This commit is contained in:
Jay D Dee
2019-12-14 01:01:54 -05:00
parent a17ff6f189
commit 3d1b6c87dc
42 changed files with 2656 additions and 1407 deletions

View File

@@ -184,10 +184,10 @@ static BLAKE2_INLINE __m128i fBlaMka(__m128i x, __m128i y) {
#include <immintrin.h>
#define rotr32 mm256_swap32_64
#define rotr24 mm256_ror3x8_64
#define rotr16 mm256_ror1x16_64
#define rotr63( x ) mm256_rol_64( x, 1 )
#define rotr32( x ) mm256_ror_64( x, 32 )
#define rotr24( x ) mm256_ror_64( x, 24 )
#define rotr16( x ) mm256_ror_64( x, 16 )
#define rotr63( x ) mm256_rol_64( x, 1 )
//#define rotr32(x) _mm256_shuffle_epi32(x, _MM_SHUFFLE(2, 3, 0, 1))
//#define rotr24(x) _mm256_shuffle_epi8(x, _mm256_setr_epi8(3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10, 3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10))

View File

@@ -70,19 +70,22 @@ typedef struct {
// Default 14 rounds
typedef blake_4way_small_context blake256_4way_context;
void blake256_4way_init(void *ctx);
void blake256_4way(void *ctx, const void *data, size_t len);
void blake256_4way_update(void *ctx, const void *data, size_t len);
#define blake256_4way blake256_4way_update
void blake256_4way_close(void *ctx, void *dst);
// 14 rounds, blake, decred
typedef blake_4way_small_context blake256r14_4way_context;
void blake256r14_4way_init(void *cc);
void blake256r14_4way(void *cc, const void *data, size_t len);
void blake256r14_4way_update(void *cc, const void *data, size_t len);
#define blake256r14_4way blake256r14_4way_update
void blake256r14_4way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_4way_small_context blake256r8_4way_context;
void blake256r8_4way_init(void *cc);
void blake256r8_4way(void *cc, const void *data, size_t len);
void blake256r8_4way_update(void *cc, const void *data, size_t len);
#define blake256r8_4way blake256r8_4way_update
void blake256r8_4way_close(void *cc, void *dst);
#ifdef __AVX2__
@@ -100,19 +103,21 @@ typedef struct {
// Default 14 rounds
typedef blake_8way_small_context blake256_8way_context;
void blake256_8way_init(void *cc);
void blake256_8way(void *cc, const void *data, size_t len);
void blake256_8way_update(void *cc, const void *data, size_t len);
#define blake256_8way blake256_8way_update
void blake256_8way_close(void *cc, void *dst);
// 14 rounds, blake, decred
typedef blake_8way_small_context blake256r14_8way_context;
void blake256r14_8way_init(void *cc);
void blake256r14_8way(void *cc, const void *data, size_t len);
void blake256r14_8way_update(void *cc, const void *data, size_t len);
void blake256r14_8way_close(void *cc, void *dst);
// 8 rounds, blakecoin, vanilla
typedef blake_8way_small_context blake256r8_8way_context;
void blake256r8_8way_init(void *cc);
void blake256r8_8way(void *cc, const void *data, size_t len);
void blake256r8_8way_update(void *cc, const void *data, size_t len);
#define blake256r8_8way blake256r8_8way_update
void blake256r8_8way_close(void *cc, void *dst);
// Blake-512 4 way

View File

@@ -634,7 +634,7 @@ do { \
m256_const1_64( 0x082EFA98082EFA98 ) ); \
VF = _mm256_xor_si256( _mm256_set1_epi32( T1 ), \
m256_const1_64( 0xEC4E6C89EC4E6C89 ) ); \
shuf_bswap32 = m256_const_64( 0x0c0d0e0f08090a0b, 0x0405060700010203, \
shuf_bswap32 = m256_const_64( 0x1c1d1e1f18191a1b, 0x1415161710111213, \
0x0c0d0e0f08090a0b, 0x0405060700010203 ); \
M0 = _mm256_shuffle_epi8( * buf , shuf_bswap32 ); \
M1 = _mm256_shuffle_epi8( *(buf+ 1), shuf_bswap32 ); \
@@ -1184,7 +1184,7 @@ blake256_16way_update(void *cc, const void *data, size_t len)
}
void
blake256_16way_close_update(void *cc, void *dst)
blake256_16way_close(void *cc, void *dst)
{
blake32_16way_close(cc, 0, 0, dst, 8);
}
@@ -1259,7 +1259,7 @@ blake256_8way_init(void *cc)
}
void
blake256_8way(void *cc, const void *data, size_t len)
blake256_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
@@ -1279,7 +1279,7 @@ void blake256r14_4way_init(void *cc)
}
void
blake256r14_4way(void *cc, const void *data, size_t len)
blake256r14_4way_update(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
@@ -1298,7 +1298,7 @@ void blake256r14_8way_init(void *cc)
}
void
blake256r14_8way(void *cc, const void *data, size_t len)
blake256r14_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}
@@ -1318,7 +1318,7 @@ void blake256r8_4way_init(void *cc)
}
void
blake256r8_4way(void *cc, const void *data, size_t len)
blake256r8_4way_update(void *cc, const void *data, size_t len)
{
blake32_4way(cc, data, len);
}
@@ -1337,7 +1337,7 @@ void blake256r8_8way_init(void *cc)
}
void
blake256r8_8way(void *cc, const void *data, size_t len)
blake256r8_8way_update(void *cc, const void *data, size_t len)
{
blake32_8way(cc, data, len);
}

View File

@@ -64,10 +64,10 @@ static void transform_4way( cube_4way_context *sp )
x1 = _mm512_xor_si512( x1, x5 );
x2 = _mm512_xor_si512( x2, x6 );
x3 = _mm512_xor_si512( x3, x7 );
x4 = mm512_swap64_128( x4 );
x5 = mm512_swap64_128( x5 );
x6 = mm512_swap64_128( x6 );
x7 = mm512_swap64_128( x7 );
x4 = mm512_swap128_64( x4 );
x5 = mm512_swap128_64( x5 );
x6 = mm512_swap128_64( x6 );
x7 = mm512_swap128_64( x7 );
x4 = _mm512_add_epi32( x0, x4 );
x5 = _mm512_add_epi32( x1, x5 );
x6 = _mm512_add_epi32( x2, x6 );
@@ -82,10 +82,10 @@ static void transform_4way( cube_4way_context *sp )
x1 = _mm512_xor_si512( x1, x5 );
x2 = _mm512_xor_si512( x2, x6 );
x3 = _mm512_xor_si512( x3, x7 );
x4 = mm512_swap32_64( x4 );
x5 = mm512_swap32_64( x5 );
x6 = mm512_swap32_64( x6 );
x7 = mm512_swap32_64( x7 );
x4 = mm512_swap64_32( x4 );
x5 = mm512_swap64_32( x5 );
x6 = mm512_swap64_32( x6 );
x7 = mm512_swap64_32( x7 );
}
_mm512_store_si512( (__m512i*)sp->h, x0 );
@@ -239,10 +239,10 @@ static void transform_2way( cube_2way_context *sp )
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
x3 = _mm256_xor_si256( x3, x7 );
x4 = mm256_swap64_128( x4 );
x5 = mm256_swap64_128( x5 );
x6 = mm256_swap64_128( x6 );
x7 = mm256_swap64_128( x7 );
x4 = mm256_swap128_64( x4 );
x5 = mm256_swap128_64( x5 );
x6 = mm256_swap128_64( x6 );
x7 = mm256_swap128_64( x7 );
x4 = _mm256_add_epi32( x0, x4 );
x5 = _mm256_add_epi32( x1, x5 );
x6 = _mm256_add_epi32( x2, x6 );
@@ -257,10 +257,10 @@ static void transform_2way( cube_2way_context *sp )
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
x3 = _mm256_xor_si256( x3, x7 );
x4 = mm256_swap32_64( x4 );
x5 = mm256_swap32_64( x5 );
x6 = mm256_swap32_64( x6 );
x7 = mm256_swap32_64( x7 );
x4 = mm256_swap64_32( x4 );
x5 = mm256_swap64_32( x5 );
x6 = mm256_swap64_32( x6 );
x7 = mm256_swap64_32( x7 );
}
_mm256_store_si256( (__m256i*)sp->h, x0 );

View File

@@ -39,8 +39,8 @@ static void transform( cubehashParam *sp )
x1 = mm256_rol_32( y0, 7 );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = mm256_swap64_128( x2 );
x3 = mm256_swap64_128( x3 );
x2 = mm256_swap128_64( x2 );
x3 = mm256_swap128_64( x3 );
x2 = _mm256_add_epi32( x0, x2 );
x3 = _mm256_add_epi32( x1, x3 );
y0 = mm256_swap_128( x0 );
@@ -49,8 +49,8 @@ static void transform( cubehashParam *sp )
x1 = mm256_rol_32( y1, 11 );
x0 = _mm256_xor_si256( x0, x2 );
x1 = _mm256_xor_si256( x1, x3 );
x2 = mm256_swap32_64( x2 );
x3 = mm256_swap32_64( x3 );
x2 = mm256_swap64_32( x2 );
x3 = mm256_swap64_32( x3 );
}
_mm256_store_si256( (__m256i*)sp->x, x0 );

