)));
uint32_t b1 [16] __attribute__ ((aligned (32)));
uint32_t e16 [16] __attribute__ ((aligned (32)));
uint32_t *m4 = (uint32_t*)&midstate;
uint32_t *h4 = (uint32_t*)hash32;
sha256_transform_le( m1, pdata, sha256dt_iv );
memcpy( e16, pdata + 16, 12 );
e16[3] = n;
e16[4] = 0x80000000;
memset( &e16[5], 0, 40 );
e16[15] = 0x480; // funky bit count
b1[8] = 0x80000000;
memset( &b1[9], 0, 24 );
b1[9] = b1[10] = b1[11] = b1[12] = b1[13] = b1[14] = 0;
b1[15] = 0x300; // bit count
*/
sha256_4x32_transform_le( mhash1, vdata, iv );
sha256_4x32_prehash_3rounds( mhash2, mexp_pre, vdata + 16, mhash1 );
do
{
sha256_4x32_transform_le( block, vdata+16, mhash );
//sha256_transform_le( b1, e16, m1 );
sha256_4x32_final_rounds( block, vdata+16, mhash1, mhash2, mexp_pre );
// sha256_4x32_transform_le( block, vdata+16, mhash1 );
sha256_4x32_transform_le( hash32, block, iv );
/*
sha256_transform_le( h1, b1, sha256dt_iv );
printf("final hash1: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h1[0],h1[1],h1[2],h1[3],h1[4],h1[5],h1[6],h1[7]);
printf("final hash4: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h4[0],h4[4],h4[8],h4[12],h4[16],h4[20],h4[24],h4[28]);
casti_v128( h1,0 ) = v128_bswap32( casti_v128( h1,0 ) );
casti_v128( h1,1 ) = v128_bswap32( casti_v128( h1,1 ) );
*/
// v128_block_bswap32( hash32, hash32 );
/*
printf("bswap hash1: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h1[0],h1[1],h1[2],h1[3],h1[4],h1[5],h1[6],h1[7]);
printf("bswap hash4: %08x %08x %08x %08x %08x %08x %08x %08x\n",
h4[0],h4[4],h4[8],h4[12],h4[16],h4[20],h4[24],h4[28]);
exit(0);
*/
for ( int lane = 0; lane < 4; lane++ )
{
if ( unlikely( bswap_32( hash32_d7[ lane ] ) <= targ32_d7 ) )
@@ -472,7 +425,7 @@ exit(0);
}
}
}
*noncev = v128_add32( *noncev, four );
vdata[16+3] = v128_add32( vdata[16+3], four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
@@ -485,10 +438,10 @@ exit(0);
int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (32)));
uint32_t block2a[16] __attribute__ ((aligned (32)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t mstate[8] __attribute__ ((aligned (32)));
uint32_t block1[16] __attribute__ ((aligned (32)));
uint32_t block2[16] __attribute__ ((aligned (32)));
uint32_t hash32[8] __attribute__ ((aligned (32)));
uint32_t mstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
@@ -497,37 +450,40 @@ int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
memset( block1, 0, 64 );
memset( block2, 0, 64 );
// hash first 64 byte block of data
sha256_transform_le( mstate, pdata, sha256dt_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
block1a[ 3] = 0;
block1a[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
block1a[15] = 0x480; // funky bit count
memcpy( block1, pdata + 16, 12 );
block1[ 3] = n;
block1[ 4] = 0x80000000;
memset( block1 + 5, 0, 40 );
block1[15] = 0x480; // funky bit count
// Pad third block
block2a[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
block2a[15] = 0x300; // bit count
block2[ 8] = 0x80000000;
memset( block2 + 9, 0, 24 );
block2[15] = 0x300; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
sha256_transform_le( block2a, block1a, mstate );
block1[3] = n;
sha256_transform_le( block2, block1, mstate );
sha256_transform_le( hasha, block2a, sha256dt_iv );
sha256_transform_le( hash32, block2, sha256dt_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
if ( unlikely( bswap_32( hash32[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
casti_v128( hash32, 0 ) = v128_bswap32( casti_v128( hash32, 0 ) );
casti_v128( hash32, 1 ) = v128_bswap32( casti_v128( hash32, 1 ) );
if ( likely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
submit_solution( work, hash32, mythr );
}
}
n += 1;
@@ -543,18 +499,18 @@ int scanhash_sha256dt_ref( struct work *work, uint32_t max_nonce,
bool register_sha256dt_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX2_OPT | AVX512_OPT | NEON_OPT;
#if defined(SHA256DT_16X64)
gate->scanhash = (void*)&scanhash_sha256dt_16x64;
#if defined(SHA256DT_16X32)
gate->scanhash = (void*)&scanhash_sha256dt_16x32;
#elif defined(SHA256DT_X86_SHA256)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_x86_x2sha;
#elif defined(SHA256DT_NEON_SHA256)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_neon_x2sha;
#elif defined(SHA256DT_8X64)
gate->scanhash = (void*)&scanhash_sha256dt_8x64;
#elif defined(SHA256DT_4X64)
gate->scanhash = (void*)&scanhash_sha256dt_4x64;
#elif defined(SHA256DT_8X32)
gate->scanhash = (void*)&scanhash_sha256dt_8x32;
#elif defined(SHA256DT_4X32)
gate->scanhash = (void*)&scanhash_sha256dt_4x32;
#else
gate->scanhash = (void*)&scanhash_sha256dt_ref;
#endif