View File

@@ -528,6 +528,346 @@ static const sph_u32 T512[64][16] = {
SPH_C32(0xe7e00a94) }
};
#define s0 m0
#define s1 c0
#define s2 m1
#define s3 c1
#define s4 c2
#define s5 m2
#define s6 c3
#define s7 m3
#define s8 m4
#define s9 c4
#define sA m5
#define sB c5
#define sC c6
#define sD m6
#define sE c7
#define sF m7
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// Hamsi 8 way
#define INPUT_BIG8 \
do { \
__m512i db = *buf; \
const uint64_t *tp = (uint64_t*)&T512[0][0]; \
m0 = m1 = m2 = m3 = m4 = m5 = m6 = m7 = m512_zero; \
for ( int u = 0; u < 64; u++ ) \
{ \
__m512i dm = _mm512_and_si512( db, m512_one_64 ) ; \
dm = mm512_negate_32( _mm512_or_si512( dm, \
_mm512_slli_epi64( dm, 32 ) ) ); \
m0 = _mm512_xor_si512( m0, _mm512_and_si512( dm, \
m512_const1_64( tp[0] ) ) ); \
m1 = _mm512_xor_si512( m1, _mm512_and_si512( dm, \
m512_const1_64( tp[1] ) ) ); \
m2 = _mm512_xor_si512( m2, _mm512_and_si512( dm, \
m512_const1_64( tp[2] ) ) ); \
m3 = _mm512_xor_si512( m3, _mm512_and_si512( dm, \
m512_const1_64( tp[3] ) ) ); \
m4 = _mm512_xor_si512( m4, _mm512_and_si512( dm, \
m512_const1_64( tp[4] ) ) ); \
m5 = _mm512_xor_si512( m5, _mm512_and_si512( dm, \
m512_const1_64( tp[5] ) ) ); \
m6 = _mm512_xor_si512( m6, _mm512_and_si512( dm, \
m512_const1_64( tp[6] ) ) ); \
m7 = _mm512_xor_si512( m7, _mm512_and_si512( dm, \
m512_const1_64( tp[7] ) ) ); \
tp += 8; \
db = _mm512_srli_epi64( db, 1 ); \
} \
} while (0)
#define SBOX8( a, b, c, d ) \
do { \
__m512i t; \
t = a; \
a = _mm512_and_si512( a, c ); \
a = _mm512_xor_si512( a, d ); \
c = _mm512_xor_si512( c, b ); \
c = _mm512_xor_si512( c, a ); \
d = _mm512_or_si512( d, t ); \
d = _mm512_xor_si512( d, b ); \
t = _mm512_xor_si512( t, c ); \
b = d; \
d = _mm512_or_si512( d, t ); \
d = _mm512_xor_si512( d, a ); \
a = _mm512_and_si512( a, b ); \
t = _mm512_xor_si512( t, a ); \
b = _mm512_xor_si512( b, d ); \
b = _mm512_xor_si512( b, t ); \
a = c; \
c = b; \
b = d; \
d = mm512_not( t ); \
} while (0)
#define L8( a, b, c, d ) \
do { \
a = mm512_rol_32( a, 13 ); \
c = mm512_rol_32( c, 3 ); \
b = _mm512_xor_si512( b, _mm512_xor_si512( a, c ) ); \
d = _mm512_xor_si512( d, _mm512_xor_si512( c, \
_mm512_slli_epi32( a, 3 ) ) ); \
b = mm512_rol_32( b, 1 ); \
d = mm512_rol_32( d, 7 ); \
a = _mm512_xor_si512( a, _mm512_xor_si512( b, d ) ); \
c = _mm512_xor_si512( c, _mm512_xor_si512( d, \
_mm512_slli_epi32( b, 7 ) ) ); \
a = mm512_rol_32( a, 5 ); \
c = mm512_rol_32( c, 22 ); \
} while (0)
#define DECL_STATE_BIG8 \
__m512i c0, c1, c2, c3, c4, c5, c6, c7; \
#define READ_STATE_BIG8(sc) \
do { \
c0 = sc->h[0x0]; \
c1 = sc->h[0x1]; \
c2 = sc->h[0x2]; \
c3 = sc->h[0x3]; \
c4 = sc->h[0x4]; \
c5 = sc->h[0x5]; \
c6 = sc->h[0x6]; \
c7 = sc->h[0x7]; \
} while (0)
#define WRITE_STATE_BIG8(sc) \
do { \
sc->h[0x0] = c0; \
sc->h[0x1] = c1; \
sc->h[0x2] = c2; \
sc->h[0x3] = c3; \
sc->h[0x4] = c4; \
sc->h[0x5] = c5; \
sc->h[0x6] = c6; \
sc->h[0x7] = c7; \
} while (0)
#define ROUND_BIG8(rc, alpha) \
do { \
__m512i t0, t1, t2, t3; \
s0 = _mm512_xor_si512( s0, m512_const1_64( \
( (uint64_t)(rc) << 32 ) ^ ( (uint64_t*)(alpha) )[ 0] ) ); \
s1 = _mm512_xor_si512( s1, m512_const1_64( ( (uint64_t*)(alpha) )[ 1] ) ); \
s2 = _mm512_xor_si512( s2, m512_const1_64( ( (uint64_t*)(alpha) )[ 2] ) ); \
s3 = _mm512_xor_si512( s3, m512_const1_64( ( (uint64_t*)(alpha) )[ 3] ) ); \
s4 = _mm512_xor_si512( s4, m512_const1_64( ( (uint64_t*)(alpha) )[ 4] ) ); \
s5 = _mm512_xor_si512( s5, m512_const1_64( ( (uint64_t*)(alpha) )[ 5] ) ); \
s6 = _mm512_xor_si512( s6, m512_const1_64( ( (uint64_t*)(alpha) )[ 6] ) ); \
s7 = _mm512_xor_si512( s7, m512_const1_64( ( (uint64_t*)(alpha) )[ 7] ) ); \
s8 = _mm512_xor_si512( s8, m512_const1_64( ( (uint64_t*)(alpha) )[ 8] ) ); \
s9 = _mm512_xor_si512( s9, m512_const1_64( ( (uint64_t*)(alpha) )[ 9] ) ); \
sA = _mm512_xor_si512( sA, m512_const1_64( ( (uint64_t*)(alpha) )[10] ) ); \
sB = _mm512_xor_si512( sB, m512_const1_64( ( (uint64_t*)(alpha) )[11] ) ); \
sC = _mm512_xor_si512( sC, m512_const1_64( ( (uint64_t*)(alpha) )[12] ) ); \
sD = _mm512_xor_si512( sD, m512_const1_64( ( (uint64_t*)(alpha) )[13] ) ); \
sE = _mm512_xor_si512( sE, m512_const1_64( ( (uint64_t*)(alpha) )[14] ) ); \
sF = _mm512_xor_si512( sF, m512_const1_64( ( (uint64_t*)(alpha) )[15] ) ); \
\
SBOX8( s0, s4, s8, sC ); \
SBOX8( s1, s5, s9, sD ); \
SBOX8( s2, s6, sA, sE ); \
SBOX8( s3, s7, sB, sF ); \
\
t1 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s4, 4 ), \
_mm512_bslli_epi128( s5, 4 ) ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( sD, 4 ), \
_mm512_bslli_epi128( sE, 4 ) ); \
L8( s0, t1, s9, t3 ); \
s4 = _mm512_mask_blend_epi32( 0xaaaa, s4, _mm512_bslli_epi128( t1, 4 ) ); \
s5 = _mm512_mask_blend_epi32( 0x5555, s5, _mm512_bsrli_epi128( t1, 4 ) ); \
sD = _mm512_mask_blend_epi32( 0xaaaa, sD, _mm512_bslli_epi128( t3, 4 ) ); \
sE = _mm512_mask_blend_epi32( 0x5555, sE, _mm512_bsrli_epi128( t3, 4 ) ); \
\
t1 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s5, 4 ), \
_mm512_bslli_epi128( s6, 4 ) ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( sE, 4 ), \
_mm512_bslli_epi128( sF, 4 ) ); \
L8( s1, t1, sA, t3 ); \
s5 = _mm512_mask_blend_epi32( 0xaaaa, s5, _mm512_bslli_epi128( t1, 4 ) ); \
s6 = _mm512_mask_blend_epi32( 0x5555, s6, _mm512_bsrli_epi128( t1, 4 ) ); \
sE = _mm512_mask_blend_epi32( 0xaaaa, sE, _mm512_bslli_epi128( t3, 4 ) ); \
sF = _mm512_mask_blend_epi32( 0x5555, sF, _mm512_bsrli_epi128( t3, 4 ) ); \
\
t1 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s6, 4 ), \
_mm512_bslli_epi128( s7, 4 ) ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( sF, 4 ), \
_mm512_bslli_epi128( sC, 4 ) ); \
L8( s2, t1, sB, t3 ); \
s6 = _mm512_mask_blend_epi32( 0xaaaa, s6, _mm512_bslli_epi128( t1, 4 ) ); \
s7 = _mm512_mask_blend_epi32( 0x5555, s7, _mm512_bsrli_epi128( t1, 4 ) ); \
sF = _mm512_mask_blend_epi32( 0xaaaa, sF, _mm512_bslli_epi128( t3, 4 ) ); \
sC = _mm512_mask_blend_epi32( 0x5555, sC, _mm512_bsrli_epi128( t3, 4 ) ); \
\
t1 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s7, 4 ), \
_mm512_bslli_epi128( s4, 4 ) ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( sC, 4 ), \
_mm512_bslli_epi128( sD, 4 ) ); \
L8( s3, t1, s8, t3 ); \
s7 = _mm512_mask_blend_epi32( 0xaaaa, s7, _mm512_bslli_epi128( t1, 4 ) ); \
s4 = _mm512_mask_blend_epi32( 0x5555, s4, _mm512_bsrli_epi128( t1, 4 ) ); \
sC = _mm512_mask_blend_epi32( 0xaaaa, sC, _mm512_bslli_epi128( t3, 4 ) ); \
sD = _mm512_mask_blend_epi32( 0x5555, sD, _mm512_bsrli_epi128( t3, 4 ) ); \
\
t0 = _mm512_mask_blend_epi32( 0xaaaa, s0, _mm512_bslli_epi128( s8, 4 ) ); \
t1 = _mm512_mask_blend_epi32( 0xaaaa, s1, s9 ); \
t2 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s2, 4 ), sA ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s3, 4 ), \
_mm512_bslli_epi128( sB, 4 ) ); \
L8( t0, t1, t2, t3 ); \
s0 = _mm512_mask_blend_epi32( 0x5555, s0, t0 ); \
s8 = _mm512_mask_blend_epi32( 0x5555, s8, _mm512_bsrli_epi128( t0, 4 ) ); \
s1 = _mm512_mask_blend_epi32( 0x5555, s1, t1 ); \
s9 = _mm512_mask_blend_epi32( 0xaaaa, s9, t1 ); \
s2 = _mm512_mask_blend_epi32( 0xaaaa, s2, _mm512_bslli_epi128( t2, 4 ) ); \
sA = _mm512_mask_blend_epi32( 0xaaaa, sA, t2 ); \
s3 = _mm512_mask_blend_epi32( 0xaaaa, s3, _mm512_bslli_epi128( t3, 4 ) ); \
sB = _mm512_mask_blend_epi32( 0x5555, sB, _mm512_bsrli_epi128( t3, 4 ) ); \
\
t0 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s4, 4 ), sC ); \
t1 = _mm512_mask_blend_epi32( 0xaaaa, _mm512_bsrli_epi128( s5, 4 ), \
_mm512_bslli_epi128( sD, 4 ) ); \
t2 = _mm512_mask_blend_epi32( 0xaaaa, s6, _mm512_bslli_epi128( sE, 4 ) ); \
t3 = _mm512_mask_blend_epi32( 0xaaaa, s7, sF ); \
L8( t0, t1, t2, t3 ); \
s4 = _mm512_mask_blend_epi32( 0xaaaa, s4, _mm512_bslli_epi128( t0, 4 ) ); \
sC = _mm512_mask_blend_epi32( 0xaaaa, sC, t0 ); \
s5 = _mm512_mask_blend_epi32( 0xaaaa, s5, _mm512_bslli_epi128( t1, 4 ) ); \
sD = _mm512_mask_blend_epi32( 0x5555, sD, _mm512_bsrli_epi128( t1, 4 ) ); \
s6 = _mm512_mask_blend_epi32( 0x5555, s6, t2 ); \
sE = _mm512_mask_blend_epi32( 0x5555, sE, _mm512_bsrli_epi128( t2, 4 ) ); \
s7 = _mm512_mask_blend_epi32( 0x5555, s7, t3 ); \
sF = _mm512_mask_blend_epi32( 0xaaaa, sF, t3 ); \
} while (0)
#define P_BIG8 \
do { \
ROUND_BIG8(0, alpha_n); \
ROUND_BIG8(1, alpha_n); \
ROUND_BIG8(2, alpha_n); \
ROUND_BIG8(3, alpha_n); \
ROUND_BIG8(4, alpha_n); \
ROUND_BIG8(5, alpha_n); \
} while (0)
#define PF_BIG8 \
do { \
ROUND_BIG8( 0, alpha_f); \
ROUND_BIG8( 1, alpha_f); \
ROUND_BIG8( 2, alpha_f); \
ROUND_BIG8( 3, alpha_f); \
ROUND_BIG8( 4, alpha_f); \
ROUND_BIG8( 5, alpha_f); \
ROUND_BIG8( 6, alpha_f); \
ROUND_BIG8( 7, alpha_f); \
ROUND_BIG8( 8, alpha_f); \
ROUND_BIG8( 9, alpha_f); \
ROUND_BIG8(10, alpha_f); \
ROUND_BIG8(11, alpha_f); \
} while (0)
#define T_BIG8 \
do { /* order is important */ \
c7 = sc->h[ 0x7 ] = _mm512_xor_si512( sc->h[ 0x7 ], sB ); \
c6 = sc->h[ 0x6 ] = _mm512_xor_si512( sc->h[ 0x6 ], sA ); \
c5 = sc->h[ 0x5 ] = _mm512_xor_si512( sc->h[ 0x5 ], s9 ); \
c4 = sc->h[ 0x4 ] = _mm512_xor_si512( sc->h[ 0x4 ], s8 ); \
c3 = sc->h[ 0x3 ] = _mm512_xor_si512( sc->h[ 0x3 ], s3 ); \
c2 = sc->h[ 0x2 ] = _mm512_xor_si512( sc->h[ 0x2 ], s2 ); \
c1 = sc->h[ 0x1 ] = _mm512_xor_si512( sc->h[ 0x1 ], s1 ); \
c0 = sc->h[ 0x0 ] = _mm512_xor_si512( sc->h[ 0x0 ], s0 ); \
} while (0)
void hamsi_8way_big( hamsi_8way_big_context *sc, __m512i *buf, size_t num )
{
DECL_STATE_BIG8
uint32_t tmp = num << 6;
sc->count_low = SPH_T32( sc->count_low + tmp );
sc->count_high += (sph_u32)( (num >> 13) >> 13 );
if ( sc->count_low < tmp )
sc->count_high++;
READ_STATE_BIG8( sc );
while ( num-- > 0 )
{
__m512i m0, m1, m2, m3, m4, m5, m6, m7;
INPUT_BIG8;
P_BIG8;
T_BIG8;
buf++;
}
WRITE_STATE_BIG8( sc );
}
void hamsi_8way_big_final( hamsi_8way_big_context *sc, __m512i *buf )
{
__m512i m0, m1, m2, m3, m4, m5, m6, m7;
DECL_STATE_BIG8
READ_STATE_BIG8( sc );
INPUT_BIG8;
PF_BIG8;
T_BIG8;
WRITE_STATE_BIG8( sc );
}
void hamsi512_8way_init( hamsi_8way_big_context *sc )
{
sc->partial_len = 0;
sc->count_high = sc->count_low = 0;
sc->h[0] = m512_const1_64( 0x6c70617273746565 );
sc->h[1] = m512_const1_64( 0x656e62656b204172 );
sc->h[2] = m512_const1_64( 0x302c206272672031 );
sc->h[3] = m512_const1_64( 0x3434362c75732032 );
sc->h[4] = m512_const1_64( 0x3030312020422d33 );
sc->h[5] = m512_const1_64( 0x656e2d484c657576 );
sc->h[6] = m512_const1_64( 0x6c65652c65766572 );
sc->h[7] = m512_const1_64( 0x6769756d2042656c );
}
void hamsi512_8way_update( hamsi_8way_big_context *sc, const void *data,
size_t len )
{
__m512i *vdata = (__m512i*)data;
hamsi_8way_big( sc, vdata, len>>3 );
vdata += ( (len& ~(size_t)7) >> 3 );
len &= (size_t)7;
memcpy_512( sc->buf, vdata, len>>3 );
sc->partial_len = len;
}
void hamsi512_8way_close( hamsi_8way_big_context *sc, void *dst )
{
__m512i pad[1];
int ch, cl;
sph_enc32be( &ch, sc->count_high );
sph_enc32be( &cl, sc->count_low + ( sc->partial_len << 3 ) );
pad[0] = _mm512_set_epi32( cl, ch, cl, ch, cl, ch, cl, ch,
cl, ch, cl, ch, cl, ch, cl, ch );
// pad[0] = m512_const2_32( cl, ch );
sc->buf[0] = m512_const1_64( 0x80 );
hamsi_8way_big( sc, sc->buf, 1 );
hamsi_8way_big_final( sc, pad );
mm512_block_bswap_32( (__m512i*)dst, sc->h );
}
#endif // AVX512
// Hamsi 4 way
#define INPUT_BIG \
do { \
@@ -627,6 +967,7 @@ do { \
sc->h[0x7] = c7; \
} while (0)
/*
#define s0 m0
#define s1 c0
#define s2 m1
@@ -643,42 +984,28 @@ do { \
#define sD m6
#define sE c7
#define sF m7
*/
#define ROUND_BIG(rc, alpha) \
do { \
__m256i t0, t1, t2, t3; \
s0 = _mm256_xor_si256( s0, m256_const1_64( \
( ( (uint64_t)( (rc) ^ alpha[1] ) << 32 ) ) | (uint64_t)alpha[0] ) ); \
s1 = _mm256_xor_si256( s1, m256_const1_64( \
( (uint64_t)alpha[ 3] << 32 ) | (uint64_t)alpha[ 2] ) ); \
s2 = _mm256_xor_si256( s2, m256_const1_64( \
( (uint64_t)alpha[ 5] << 32 ) | (uint64_t)alpha[ 4] ) ); \
s3 = _mm256_xor_si256( s3, m256_const1_64( \
( (uint64_t)alpha[ 7] << 32 ) | (uint64_t)alpha[ 6] ) ); \
s4 = _mm256_xor_si256( s4, m256_const1_64( \
( (uint64_t)alpha[ 9] << 32 ) | (uint64_t)alpha[ 8] ) ); \
s5 = _mm256_xor_si256( s5, m256_const1_64( \
( (uint64_t)alpha[11] << 32 ) | (uint64_t)alpha[10] ) ); \
s6 = _mm256_xor_si256( s6, m256_const1_64( \
( (uint64_t)alpha[13] << 32 ) | (uint64_t)alpha[12] ) ); \
s7 = _mm256_xor_si256( s7, m256_const1_64( \
( (uint64_t)alpha[15] << 32 ) | (uint64_t)alpha[14] ) ); \
s8 = _mm256_xor_si256( s8, m256_const1_64( \
( (uint64_t)alpha[17] << 32 ) | (uint64_t)alpha[16] ) ); \
s9 = _mm256_xor_si256( s9, m256_const1_64( \
( (uint64_t)alpha[19] << 32 ) | (uint64_t)alpha[18] ) ); \
sA = _mm256_xor_si256( sA, m256_const1_64( \
( (uint64_t)alpha[21] << 32 ) | (uint64_t)alpha[20] ) ); \
sB = _mm256_xor_si256( sB, m256_const1_64( \
( (uint64_t)alpha[23] << 32 ) | (uint64_t)alpha[22] ) ); \
sC = _mm256_xor_si256( sC, m256_const1_64( \
( (uint64_t)alpha[25] << 32 ) | (uint64_t)alpha[24] ) ); \
sD = _mm256_xor_si256( sD, m256_const1_64( \
( (uint64_t)alpha[27] << 32 ) | (uint64_t)alpha[26] ) ); \
sE = _mm256_xor_si256( sE, m256_const1_64( \
( (uint64_t)alpha[29] << 32 ) | (uint64_t)alpha[28] ) ); \
sF = _mm256_xor_si256( sF, m256_const1_64( \
( (uint64_t)alpha[31] << 32 ) | (uint64_t)alpha[30] ) ); \
( (uint64_t)(rc) << 32 ) ^ ( (uint64_t*)(alpha) )[ 0] ) ); \
s1 = _mm256_xor_si256( s1, m256_const1_64( ( (uint64_t*)(alpha) )[ 1] ) ); \
s2 = _mm256_xor_si256( s2, m256_const1_64( ( (uint64_t*)(alpha) )[ 2] ) ); \
s3 = _mm256_xor_si256( s3, m256_const1_64( ( (uint64_t*)(alpha) )[ 3] ) ); \
s4 = _mm256_xor_si256( s4, m256_const1_64( ( (uint64_t*)(alpha) )[ 4] ) ); \
s5 = _mm256_xor_si256( s5, m256_const1_64( ( (uint64_t*)(alpha) )[ 5] ) ); \
s6 = _mm256_xor_si256( s6, m256_const1_64( ( (uint64_t*)(alpha) )[ 6] ) ); \
s7 = _mm256_xor_si256( s7, m256_const1_64( ( (uint64_t*)(alpha) )[ 7] ) ); \
s8 = _mm256_xor_si256( s8, m256_const1_64( ( (uint64_t*)(alpha) )[ 8] ) ); \
s9 = _mm256_xor_si256( s9, m256_const1_64( ( (uint64_t*)(alpha) )[ 9] ) ); \
sA = _mm256_xor_si256( sA, m256_const1_64( ( (uint64_t*)(alpha) )[10] ) ); \
sB = _mm256_xor_si256( sB, m256_const1_64( ( (uint64_t*)(alpha) )[11] ) ); \
sC = _mm256_xor_si256( sC, m256_const1_64( ( (uint64_t*)(alpha) )[12] ) ); \
sD = _mm256_xor_si256( sD, m256_const1_64( ( (uint64_t*)(alpha) )[13] ) ); \
sE = _mm256_xor_si256( sE, m256_const1_64( ( (uint64_t*)(alpha) )[14] ) ); \
sF = _mm256_xor_si256( sF, m256_const1_64( ( (uint64_t*)(alpha) )[15] ) ); \
\
SBOX( s0, s4, s8, sC ); \
SBOX( s1, s5, s9, sD ); \

View File

@@ -60,9 +60,32 @@ typedef struct {
typedef hamsi_4way_big_context hamsi512_4way_context;
void hamsi512_4way_init( hamsi512_4way_context *sc );
void hamsi512_4way( hamsi512_4way_context *sc, const void *data, size_t len );
void hamsi512_4way_update( hamsi512_4way_context *sc, const void *data,
size_t len );
#define hamsi512_4way hamsi512_4way_update
void hamsi512_4way_close( hamsi512_4way_context *sc, void *dst );
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct {
__m512i h[8];
__m512i buf[1];
size_t partial_len;
sph_u32 count_high, count_low;
} hamsi_8way_big_context;
typedef hamsi_8way_big_context hamsi512_8way_context;
void hamsi512_8way_init( hamsi512_8way_context *sc );
void hamsi512_8way_update( hamsi512_8way_context *sc, const void *data,
size_t len );
void hamsi512_8way_close( hamsi512_8way_context *sc, void *dst );
#endif
#ifdef __cplusplus
}
#endif

View File

@@ -44,8 +44,13 @@ bool lyra2rev3_thread_init()
{
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * 4; // nCols
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
int size = ROW_LEN_BYTES * 4; // nRows;
int size = (int64_t)ROW_LEN_BYTES * 4; // nRows;
#if defined(LYRA2REV3_16WAY)
// l2v3_wholeMatrix = _mm_malloc( 2*size, 128 );
l2v3_wholeMatrix = _mm_malloc( 2*size, 64 );
init_lyra2rev3_16way_ctx();;
#else
l2v3_wholeMatrix = _mm_malloc( size, 64 );
#if defined (LYRA2REV3_8WAY)
init_lyra2rev3_8way_ctx();;
@@ -53,13 +58,17 @@ bool lyra2rev3_thread_init()
init_lyra2rev3_4way_ctx();;
#else
init_lyra2rev3_ctx();
#endif
#endif
return l2v3_wholeMatrix;
}
bool register_lyra2rev3_algo( algo_gate_t* gate )
{
#if defined (LYRA2REV3_8WAY)
#if defined(LYRA2REV3_16WAY)
gate->scanhash = (void*)&scanhash_lyra2rev3_16way;
gate->hash = (void*)&lyra2rev3_16way_hash;
#elif defined (LYRA2REV3_8WAY)
gate->scanhash = (void*)&scanhash_lyra2rev3_8way;
gate->hash = (void*)&lyra2rev3_8way_hash;
#elif defined (LYRA2REV3_4WAY)
@@ -69,6 +78,7 @@ bool register_lyra2rev3_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_lyra2rev3;
gate->hash = (void*)&lyra2rev3_hash;
#endif
// gate->optimizations = SSE2_OPT | SSE42_OPT | AVX2_OPT | AVX512_OPT;
gate->optimizations = SSE2_OPT | SSE42_OPT | AVX2_OPT;
gate->miner_thread_init = (void*)&lyra2rev3_thread_init;
opt_target_factor = 256.0;

View File

@@ -5,18 +5,27 @@
#include <stdint.h>
#include "lyra2.h"
//#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
// #define LYRA2REV3_16WAY 1
//#elif defined(__AVX2__)
#if defined(__AVX2__)
#define LYRA2REV3_8WAY
#endif
#if defined(__SSE2__)
#define LYRA2REV3_4WAY
#define LYRA2REV3_8WAY 1
#elif defined(__SSE2__)
#define LYRA2REV3_4WAY 1
#endif
extern __thread uint64_t* l2v3_wholeMatrix;
bool register_lyra2rev3_algo( algo_gate_t* gate );
#if defined(LYRA2REV3_8WAY)
#if defined(LYRA2REV3_16WAY)
void lyra2rev3_16way_hash( void *state, const void *input );
int scanhash_lyra2rev3_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool init_lyra2rev3_16way_ctx();
#elif defined(LYRA2REV3_8WAY)
void lyra2rev3_8way_hash( void *state, const void *input );
int scanhash_lyra2rev3_8way( struct work *work, uint32_t max_nonce,

View File

@@ -1,715 +0,0 @@
/**
* Implementation of the Lyra2 Password Hashing Scheme (PHS).
*
* Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
*
* This software is hereby placed in the public domain.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <mm_malloc.h>
#include "compat.h"
#include "lyra2.h"
#include "sponge.h"
/**
* Executes Lyra2 based on the G function from Blake2b. This version supports salts and passwords
* whose combined length is smaller than the size of the memory matrix, (i.e., (nRows x nCols x b) bits,
* where "b" is the underlying sponge's bitrate). In this implementation, the "basil" is composed by all
* integer parameters (treated as type "unsigned int") in the order they are provided, plus the value
* of nCols, (i.e., basil = kLen || pwdlen || saltlen || timeCost || nRows || nCols).
*
* @param K The derived key to be output by the algorithm
* @param kLen Desired key length
* @param pwd User password
* @param pwdlen Password length
* @param salt Salt
* @param saltlen Salt length
* @param timeCost Parameter to determine the processing time (T)
* @param nRows Number or rows of the memory matrix (R)
* @param nCols Number of columns of the memory matrix (C)
*
* @return 0 if the key is generated correctly; -1 if there is an error (usually due to lack of memory for allocation)
*/
int LYRA2REV2( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
const uint64_t timeCost, const uint64_t nRows,
const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
// int64_t i; //auxiliary iteration counter
int64_t v64; // 64bit var for memcpy
//====================================================================/
//=== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
uint64_t *ptrWord = wholeMatrix;
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
//=== Getting the password + salt + basil padded with 10*1 ==========//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
byte *ptrByte = (byte*) wholeMatrix;
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
- (saltlen + pwdlen) );
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = pwdlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = saltlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = timeCost;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nRows;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nCols;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
// from here on it's all simd acces to state and matrix
// define vector pointers and adjust sizes and pointer offsets
//================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
// initState( state );
//========================= Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN );
/*
for (i = 0; i < nBlocksInput; i++)
{
absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
}
*/
//Initializes M[0] and M[1]
reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
nCols);
do
{
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0)
{
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//===================== Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++)
{
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do
{
//Selects a pseudorandom index row*
//-----------------------------------------------
rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//-------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//----------------------------------------------------
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//----------------------------------------------------
} while (row != 0);
}
//===================== Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]);
//Squeezes the key
squeeze(state, K, (unsigned int) kLen);
return 0;
}
/////////////////////////////////////////////////
// 2 way 256
// drop salt, salt len arguments, hard code some others.
// Data is interleaved 2x256.
int LYRA2REV3_2WAY( uint64_t* wholeMatrix, void *K, uint64_t kLen,
const void *pwd, const uint64_t pwdlen, const void *salt,
const uint64_t saltlen, const uint64_t timeCost, const uint64_t nRows,
const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
// int64_t i; //auxiliary iteration counter
int64_t v64; // 64bit var for memcpy
uint64_t instance0 = 0; // Seperate instance for each lane
uint64_t instance1 = 0;
//====================================================================/
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t BLOCK_LEN = BLOCK_LEN_BLAKE2_SAFE_INT64;
uint64_t *ptrWord = wholeMatrix;
// 2 way 256 rewrite. Salt always == password, and data is interleaved,
// need to build in parallel:
// { password, (64 or 80 bytes)
// salt, (64 or 80 bytes) = same as password
// Klen, (u64) = 32 bytes
// pwdlen, (u64)
// saltlen, (u64)
// timecost, (u64)
// nrows, (u64)
// ncols, (u64)
// 0x80, (byte)
// { 0 .. 0 },
// 1 (byte)
// }
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
byte *ptrByte = (byte*) wholeMatrix;
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
- (saltlen + pwdlen) );
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = pwdlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = saltlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = timeCost;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nRows;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nCols;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
// from here on it's all simd acces to state and matrix
// define vector pointers and adjust sizes and pointer offsets
ptrWord = wholeMatrix;
absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN );
reducedSqueezeRow0( state, &wholeMatrix[0], nCols );
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
nCols);
do
{
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
rowa = (rowa + step) & (window - 1);
prev = row;
row++;
if (rowa == 0)
{
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
row = 0;
for (tau = 1; tau <= timeCost; tau++)
{
step = ((tau & 1) == 0) ? -1 : (nRows >> 1) - 1;
do
{
// This part is not parallel, rowa will be different for each lane.
// state (u64[16]) is interleaved 2x256, need to extract seperately.
// index = 2 * instance / 4 * 4 + instance % 4
uint64_t index0 = ( ( (instance0 & 0xf) >> 3 ) << 2 )
+ ( instance0 & 0x3 )
uint64_t index1 = ( ( (instance1 & 0xf) >> 3 ) << 2 )
+ ( instance1 & 0x3 )
instance0 = state[ index0 ] & 0xf;
instance1 = (state+4)[ index1 ] & 0xf;
rowa0 = state[ instance0 ];
rowa1 = (state+4)[ instance1 ];
reducedDuplexRow_2way( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa0*ROW_LEN_INT64],
&wholeMatrix[rowa1*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
/*
instance = state[instance & 0xF];
rowa = state[instance & 0xF] & (unsigned int)(nRows-1);
reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
*/
// End of divergence.
prev = row;
row = (row + step) & (unsigned int)(nRows-1);
} while ( row != 0 );
}
absorbBlock( state, &wholeMatrix[rowa*ROW_LEN_INT64] );
squeeze( state, K, (unsigned int) kLen );
return 0;
}
//////////////////////////////////////////////////
int LYRA2Z( uint64_t* wholeMatrix, void *K, uint64_t kLen, const void *pwd,
const uint64_t pwdlen, const void *salt, const uint64_t saltlen,
const uint64_t timeCost, const uint64_t nRows,
const uint64_t nCols )
{
//========================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
// int64_t i; //auxiliary iteration counter
//=======================================================================/
//======= Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
// const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// memset( wholeMatrix, 0, ROW_LEN_BYTES * nRows );
//==== Getting the password + salt + basil padded with 10*1 ============//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
uint64_t nBlocksInput = ( ( saltlen + pwdlen + 6 *
sizeof (uint64_t) ) / BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
byte *ptrByte = (byte*) wholeMatrix;
memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES );
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &pwdlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &saltlen, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &timeCost, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nRows, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
memcpy(ptrByte, &nCols, sizeof (uint64_t));
ptrByte += sizeof (uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
//=================== Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
// uint64_t *state = _mm_malloc(16 * sizeof(uint64_t), 32);
// if (state == NULL) {
// return -1;
// }
// initState( state );
//============================== Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
uint64_t *ptrWord = wholeMatrix;
absorbBlockBlake2Safe( state, ptrWord, nBlocksInput,
BLOCK_LEN_BLAKE2_SAFE_INT64 );
/*
for ( i = 0; i < nBlocksInput; i++ )
{
absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN_BLAKE2_SAFE_INT64; //goes to next block of pad(pwd || salt || basil)
}
*/
//Initializes M[0] and M[1]
reducedSqueezeRow0(state, &wholeMatrix[0], nCols); //The locally copied password is most likely overwritten here
reducedDuplexRow1(state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64], nCols);
do {
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols);
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0) {
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//======================== Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for ( tau = 1; tau <= timeCost; tau++ )
{
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do {
//Selects a pseudorandom index row*
//----------------------------------------------------------------------
//rowa = ((unsigned int)state[0]) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
rowa = ((uint64_t) (state[0])) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//-----------------------------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow(state, &wholeMatrix[prev*ROW_LEN_INT64], &wholeMatrix[rowa*ROW_LEN_INT64], &wholeMatrix[row*ROW_LEN_INT64], nCols);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//---------------------------------------------------------------
//row = (row + step) & (nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//--------------------------------------------------------------------
} while (row != 0);
}
//========================= Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]);
//Squeezes the key
squeeze( state, K, kLen );
return 0;
}
// Lyra2RE doesn't like the new wholeMatrix implementation
int LYRA2RE( void *K, uint64_t kLen, const void *pwd, const uint64_t pwdlen,
const void *salt, const uint64_t saltlen, const uint64_t timeCost,
const uint64_t nRows, const uint64_t nCols )
{
//====================== Basic variables ============================//
uint64_t _ALIGN(256) state[16];
int64_t row = 2; //index of row to be processed
int64_t prev = 1; //index of prev (last row ever computed/modified)
int64_t rowa = 0; //index of row* (a previous row, deterministically picked during Setup and randomly picked while Wandering)
int64_t tau; //Time Loop iterator
int64_t step = 1; //Visitation step (used during Setup and Wandering phases)
int64_t window = 2; //Visitation window (used to define which rows can be revisited during Setup)
int64_t gap = 1; //Modifier to the step, assuming the values 1 or -1
int64_t i; //auxiliary iteration counter
int64_t v64; // 64bit var for memcpy
//====================================================================/
//=== Initializing the Memory Matrix and pointers to it =============//
//Tries to allocate enough space for the whole memory matrix
const int64_t ROW_LEN_INT64 = BLOCK_LEN_INT64 * nCols;
const int64_t ROW_LEN_BYTES = ROW_LEN_INT64 * 8;
// for Lyra2REv2, nCols = 4, v1 was using 8
const int64_t BLOCK_LEN = (nCols == 4) ? BLOCK_LEN_BLAKE2_SAFE_INT64
: BLOCK_LEN_BLAKE2_SAFE_BYTES;
i = (int64_t)ROW_LEN_BYTES * nRows;
uint64_t *wholeMatrix = _mm_malloc( i, 64 );
if (wholeMatrix == NULL)
return -1;
#if defined(__AVX2__)
memset_zero_256( (__m256i*)wholeMatrix, i>>5 );
#elif defined(__SSE2__)
memset_zero_128( (__m128i*)wholeMatrix, i>>4 );
#else
memset( wholeMatrix, 0, i );
#endif
uint64_t *ptrWord = wholeMatrix;
//=== Getting the password + salt + basil padded with 10*1 ==========//
//OBS.:The memory matrix will temporarily hold the password: not for saving memory,
//but this ensures that the password copied locally will be overwritten as soon as possible
//First, we clean enough blocks for the password, salt, basil and padding
int64_t nBlocksInput = ( ( saltlen + pwdlen + 6 * sizeof(uint64_t) )
/ BLOCK_LEN_BLAKE2_SAFE_BYTES ) + 1;
byte *ptrByte = (byte*) wholeMatrix;
//Prepends the password
memcpy(ptrByte, pwd, pwdlen);
ptrByte += pwdlen;
//Concatenates the salt
memcpy(ptrByte, salt, saltlen);
ptrByte += saltlen;
// memset( ptrByte, 0, nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES
// - (saltlen + pwdlen) );
//Concatenates the basil: every integer passed as parameter, in the order they are provided by the interface
memcpy(ptrByte, &kLen, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = pwdlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = saltlen;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = timeCost;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nRows;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
v64 = nCols;
memcpy(ptrByte, &v64, sizeof(int64_t));
ptrByte += sizeof(uint64_t);
//Now comes the padding
*ptrByte = 0x80; //first byte of padding: right after the password
ptrByte = (byte*) wholeMatrix; //resets the pointer to the start of the memory matrix
ptrByte += nBlocksInput * BLOCK_LEN_BLAKE2_SAFE_BYTES - 1; //sets the pointer to the correct position: end of incomplete block
*ptrByte ^= 0x01; //last byte of padding: at the end of the last incomplete block
//================= Initializing the Sponge State ====================//
//Sponge state: 16 uint64_t, BLOCK_LEN_INT64 words of them for the bitrate (b) and the remainder for the capacity (c)
// initState( state );
//========================= Setup Phase =============================//
//Absorbing salt, password and basil: this is the only place in which the block length is hard-coded to 512 bits
ptrWord = wholeMatrix;
absorbBlockBlake2Safe( state, ptrWord, nBlocksInput, BLOCK_LEN );
/*
for (i = 0; i < nBlocksInput; i++)
{
absorbBlockBlake2Safe( state, ptrWord ); //absorbs each block of pad(pwd || salt || basil)
ptrWord += BLOCK_LEN; //goes to next block of pad(pwd || salt || basil)
}
*/
//Initializes M[0] and M[1]
reducedSqueezeRow0( state, &wholeMatrix[0], nCols ); //The locally copied password is most likely overwritten here
reducedDuplexRow1( state, &wholeMatrix[0], &wholeMatrix[ROW_LEN_INT64],
nCols);
do
{
//M[row] = rand; //M[row*] = M[row*] XOR rotW(rand)
reducedDuplexRowSetup( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
//updates the value of row* (deterministically picked during Setup))
rowa = (rowa + step) & (window - 1);
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
row++;
//Checks if all rows in the window where visited.
if (rowa == 0)
{
step = window + gap; //changes the step: approximately doubles its value
window *= 2; //doubles the size of the re-visitation window
gap = -gap; //inverts the modifier to the step
}
} while (row < nRows);
//===================== Wandering Phase =============================//
row = 0; //Resets the visitation to the first row of the memory matrix
for (tau = 1; tau <= timeCost; tau++)
{
//Step is approximately half the number of all rows of the memory matrix for an odd tau; otherwise, it is -1
step = (tau % 2 == 0) ? -1 : nRows / 2 - 1;
do
{
//Selects a pseudorandom index row*
//-----------------------------------------------
rowa = state[0] & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//rowa = state[0] % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//-------------------------------------------
//Performs a reduced-round duplexing operation over M[row*] XOR M[prev], updating both M[row*] and M[row]
reducedDuplexRow( state, &wholeMatrix[prev*ROW_LEN_INT64],
&wholeMatrix[rowa*ROW_LEN_INT64],
&wholeMatrix[row*ROW_LEN_INT64], nCols );
//update prev: it now points to the last row ever computed
prev = row;
//updates row: goes to the next row to be computed
//----------------------------------------------------
row = (row + step) & (unsigned int)(nRows-1); //(USE THIS IF nRows IS A POWER OF 2)
//row = (row + step) % nRows; //(USE THIS FOR THE "GENERIC" CASE)
//----------------------------------------------------
} while (row != 0);
}
//===================== Wrap-up Phase ===============================//
//Absorbs the last block of the memory matrix
absorbBlock(state, &wholeMatrix[rowa*ROW_LEN_INT64]);
//Squeezes the key
squeeze(state, K, (unsigned int) kLen);
//================== Freeing the memory =============================//
_mm_free(wholeMatrix);
return 0;
}

View File

@@ -60,4 +60,15 @@ int LYRA2Z( uint64_t*, void *K, uint64_t kLen, const void *pwd,
int LYRA2(void *K, int64_t kLen, const void *pwd, int32_t pwdlen, const void *salt, int32_t saltlen, int64_t timeCost, const int16_t nRows, const int16_t nCols);
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
int LYRA2REV3_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
uint64_t pwdlen, const void *salt, uint64_t saltlen,
uint64_t timeCost, uint64_t nRows, uint64_t nCols );
//int LYRA2REV3_2WAY( uint64_t*, void *K, uint64_t kLen, const void *pwd,
// uint64_t pwdlen, uint64_t timeCost, uint64_t nRows, uint64_t nCols );
#endif
#endif /* LYRA2_H_ */

View File

@@ -19,7 +19,7 @@
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "algo-gate.h"
#include "algo-gate-api.h"
#include <string.h>
#include <stdio.h>
#include <time.h>
@@ -27,7 +27,8 @@
#include "sponge.h"
#include "lyra2.h"
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#if 0
//#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
inline void squeeze_2way( uint64_t *State, byte *Out, unsigned int len )
{

View File

@@ -65,14 +65,14 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
b = mm512_ror_64( _mm512_xor_si512( b, c ), 63 );
#define LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm512_ror_1x64( s1); \
s2 = mm512_swap128_256( s2 ); \
s3 = mm512_rol1x64_256( s3 ); \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm512_rol1x64_256( s1 ); \
s2 = mm512_swap128_256( s2 ); \
s3 = mm512_ror1x64_256( s3 );
G2W_4X64( s0, s1, s2, s3 ); \
s1 = mm512_ror256_64( s1); \
s2 = mm512_swap256_128( s2 ); \
s3 = mm512_rol256_64( s3 ); \
G2W_4X64( s0, s1, s2, s3 ); \
s1 = mm512_rol256_64( s1 ); \
s2 = mm512_swap256_128( s2 ); \
s3 = mm512_ror256_64( s3 );
#define LYRA_12_ROUNDS_2WAY_AVX512( s0, s1, s2, s3 ) \
LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
@@ -148,14 +148,14 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
G_2X64( s0, s2, s4, s6 ); \
G_2X64( s1, s3, s5, s7 ); \
mm128_ror1x64_256( s2, s3 ); \
mm128_swap128_256( s4, s5 ); \
mm128_rol1x64_256( s6, s7 ); \
mm128_ror256_64( s2, s3 ); \
mm128_swap256_128( s4, s5 ); \
mm128_rol256_64( s6, s7 ); \
G_2X64( s0, s2, s4, s6 ); \
G_2X64( s1, s3, s5, s7 ); \
mm128_rol1x64_256( s2, s3 ); \
mm128_swap128_256( s4, s5 ); \
mm128_ror1x64_256( s6, s7 );
mm128_rol256_64( s2, s3 ); \
mm128_swap256_128( s4, s5 ); \
mm128_ror256_64( s6, s7 );
#define LYRA_12_ROUNDS_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \

View File

@@ -92,7 +92,6 @@ int scanhash_qubit_4way( struct work *work,uint32_t max_nonce,
{
uint32_t hash[4*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];

View File

@@ -33,7 +33,7 @@
#include <stddef.h>
#include <string.h>
#ifdef __AVX2__
#ifdef __SSE4_1__
#include "shabal-hash-4way.h"
#ifdef __cplusplus
@@ -58,6 +58,599 @@ extern "C"{
#define O2 9
#define O3 6
#if defined(__AVX2__)
#define DECL_STATE8 \
__m256i A00, A01, A02, A03, A04, A05, A06, A07, \
A08, A09, A0A, A0B; \
__m256i B0, B1, B2, B3, B4, B5, B6, B7, \
B8, B9, BA, BB, BC, BD, BE, BF; \
__m256i C0, C1, C2, C3, C4, C5, C6, C7, \
C8, C9, CA, CB, CC, CD, CE, CF; \
__m256i M0, M1, M2, M3, M4, M5, M6, M7, \
M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 Wlow, Whigh;
#define READ_STATE8(state) do \
{ \
if ( (state)->state_loaded ) \
{ \
A00 = (state)->A[0]; \
A01 = (state)->A[1]; \
A02 = (state)->A[2]; \
A03 = (state)->A[3]; \
A04 = (state)->A[4]; \
A05 = (state)->A[5]; \
A06 = (state)->A[6]; \
A07 = (state)->A[7]; \
A08 = (state)->A[8]; \
A09 = (state)->A[9]; \
A0A = (state)->A[10]; \
A0B = (state)->A[11]; \
B0 = (state)->B[0]; \
B1 = (state)->B[1]; \
B2 = (state)->B[2]; \
B3 = (state)->B[3]; \
B4 = (state)->B[4]; \
B5 = (state)->B[5]; \
B6 = (state)->B[6]; \
B7 = (state)->B[7]; \
B8 = (state)->B[8]; \
B9 = (state)->B[9]; \
BA = (state)->B[10]; \
BB = (state)->B[11]; \
BC = (state)->B[12]; \
BD = (state)->B[13]; \
BE = (state)->B[14]; \
BF = (state)->B[15]; \
C0 = (state)->C[0]; \
C1 = (state)->C[1]; \
C2 = (state)->C[2]; \
C3 = (state)->C[3]; \
C4 = (state)->C[4]; \
C5 = (state)->C[5]; \
C6 = (state)->C[6]; \
C7 = (state)->C[7]; \
C8 = (state)->C[8]; \
C9 = (state)->C[9]; \
CA = (state)->C[10]; \
CB = (state)->C[11]; \
CC = (state)->C[12]; \
CD = (state)->C[13]; \
CE = (state)->C[14]; \
CF = (state)->C[15]; \
} \
else \
{ \
(state)->state_loaded = true; \
A00 = m256_const1_64( 0x20728DFD20728DFD ); \
A01 = m256_const1_64( 0x46C0BD5346C0BD53 ); \
A02 = m256_const1_64( 0xE782B699E782B699 ); \
A03 = m256_const1_64( 0x5530463255304632 ); \
A04 = m256_const1_64( 0x71B4EF9071B4EF90 ); \
A05 = m256_const1_64( 0x0EA9E82C0EA9E82C ); \
A06 = m256_const1_64( 0xDBB930F1DBB930F1 ); \
A07 = m256_const1_64( 0xFAD06B8BFAD06B8B ); \
A08 = m256_const1_64( 0xBE0CAE40BE0CAE40 ); \
A09 = m256_const1_64( 0x8BD144108BD14410 ); \
A0A = m256_const1_64( 0x76D2ADAC76D2ADAC ); \
A0B = m256_const1_64( 0x28ACAB7F28ACAB7F ); \
B0 = m256_const1_64( 0xC1099CB7C1099CB7 ); \
B1 = m256_const1_64( 0x07B385F307B385F3 ); \
B2 = m256_const1_64( 0xE7442C26E7442C26 ); \
B3 = m256_const1_64( 0xCC8AD640CC8AD640 ); \
B4 = m256_const1_64( 0xEB6F56C7EB6F56C7 ); \
B5 = m256_const1_64( 0x1EA81AA91EA81AA9 ); \
B6 = m256_const1_64( 0x73B9D31473B9D314 ); \
B7 = m256_const1_64( 0x1DE85D081DE85D08 ); \
B8 = m256_const1_64( 0x48910A5A48910A5A ); \
B9 = m256_const1_64( 0x893B22DB893B22DB ); \
BA = m256_const1_64( 0xC5A0DF44C5A0DF44 ); \
BB = m256_const1_64( 0xBBC4324EBBC4324E ); \
BC = m256_const1_64( 0x72D2F24072D2F240 ); \
BD = m256_const1_64( 0x75941D9975941D99 ); \
BE = m256_const1_64( 0x6D8BDE826D8BDE82 ); \
BF = m256_const1_64( 0xA1A7502BA1A7502B ); \
C0 = m256_const1_64( 0xD9BF68D1D9BF68D1 ); \
C1 = m256_const1_64( 0x58BAD75058BAD750 ); \
C2 = m256_const1_64( 0x56028CB256028CB2 ); \
C3 = m256_const1_64( 0x8134F3598134F359 ); \
C4 = m256_const1_64( 0xB5D469D8B5D469D8 ); \
C5 = m256_const1_64( 0x941A8CC2941A8CC2 ); \
C6 = m256_const1_64( 0x418B2A6E418B2A6E ); \
C7 = m256_const1_64( 0x0405278004052780 ); \
C8 = m256_const1_64( 0x7F07D7877F07D787 ); \
C9 = m256_const1_64( 0x5194358F5194358F ); \
CA = m256_const1_64( 0x3C60D6653C60D665 ); \
CB = m256_const1_64( 0xBE97D79ABE97D79A ); \
CC = m256_const1_64( 0x950C3434950C3434 ); \
CD = m256_const1_64( 0xAED9A06DAED9A06D ); \
CE = m256_const1_64( 0x2537DC8D2537DC8D ); \
CF = m256_const1_64( 0x7CDB59697CDB5969 ); \
} \
Wlow = (state)->Wlow; \
Whigh = (state)->Whigh; \
} while (0)
#define WRITE_STATE8(state) do { \
(state)->A[0] = A00; \
(state)->A[1] = A01; \
(state)->A[2] = A02; \
(state)->A[3] = A03; \
(state)->A[4] = A04; \
(state)->A[5] = A05; \
(state)->A[6] = A06; \
(state)->A[7] = A07; \
(state)->A[8] = A08; \
(state)->A[9] = A09; \
(state)->A[10] = A0A; \
(state)->A[11] = A0B; \
(state)->B[0] = B0; \
(state)->B[1] = B1; \
(state)->B[2] = B2; \
(state)->B[3] = B3; \
(state)->B[4] = B4; \
(state)->B[5] = B5; \
(state)->B[6] = B6; \
(state)->B[7] = B7; \
(state)->B[8] = B8; \
(state)->B[9] = B9; \
(state)->B[10] = BA; \
(state)->B[11] = BB; \
(state)->B[12] = BC; \
(state)->B[13] = BD; \
(state)->B[14] = BE; \
(state)->B[15] = BF; \
(state)->C[0] = C0; \
(state)->C[1] = C1; \
(state)->C[2] = C2; \
(state)->C[3] = C3; \
(state)->C[4] = C4; \
(state)->C[5] = C5; \
(state)->C[6] = C6; \
(state)->C[7] = C7; \
(state)->C[8] = C8; \
(state)->C[9] = C9; \
(state)->C[10] = CA; \
(state)->C[11] = CB; \
(state)->C[12] = CC; \
(state)->C[13] = CD; \
(state)->C[14] = CE; \
(state)->C[15] = CF; \
(state)->Wlow = Wlow; \
(state)->Whigh = Whigh; \
} while (0)
#define DECODE_BLOCK8 \
do { \
M0 = buf[ 0]; \
M1 = buf[ 1]; \
M2 = buf[ 2]; \
M3 = buf[ 3]; \
M4 = buf[ 4]; \
M5 = buf[ 5]; \
M6 = buf[ 6]; \
M7 = buf[ 7]; \
M8 = buf[ 8]; \
M9 = buf[ 9]; \
MA = buf[10]; \
MB = buf[11]; \
MC = buf[12]; \
MD = buf[13]; \
ME = buf[14]; \
MF = buf[15]; \
} while (0)
#define INPUT_BLOCK_ADD8 \
do { \
B0 = _mm256_add_epi32( B0, M0 );\
B1 = _mm256_add_epi32( B1, M1 );\
B2 = _mm256_add_epi32( B2, M2 );\
B3 = _mm256_add_epi32( B3, M3 );\
B4 = _mm256_add_epi32( B4, M4 );\
B5 = _mm256_add_epi32( B5, M5 );\
B6 = _mm256_add_epi32( B6, M6 );\
B7 = _mm256_add_epi32( B7, M7 );\
B8 = _mm256_add_epi32( B8, M8 );\
B9 = _mm256_add_epi32( B9, M9 );\
BA = _mm256_add_epi32( BA, MA );\
BB = _mm256_add_epi32( BB, MB );\
BC = _mm256_add_epi32( BC, MC );\
BD = _mm256_add_epi32( BD, MD );\
BE = _mm256_add_epi32( BE, ME );\
BF = _mm256_add_epi32( BF, MF );\
} while (0)
#define INPUT_BLOCK_SUB8 \
do { \
C0 = _mm256_sub_epi32( C0, M0 ); \
C1 = _mm256_sub_epi32( C1, M1 ); \
C2 = _mm256_sub_epi32( C2, M2 ); \
C3 = _mm256_sub_epi32( C3, M3 ); \
C4 = _mm256_sub_epi32( C4, M4 ); \
C5 = _mm256_sub_epi32( C5, M5 ); \
C6 = _mm256_sub_epi32( C6, M6 ); \
C7 = _mm256_sub_epi32( C7, M7 ); \
C8 = _mm256_sub_epi32( C8, M8 ); \
C9 = _mm256_sub_epi32( C9, M9 ); \
CA = _mm256_sub_epi32( CA, MA ); \
CB = _mm256_sub_epi32( CB, MB ); \
CC = _mm256_sub_epi32( CC, MC ); \
CD = _mm256_sub_epi32( CD, MD ); \
CE = _mm256_sub_epi32( CE, ME ); \
CF = _mm256_sub_epi32( CF, MF ); \
} while (0)
#define XOR_W8 \
do { \
A00 = _mm256_xor_si256( A00, _mm256_set1_epi32( Wlow ) ); \
A01 = _mm256_xor_si256( A01, _mm256_set1_epi32( Whigh ) ); \
} while (0)
#define SWAP_BC8 \
do { \
mm256_swap512_256( B0, C0 ); \
mm256_swap512_256( B1, C1 ); \
mm256_swap512_256( B2, C2 ); \
mm256_swap512_256( B3, C3 ); \
mm256_swap512_256( B4, C4 ); \
mm256_swap512_256( B5, C5 ); \
mm256_swap512_256( B6, C6 ); \
mm256_swap512_256( B7, C7 ); \
mm256_swap512_256( B8, C8 ); \
mm256_swap512_256( B9, C9 ); \
mm256_swap512_256( BA, CA ); \
mm256_swap512_256( BB, CB ); \
mm256_swap512_256( BC, CC ); \
mm256_swap512_256( BD, CD ); \
mm256_swap512_256( BE, CE ); \
mm256_swap512_256( BF, CF ); \
} while (0)
#define PERM_ELT8(xa0, xa1, xb0, xb1, xb2, xb3, xc, xm) \
do { \
xa0 = _mm256_xor_si256( xm, _mm256_xor_si256( xb1, _mm256_xor_si256( \
_mm256_andnot_si256( xb3, xb2 ), \
_mm256_mullo_epi32( _mm256_xor_si256( xa0, _mm256_xor_si256( xc, \
_mm256_mullo_epi32( mm256_rol_32( xa1, 15 ), _mm256_set1_epi32(5UL) ) \
) ), _mm256_set1_epi32(3UL) ) ) ) ); \
xb0 = mm256_not( _mm256_xor_si256( xa0, mm256_rol_32( xb0, 1 ) ) ); \
} while (0)
#define PERM_STEP_0_8 do { \
PERM_ELT8(A00, A0B, B0, BD, B9, B6, C8, M0); \
PERM_ELT8(A01, A00, B1, BE, BA, B7, C7, M1); \
PERM_ELT8(A02, A01, B2, BF, BB, B8, C6, M2); \
PERM_ELT8(A03, A02, B3, B0, BC, B9, C5, M3); \
PERM_ELT8(A04, A03, B4, B1, BD, BA, C4, M4); \
PERM_ELT8(A05, A04, B5, B2, BE, BB, C3, M5); \
PERM_ELT8(A06, A05, B6, B3, BF, BC, C2, M6); \
PERM_ELT8(A07, A06, B7, B4, B0, BD, C1, M7); \
PERM_ELT8(A08, A07, B8, B5, B1, BE, C0, M8); \
PERM_ELT8(A09, A08, B9, B6, B2, BF, CF, M9); \
PERM_ELT8(A0A, A09, BA, B7, B3, B0, CE, MA); \
PERM_ELT8(A0B, A0A, BB, B8, B4, B1, CD, MB); \
PERM_ELT8(A00, A0B, BC, B9, B5, B2, CC, MC); \
PERM_ELT8(A01, A00, BD, BA, B6, B3, CB, MD); \
PERM_ELT8(A02, A01, BE, BB, B7, B4, CA, ME); \
PERM_ELT8(A03, A02, BF, BC, B8, B5, C9, MF); \
} while (0)
#define PERM_STEP_1_8 do { \
PERM_ELT8(A04, A03, B0, BD, B9, B6, C8, M0); \
PERM_ELT8(A05, A04, B1, BE, BA, B7, C7, M1); \
PERM_ELT8(A06, A05, B2, BF, BB, B8, C6, M2); \
PERM_ELT8(A07, A06, B3, B0, BC, B9, C5, M3); \
PERM_ELT8(A08, A07, B4, B1, BD, BA, C4, M4); \
PERM_ELT8(A09, A08, B5, B2, BE, BB, C3, M5); \
PERM_ELT8(A0A, A09, B6, B3, BF, BC, C2, M6); \
PERM_ELT8(A0B, A0A, B7, B4, B0, BD, C1, M7); \
PERM_ELT8(A00, A0B, B8, B5, B1, BE, C0, M8); \
PERM_ELT8(A01, A00, B9, B6, B2, BF, CF, M9); \
PERM_ELT8(A02, A01, BA, B7, B3, B0, CE, MA); \
PERM_ELT8(A03, A02, BB, B8, B4, B1, CD, MB); \
PERM_ELT8(A04, A03, BC, B9, B5, B2, CC, MC); \
PERM_ELT8(A05, A04, BD, BA, B6, B3, CB, MD); \
PERM_ELT8(A06, A05, BE, BB, B7, B4, CA, ME); \
PERM_ELT8(A07, A06, BF, BC, B8, B5, C9, MF); \
} while (0)
#define PERM_STEP_2_8 do { \
PERM_ELT8(A08, A07, B0, BD, B9, B6, C8, M0); \
PERM_ELT8(A09, A08, B1, BE, BA, B7, C7, M1); \
PERM_ELT8(A0A, A09, B2, BF, BB, B8, C6, M2); \
PERM_ELT8(A0B, A0A, B3, B0, BC, B9, C5, M3); \
PERM_ELT8(A00, A0B, B4, B1, BD, BA, C4, M4); \
PERM_ELT8(A01, A00, B5, B2, BE, BB, C3, M5); \
PERM_ELT8(A02, A01, B6, B3, BF, BC, C2, M6); \
PERM_ELT8(A03, A02, B7, B4, B0, BD, C1, M7); \
PERM_ELT8(A04, A03, B8, B5, B1, BE, C0, M8); \
PERM_ELT8(A05, A04, B9, B6, B2, BF, CF, M9); \
PERM_ELT8(A06, A05, BA, B7, B3, B0, CE, MA); \
PERM_ELT8(A07, A06, BB, B8, B4, B1, CD, MB); \
PERM_ELT8(A08, A07, BC, B9, B5, B2, CC, MC); \
PERM_ELT8(A09, A08, BD, BA, B6, B3, CB, MD); \
PERM_ELT8(A0A, A09, BE, BB, B7, B4, CA, ME); \
PERM_ELT8(A0B, A0A, BF, BC, B8, B5, C9, MF); \
} while (0)
#define APPLY_P8 \
do { \
B0 = mm256_ror_32( B0, 15 ); \
B1 = mm256_ror_32( B1, 15 ); \
B2 = mm256_ror_32( B2, 15 ); \
B3 = mm256_ror_32( B3, 15 ); \
B4 = mm256_ror_32( B4, 15 ); \
B5 = mm256_ror_32( B5, 15 ); \
B6 = mm256_ror_32( B6, 15 ); \
B7 = mm256_ror_32( B7, 15 ); \
B8 = mm256_ror_32( B8, 15 ); \
B9 = mm256_ror_32( B9, 15 ); \
BA = mm256_ror_32( BA, 15 ); \
BB = mm256_ror_32( BB, 15 ); \
BC = mm256_ror_32( BC, 15 ); \
BD = mm256_ror_32( BD, 15 ); \
BE = mm256_ror_32( BE, 15 ); \
BF = mm256_ror_32( BF, 15 ); \
PERM_STEP_0_8; \
PERM_STEP_1_8; \
PERM_STEP_2_8; \
A0B = _mm256_add_epi32( A0B, C6 ); \
A0A = _mm256_add_epi32( A0A, C5 ); \
A09 = _mm256_add_epi32( A09, C4 ); \
A08 = _mm256_add_epi32( A08, C3 ); \
A07 = _mm256_add_epi32( A07, C2 ); \
A06 = _mm256_add_epi32( A06, C1 ); \
A05 = _mm256_add_epi32( A05, C0 ); \
A04 = _mm256_add_epi32( A04, CF ); \
A03 = _mm256_add_epi32( A03, CE ); \
A02 = _mm256_add_epi32( A02, CD ); \
A01 = _mm256_add_epi32( A01, CC ); \
A00 = _mm256_add_epi32( A00, CB ); \
A0B = _mm256_add_epi32( A0B, CA ); \
A0A = _mm256_add_epi32( A0A, C9 ); \
A09 = _mm256_add_epi32( A09, C8 ); \
A08 = _mm256_add_epi32( A08, C7 ); \
A07 = _mm256_add_epi32( A07, C6 ); \
A06 = _mm256_add_epi32( A06, C5 ); \
A05 = _mm256_add_epi32( A05, C4 ); \
A04 = _mm256_add_epi32( A04, C3 ); \
A03 = _mm256_add_epi32( A03, C2 ); \
A02 = _mm256_add_epi32( A02, C1 ); \
A01 = _mm256_add_epi32( A01, C0 ); \
A00 = _mm256_add_epi32( A00, CF ); \
A0B = _mm256_add_epi32( A0B, CE ); \
A0A = _mm256_add_epi32( A0A, CD ); \
A09 = _mm256_add_epi32( A09, CC ); \
A08 = _mm256_add_epi32( A08, CB ); \
A07 = _mm256_add_epi32( A07, CA ); \
A06 = _mm256_add_epi32( A06, C9 ); \
A05 = _mm256_add_epi32( A05, C8 ); \
A04 = _mm256_add_epi32( A04, C7 ); \
A03 = _mm256_add_epi32( A03, C6 ); \
A02 = _mm256_add_epi32( A02, C5 ); \
A01 = _mm256_add_epi32( A01, C4 ); \
A00 = _mm256_add_epi32( A00, C3 ); \
} while (0)
#define INCR_W8 do { \
if ((Wlow = T32(Wlow + 1)) == 0) \
Whigh = T32(Whigh + 1); \
} while (0)
static void
shabal_8way_init( void *cc, unsigned size )
{
shabal_8way_context *sc = (shabal_8way_context*)cc;
if ( size == 512 )
{ // copy immediate constants directly to working registers later.
sc->state_loaded = false;
}
else
{ // No users
sc->state_loaded = true;
sc->A[ 0] = m256_const1_64( 0x52F8455252F84552 );
sc->A[ 1] = m256_const1_64( 0xE54B7999E54B7999 );
sc->A[ 2] = m256_const1_64( 0x2D8EE3EC2D8EE3EC );
sc->A[ 3] = m256_const1_64( 0xB9645191B9645191 );
sc->A[ 4] = m256_const1_64( 0xE0078B86E0078B86 );
sc->A[ 5] = m256_const1_64( 0xBB7C44C9BB7C44C9 );
sc->A[ 6] = m256_const1_64( 0xD2B5C1CAD2B5C1CA );
sc->A[ 7] = m256_const1_64( 0xB0D2EB8CB0D2EB8C );
sc->A[ 8] = m256_const1_64( 0x14CE5A4514CE5A45 );
sc->A[ 9] = m256_const1_64( 0x22AF50DC22AF50DC );
sc->A[10] = m256_const1_64( 0xEFFDBC6BEFFDBC6B );
sc->A[11] = m256_const1_64( 0xEB21B74AEB21B74A );
sc->B[ 0] = m256_const1_64( 0xB555C6EEB555C6EE );
sc->B[ 1] = m256_const1_64( 0x3E7105963E710596 );
sc->B[ 2] = m256_const1_64( 0xA72A652FA72A652F );
sc->B[ 3] = m256_const1_64( 0x9301515F9301515F );
sc->B[ 4] = m256_const1_64( 0xDA28C1FADA28C1FA );
sc->B[ 5] = m256_const1_64( 0x696FD868696FD868 );
sc->B[ 6] = m256_const1_64( 0x9CB6BF729CB6BF72 );
sc->B[ 7] = m256_const1_64( 0x0AFE40020AFE4002 );
sc->B[ 8] = m256_const1_64( 0xA6E03615A6E03615 );
sc->B[ 9] = m256_const1_64( 0x5138C1D45138C1D4 );
sc->B[10] = m256_const1_64( 0xBE216306BE216306 );
sc->B[11] = m256_const1_64( 0xB38B8890B38B8890 );
sc->B[12] = m256_const1_64( 0x3EA8B96B3EA8B96B );
sc->B[13] = m256_const1_64( 0x3299ACE43299ACE4 );
sc->B[14] = m256_const1_64( 0x30924DD430924DD4 );
sc->B[15] = m256_const1_64( 0x55CB34A555CB34A5 );
sc->C[ 0] = m256_const1_64( 0xB405F031B405F031 );
sc->C[ 1] = m256_const1_64( 0xC4233EBAC4233EBA );
sc->C[ 2] = m256_const1_64( 0xB3733979B3733979 );
sc->C[ 3] = m256_const1_64( 0xC0DD9D55C0DD9D55 );
sc->C[ 4] = m256_const1_64( 0xC51C28AEC51C28AE );
sc->C[ 5] = m256_const1_64( 0xA327B8E1A327B8E1 );
sc->C[ 6] = m256_const1_64( 0x56C5616756C56167 );
sc->C[ 7] = m256_const1_64( 0xED614433ED614433 );
sc->C[ 8] = m256_const1_64( 0x88B59D6088B59D60 );
sc->C[ 9] = m256_const1_64( 0x60E2CEBA60E2CEBA );
sc->C[10] = m256_const1_64( 0x758B4B8B758B4B8B );
sc->C[11] = m256_const1_64( 0x83E82A7F83E82A7F );
sc->C[12] = m256_const1_64( 0xBC968828BC968828 );
sc->C[13] = m256_const1_64( 0xE6E00BF7E6E00BF7 );
sc->C[14] = m256_const1_64( 0xBA839E55BA839E55 );
sc->C[15] = m256_const1_64( 0x9B491C609B491C60 );
}
sc->Wlow = 1;
sc->Whigh = 0;
sc->ptr = 0;
}
static void
shabal_8way_core( void *cc, const unsigned char *data, size_t len )
{
shabal_8way_context *sc = (shabal_8way_context*)cc;
__m256i *buf;
__m256i *vdata = (__m256i*)data;
const int buf_size = 64;
size_t ptr;
DECL_STATE8
buf = sc->buf;
ptr = sc->ptr;
if ( len < (buf_size - ptr ) )
{
memcpy_256( buf + (ptr>>2), vdata, len>>2 );
ptr += len;
sc->ptr = ptr;
return;
}
READ_STATE8( sc );
while ( len > 0 )
{
size_t clen;
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_256( buf + (ptr>>2), vdata, clen>>2 );
ptr += clen;
vdata += clen>>2;
len -= clen;
if ( ptr == buf_size )
{
DECODE_BLOCK8;
INPUT_BLOCK_ADD8;
XOR_W8;
APPLY_P8;
INPUT_BLOCK_SUB8;
SWAP_BC8;
INCR_W8;
ptr = 0;
}
}
WRITE_STATE8(sc);
sc->ptr = ptr;
}
static void
shabal_8way_close( void *cc, unsigned ub, unsigned n, void *dst,
unsigned size_words )
{
shabal_8way_context *sc = (shabal_8way_context*)cc;
__m256i *buf;
const int buf_size = 64;
size_t ptr;
int i;
unsigned z, zz;
DECL_STATE8
buf = sc->buf;
ptr = sc->ptr;
z = 0x80 >> n;
zz = ((ub & -z) | z) & 0xFF;
buf[ptr>>2] = _mm256_set1_epi32( zz );
memset_zero_256( buf + (ptr>>2) + 1, ( (buf_size - ptr) >> 2 ) - 1 );
READ_STATE8(sc);
DECODE_BLOCK8;
INPUT_BLOCK_ADD8;
XOR_W8;
APPLY_P8;
for ( i = 0; i < 3; i ++ )
{
SWAP_BC8;
XOR_W8;
APPLY_P8;
}
__m256i *d = (__m256i*)dst;
if ( size_words == 16 ) // 512
{
d[ 0] = B0; d[ 1] = B1; d[ 2] = B2; d[ 3] = B3;
d[ 4] = B4; d[ 5] = B5; d[ 6] = B6; d[ 7] = B7;
d[ 8] = B8; d[ 9] = B9; d[10] = BA; d[11] = BB;
d[12] = BC; d[13] = BD; d[14] = BE; d[15] = BF;
}
else // 256
{
d[ 0] = B8; d[ 1] = B9; d[ 2] = BA; d[ 3] = BB;
d[ 4] = BC; d[ 5] = BD; d[ 6] = BE; d[ 7] = BF;
}
}
void
shabal256_8way_init( void *cc )
{
shabal_8way_init(cc, 256);
}
void
shabal256_8way_update( void *cc, const void *data, size_t len )
{
shabal_8way_core( cc, data, len );
}
void
shabal256_8way_close( void *cc, void *dst )
{
shabal_8way_close(cc, 0, 0, dst, 8);
}
void
shabal256_8way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst )
{
shabal_8way_close(cc, ub, n, dst, 8);
}
void
shabal512_8way_init(void *cc)
{
shabal_8way_init(cc, 512);
}
void
shabal512_8way_update(void *cc, const void *data, size_t len)
{
shabal_8way_core(cc, data, len);
}
void
shabal512_8way_close(void *cc, void *dst)
{
shabal_8way_close(cc, 0, 0, dst, 16);
}
void
shabal512_8way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
shabal_8way_close(cc, ub, n, dst, 16);
}
#endif // AVX2
/*
* We copy the state into local variables, so that the compiler knows
* that it can optimize them at will.
@@ -290,6 +883,8 @@ do { \
A00 = _mm_xor_si128( A00, _mm_set1_epi32( Wlow ) ); \
A01 = _mm_xor_si128( A01, _mm_set1_epi32( Whigh ) ); \
} while (0)
/*
#define SWAP(v1, v2) do { \
sph_u32 tmp = (v1); \
@@ -297,26 +892,39 @@ do { \
(v2) = tmp; \
} while (0)
*/
#define SWAP_BC \
do { \
mm128_swap128_256( B0, C0 ); \
mm128_swap128_256( B1, C1 ); \
mm128_swap128_256( B2, C2 ); \
mm128_swap128_256( B3, C3 ); \
mm128_swap128_256( B4, C4 ); \
mm128_swap128_256( B5, C5 ); \
mm128_swap128_256( B6, C6 ); \
mm128_swap128_256( B7, C7 ); \
mm128_swap128_256( B8, C8 ); \
mm128_swap128_256( B9, C9 ); \
mm128_swap128_256( BA, CA ); \
mm128_swap128_256( BB, CB ); \
mm128_swap128_256( BC, CC ); \
mm128_swap128_256( BD, CD ); \
mm128_swap128_256( BE, CE ); \
mm128_swap128_256( BF, CF ); \
mm128_swap256_128( B0, C0 ); \
mm128_swap256_128( B1, C1 ); \
mm128_swap256_128( B2, C2 ); \
mm128_swap256_128( B3, C3 ); \
mm128_swap256_128( B4, C4 ); \
mm128_swap256_128( B5, C5 ); \
mm128_swap256_128( B6, C6 ); \
mm128_swap256_128( B7, C7 ); \
mm128_swap256_128( B8, C8 ); \
mm128_swap256_128( B9, C9 ); \
mm128_swap256_128( BA, CA ); \
mm128_swap256_128( BB, CB ); \
mm128_swap256_128( BC, CC ); \
mm128_swap256_128( BD, CD ); \
mm128_swap256_128( BE, CE ); \
mm128_swap256_128( BF, CF ); \
} while (0)
/*
#define PERM_ELT(xa0, xa1, xb0, xb1, xb2, xb3, xc, xm) \
do { \
__m128i t1 = _mm_mullo_epi32( mm_rol_32( xa1, 15 ),\
_mm_set1_epi32(5UL) ) \
__m128i t2 = _mm_xor_si128( xa0, xc ); \
xb0 = mm_not( _mm_xor_si256( xa0, mm_rol_32( xb0, 1 ) ) ); \
xa0 = mm_xor4( xm, xb1, _mm_andnot_si128( xb3, xb2 ), \
_mm_xor_si128( t2, \
_mm_mullo_epi32( t1, _mm_set1_epi32(5UL) ) ) ) \
*/
#define PERM_ELT(xa0, xa1, xb0, xb1, xb2, xb3, xc, xm) \
do { \
xa0 = _mm_xor_si128( xm, _mm_xor_si128( xb1, _mm_xor_si128( \
@@ -706,7 +1314,7 @@ shabal256_4way_init( void *cc )
}
void
shabal256_4way( void *cc, const void *data, size_t len )
shabal256_4way_update( void *cc, const void *data, size_t len )
{
shabal_4way_core( cc, data, len );
}
@@ -731,7 +1339,7 @@ shabal512_4way_init(void *cc)
}
void
shabal512_4way(void *cc, const void *data, size_t len)
shabal512_4way_update(void *cc, const void *data, size_t len)
{
shabal_4way_core(cc, data, len);
}

View File

@@ -36,7 +36,7 @@
#ifndef SHABAL_HASH_4WAY_H__
#define SHABAL_HASH_4WAY_H__ 1
#ifdef __AVX2__
#ifdef __SSE4_1__
#include <stddef.h>
#include "algo/sha/sph_types.h"
@@ -50,6 +50,34 @@ extern "C"{
#define SPH_SIZE_shabal512 512
#if defined(__AVX2__)
typedef struct {
__m256i buf[16];
__m256i A[12], B[16], C[16];
sph_u32 Whigh, Wlow;
size_t ptr;
bool state_loaded;
} shabal_8way_context __attribute__ ((aligned (64)));
typedef shabal_8way_context shabal256_8way_context;
typedef shabal_8way_context shabal512_8way_context;
void shabal256_8way_init( void *cc );
void shabal256_8way_update( void *cc, const void *data, size_t len );
void shabal256_8way_close( void *cc, void *dst );
void shabal256_8way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void shabal512_8way_init( void *cc );
void shabal512_8way_update( void *cc, const void *data, size_t len );
void shabal512_8way_close( void *cc, void *dst );
void shabal512_8way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
#endif
typedef struct {
__m128i buf[16] __attribute__ ((aligned (64)));
__m128i A[12], B[16], C[16];
@@ -62,13 +90,14 @@ typedef shabal_4way_context shabal256_4way_context;
typedef shabal_4way_context shabal512_4way_context;
void shabal256_4way_init( void *cc );
void shabal256_4way( void *cc, const void *data, size_t len );
void shabal256_4way_update( void *cc, const void *data, size_t len );
void shabal256_4way_close( void *cc, void *dst );
void shabal256_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );
void shabal512_4way_init( void *cc );
void shabal512_4way( void *cc, const void *data, size_t len );
void shabal512_4way_update( void *cc, const void *data, size_t len );
#define shabal512_4way shabal512_4way_update
void shabal512_4way_close( void *cc, void *dst );
void shabal512_4way_addbits_and_close( void *cc, unsigned ub, unsigned n,
void *dst );

View File

@@ -16,8 +16,8 @@ static const uint32_t IV512[] =
#define mm256_ror2x256hi_1x32( a, b ) \
_mm256_blend_epi32( mm256_ror1x32_128( a ), \
mm256_ror1x32_128( b ), 0x88 )
_mm256_blend_epi32( mm256_ror128_32( a ), \
mm256_ror128_32( b ), 0x88 )
static void
c512_2way( shavite512_2way_context *ctx, const void *msg )
@@ -61,7 +61,7 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
{
// round 1, 5, 9
k00 = _mm256_xor_si256( k13, mm256_ror1x32_128(
k00 = _mm256_xor_si256( k13, mm256_ror128_32(
mm256_aesenc_2x128( k00, zero ) ) );
if ( r == 0 )
@@ -71,7 +71,7 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
k01 = _mm256_xor_si256( k00,
mm256_ror1x32_128( mm256_aesenc_2x128( k01, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k01, zero ) ) );
if ( r == 1 )
k01 = _mm256_xor_si256( k01, _mm256_set_epi32(
@@ -80,25 +80,25 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( k01,
mm256_ror1x32_128( mm256_aesenc_2x128( k02, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k02, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( k02,
mm256_ror1x32_128( mm256_aesenc_2x128( k03, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k03, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p3 = _mm256_xor_si256( p3, x );
k10 = _mm256_xor_si256( k03,
mm256_ror1x32_128( mm256_aesenc_2x128( k10, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k10, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
k11 = _mm256_xor_si256( k10,
mm256_ror1x32_128( mm256_aesenc_2x128( k11, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k11, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = _mm256_xor_si256( k11,
mm256_ror1x32_128( mm256_aesenc_2x128( k12, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k12, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( k12,
mm256_ror1x32_128( mm256_aesenc_2x128( k13, zero ) ) );
mm256_ror128_32( mm256_aesenc_2x128( k13, zero ) ) );
if ( r == 2 )
k13 = _mm256_xor_si256( k13, _mm256_set_epi32(
@@ -134,31 +134,31 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
// round 3, 7, 11
k00 = _mm256_xor_si256( mm256_ror1x32_128(
k00 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k00, zero ) ), k13 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k00 ), zero );
k01 = _mm256_xor_si256( mm256_ror1x32_128(
k01 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k01, zero ) ), k00 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( mm256_ror1x32_128(
k02 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k02, zero ) ), k01 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( mm256_ror1x32_128(
k03 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k03, zero ) ), k02 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p1 = _mm256_xor_si256( p1, x );
k10 = _mm256_xor_si256( mm256_ror1x32_128(
k10 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k10, zero ) ), k03 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k10 ), zero );
k11 = _mm256_xor_si256( mm256_ror1x32_128(
k11 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k11, zero ) ), k10 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = _mm256_xor_si256( mm256_ror1x32_128(
k12 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k12, zero ) ), k11 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( mm256_ror1x32_128(
k13 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k13, zero ) ), k12 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
@@ -192,35 +192,35 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
// round 13
k00 = _mm256_xor_si256( mm256_ror1x32_128(
k00 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k00, zero ) ), k13 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
k01 = _mm256_xor_si256( mm256_ror1x32_128(
k01 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k01, zero ) ), k00 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( mm256_ror1x32_128(
k02 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k02, zero ) ), k01 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( mm256_ror1x32_128(
k03 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k03, zero ) ), k02 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p3 = _mm256_xor_si256( p3, x );
k10 = _mm256_xor_si256( mm256_ror1x32_128(
k10 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k10, zero ) ), k03 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
k11 = _mm256_xor_si256( mm256_ror1x32_128(
k11 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k11, zero ) ), k10 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = mm256_ror1x32_128( mm256_aesenc_2x128( k12, zero ) );
k12 = mm256_ror128_32( mm256_aesenc_2x128( k12, zero ) );
k12 = _mm256_xor_si256( k12, _mm256_xor_si256( k11, _mm256_set_epi32(
~ctx->count2, ctx->count3, ctx->count0, ctx->count1,
~ctx->count2, ctx->count3, ctx->count0, ctx->count1 ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( mm256_ror1x32_128(
k13 = _mm256_xor_si256( mm256_ror128_32(
mm256_aesenc_2x128( k13, zero ) ), k12 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );

View File

@@ -1,7 +1,4 @@
#include "x12-gate.h"
#if defined(X12_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -14,11 +11,223 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
//#include "algo/fugue/sph_fugue.h"
#if defined(X12_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
hashState_groestl groestl;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
sph_shavite512_context shavite;
simd_4way_context simd;
hashState_echo echo;
hamsi512_8way_context hamsi;
} x12_8way_ctx_holder;
x12_8way_ctx_holder x12_8way_ctx __attribute__ ((aligned (64)));
void init_x12_8way_ctx()
{
blake512_8way_init( &x12_8way_ctx.blake );
bmw512_8way_init( &x12_8way_ctx.bmw );
init_groestl( &x12_8way_ctx.groestl, 64 );
skein512_8way_init( &x12_8way_ctx.skein );
jh512_8way_init( &x12_8way_ctx.jh );
keccak512_8way_init( &x12_8way_ctx.keccak );
luffa_4way_init( &x12_8way_ctx.luffa, 512 );
cube_4way_init( &x12_8way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x12_8way_ctx.shavite );
simd_4way_init( &x12_8way_ctx.simd, 512 );
init_echo( &x12_8way_ctx.echo, 512 );
hamsi512_8way_init( &x12_8way_ctx.hamsi );
};
void x12_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
x12_8way_ctx_holder ctx;
memcpy( &ctx, &x12_8way_ctx, sizeof(x12_8way_ctx) );
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
// Luffa + Cube
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
luffa_4way_init( &ctx.luffa, 512 );
cube_4way_init( &ctx.cube, 512, 16, 32 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash4, 64 );
sph_shavite512_close( &ctx.shavite, hash4 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash5, 64 );
sph_shavite512_close( &ctx.shavite, hash5 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash6, 64 );
sph_shavite512_close( &ctx.shavite, hash6 );
memcpy( &ctx.shavite, &x12_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash7, 64 );
sph_shavite512_close( &ctx.shavite, hash7 );
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
simd_4way_init( &ctx.simd, 512 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash4,
(const BitSequence *) hash4, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash5,
(const BitSequence *) hash5, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash6,
(const BitSequence *) hash6, 512 );
memcpy( &ctx.echo, &x12_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash7,
(const BitSequence *) hash7, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
memcpy( &ctx.groestl, &x12_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, state );
}
int scanhash_x12_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t *hash7 = &(hash[49]);
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
__m512i *noncev = (__m512i*)vdata + 9; // aligned
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do {
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n , 0 ) ), *noncev );
x12_8way_hash( hash, vdata );
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane<<1 ] < Htarg )
{
extr_lane_8x64( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( ( n < max_nonce-8 ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(X12_4WAY)
typedef struct {
blake512_4way_context blake;
@@ -63,45 +272,13 @@ void x12_4way_hash( void *state, const void *input )
x12_4way_ctx_holder ctx;
memcpy( &ctx, &x12_4way_ctx, sizeof(x12_4way_ctx) );
// 1 Blake
blake512_4way( &ctx.blake, input, 80 );
blake512_4way_close( &ctx.blake, vhash );
// 2 Bmw
bmw512_4way( &ctx.bmw, vhash, 64 );
bmw512_4way_close( &ctx.bmw, vhash );
// Serial
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// Parallel 4way 64 bit
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
// 4 Skein
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
// 5 JH
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
// 6 Keccak
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
// Serial
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
// 7 Luffa
intrlv_2x128( vhash, hash0, hash1, 512 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
@@ -110,7 +287,6 @@ void x12_4way_hash( void *state, const void *input )
luffa_2way_update_close( &ctx.luffa, vhash, vhash, 64 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 8 Cubehash
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*) hash0, 64 );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*) hash1, 64 );
@@ -119,7 +295,6 @@ void x12_4way_hash( void *state, const void *input )
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*) hash3, 64 );
// 9 Shavite
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x12_4way_ctx.shavite,
@@ -135,7 +310,6 @@ void x12_4way_hash( void *state, const void *input )
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
// 10 Simd
intrlv_2x128( vhash, hash0, hash1, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
@@ -144,21 +318,25 @@ void x12_4way_hash( void *state, const void *input )
simd_2way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x12_4way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x12_4way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
// 12 Hamsi parallel 4way 32 bit
// Parallel 4way 64 bit
intrlv_4x64( vhash, hash0, hash1, hash2, hash3, 512 );
skein512_4way( &ctx.skein, vhash, 64 );
skein512_4way_close( &ctx.skein, vhash );
jh512_4way( &ctx.jh, vhash, 64 );
jh512_4way_close( &ctx.jh, vhash );
keccak512_4way( &ctx.keccak, vhash, 64 );
keccak512_4way_close( &ctx.keccak, vhash );
hamsi512_4way( &ctx.hamsi, vhash, 64 );
hamsi512_4way_close( &ctx.hamsi, vhash );

View File

@@ -2,7 +2,11 @@
bool register_x12_algo( algo_gate_t* gate )
{
#if defined (X12_4WAY)
#if defined (X12_8WAY)
init_x12_8way_ctx();
gate->scanhash = (void*)&scanhash_x12_8way;
gate->hash = (void*)&x12_8way_hash;
#elif defined (X12_4WAY)
init_x12_4way_ctx();
gate->scanhash = (void*)&scanhash_x12_4way;
gate->hash = (void*)&x12_4way_hash;
@@ -11,7 +15,7 @@ bool register_x12_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_x12;
gate->hash = (void*)&x12hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -4,29 +4,36 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define X12_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X12_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X12_4WAY 1
#endif
bool register_x12_algo( algo_gate_t* gate );
#if defined(X12_4WAY)
#if defined(X12_8WAY)
void x12_8way_hash( void *state, const void *input );
int scanhash_x12_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x12_8way_ctx();
#elif defined(X12_4WAY)
void x12_4way_hash( void *state, const void *input );
int scanhash_x12_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x12_4way_ctx();
#endif
#else
void x12hash( void *state, const void *input );
int scanhash_x12( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x12_ctx();
#endif
#endif

View File

@@ -20,35 +20,40 @@
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/blake/sse2/blake.c"
#include "algo/bmw/sse2/bmw.c"
#include "algo/keccak/sse2/keccak.c"
#include "algo/skein/sse2/skein.c"
#include "algo/jh/sse2/jh_sse2_opt64.h"
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/echo/aes_ni/hash_api.h"
#endif
typedef struct {
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
#if defined(__AES__)
hashState_groestl groestl;
hashState_echo echo;
hashState_groestl groestl;
hashState_echo echo;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
hashState_luffa luffa;
cubehashParam cubehash;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
hashState_luffa luffa;
cubehashParam cubehash;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
} x12_ctx_holder;
x12_ctx_holder x12_ctx;
void init_x12_ctx()
{
sph_blake512_init( &x12_ctx.blake );
sph_bmw512_init( &x12_ctx.bmw );
sph_skein512_init( &x12_ctx.skein);
sph_jh512_init( &x12_ctx.jh);
sph_keccak512_init( &x12_ctx.keccak);
#if defined(__AES__)
init_echo( &x12_ctx.echo, 512 );
init_groestl (&x12_ctx.groestl, 64 );
@@ -65,102 +70,59 @@ void init_x12_ctx()
void x12hash(void *output, const void *input)
{
unsigned char hash[128] __attribute__ ((aligned (32)));
#define hashB hash+64
x12_ctx_holder ctx;
memcpy( &ctx, &x12_ctx, sizeof(x12_ctx) );
x12_ctx_holder ctx;
memcpy( &ctx, &x12_ctx, sizeof(x12_ctx) );
// X11 algos
sph_blake512(&ctx.blake, input, 80);
sph_blake512_close(&ctx.blake, hash);
unsigned char hashbuf[128];
size_t hashptr;
sph_u64 hashctA;
sph_u64 hashctB;
sph_bmw512(&ctx.bmw, hash, 64);
sph_bmw512_close(&ctx.bmw, hash);
//---blake1---
update_and_final_luffa( &ctx.luffa, (BitSequence*)hashB,
(const BitSequence*)hash, 64 );
DECL_BLK;
BLK_I;
BLK_W;
BLK_C;
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hashB, 64 );
//---bmw2---
sph_shavite512( &ctx.shavite, hash, 64);
sph_shavite512_close( &ctx.shavite, hashB);
DECL_BMW;
BMW_I;
BMW_U;
#define M(x) sph_dec64le_aligned(data + 8 * (x))
#define H(x) (h[x])
#define dH(x) (dh[x])
BMW_C;
#undef M
#undef H
#undef dH
//---groetl----
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hashB, 512 );
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512 (&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
//---skein4---
DECL_SKN;
SKN_I;
SKN_U;
SKN_C;
//---jh5------
DECL_JH;
JH_H;
//---keccak6---
DECL_KEC;
KEC_I;
KEC_U;
KEC_C;
//--- luffa7
update_and_final_luffa( &ctx.luffa, (BitSequence*)hashB,
(const BitSequence*)hash, 64 );
// 8 Cube
cubehashUpdateDigest( &ctx.cubehash, (byte*) hash,
(const byte*)hashB, 64 );
// 9 Shavite
sph_shavite512( &ctx.shavite, hash, 64);
sph_shavite512_close( &ctx.shavite, hashB);
// 10 Simd
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence *)hashB, 512 );
//11---echo---
#if defined(__AES__)
update_final_echo ( &ctx.echo, (BitSequence *)hashB,
update_final_echo ( &ctx.echo, (BitSequence *)hashB,
(const BitSequence *)hash, 512 );
#else
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hashB);
sph_echo512(&ctx.echo, hash, 64);
sph_echo512_close(&ctx.echo, hashB);
#endif
// 12 Hamsi
#if defined(__AES__)
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)hash, 512 );
#else
sph_groestl512 (&ctx.groestl, hash, 64);
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_skein512(&ctx.skein, hash, 64);
sph_skein512_close(&ctx.skein, hash);
sph_jh512(&ctx.jh, hash, 64);
sph_jh512_close(&ctx.jh, hash);
sph_keccak512(&ctx.keccak, hash, 64);
sph_keccak512_close(&ctx.keccak, hash);
sph_hamsi512(&ctx.hamsi, hashB, 64);
sph_hamsi512_close(&ctx.hamsi, hash);
asm volatile ("emms");
memcpy(output, hashB, 32);
}

View File

@@ -1,7 +1,4 @@
#include "x13-gate.h"
#if defined(X13_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -14,12 +11,267 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#if defined(X13_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
hashState_groestl groestl;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
sph_shavite512_context shavite;
simd_4way_context simd;
hashState_echo echo;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
} x13_8way_ctx_holder;
x13_8way_ctx_holder x13_8way_ctx;
void init_x13_8way_ctx()
{
blake512_8way_init( &x13_8way_ctx.blake );
bmw512_8way_init( &x13_8way_ctx.bmw );
init_groestl( &x13_8way_ctx.groestl, 64 );
skein512_8way_init( &x13_8way_ctx.skein );
jh512_8way_init( &x13_8way_ctx.jh );
keccak512_8way_init( &x13_8way_ctx.keccak );
luffa_4way_init( &x13_8way_ctx.luffa, 512 );
cube_4way_init( &x13_8way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x13_8way_ctx.shavite );
simd_4way_init( &x13_8way_ctx.simd, 512 );
init_echo( &x13_8way_ctx.echo, 512 );
hamsi512_8way_init( &x13_8way_ctx.hamsi );
sph_fugue512_init( &x13_8way_ctx.fugue );
}
void x13_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
x13_8way_ctx_holder ctx;
memcpy( &ctx, &x13_8way_ctx, sizeof(x13_8way_ctx) );
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
memcpy( &ctx.groestl, &x13_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// Luffa + Cube
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
luffa_4way_init( &ctx.luffa, 512 );
cube_4way_init( &ctx.cube, 512, 16, 32 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash4, 64 );
sph_shavite512_close( &ctx.shavite, hash4 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash5, 64 );
sph_shavite512_close( &ctx.shavite, hash5 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash6, 64 );
sph_shavite512_close( &ctx.shavite, hash6 );
memcpy( &ctx.shavite, &x13_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash7, 64 );
sph_shavite512_close( &ctx.shavite, hash7 );
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
simd_4way_init( &ctx.simd, 512 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash4,
(const BitSequence *) hash4, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash5,
(const BitSequence *) hash5, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash6,
(const BitSequence *) hash6, 512 );
memcpy( &ctx.echo, &x13_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash7,
(const BitSequence *) hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// 13 Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash4, 64 );
sph_fugue512_close( &ctx.fugue, hash4 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash5, 64 );
sph_fugue512_close( &ctx.fugue, hash5 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash6, 64 );
sph_fugue512_close( &ctx.fugue, hash6 );
memcpy( &ctx.fugue, &x13_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash7, 64 );
sph_fugue512_close( &ctx.fugue, hash7 );
memcpy( state, hash0, 32 );
memcpy( state+ 32, hash1, 32 );
memcpy( state+ 64, hash2, 32 );
memcpy( state+ 96, hash3, 32 );
memcpy( state+128, hash4, 32 );
memcpy( state+160, hash5, 32 );
memcpy( state+192, hash6, 32 );
memcpy( state+224, hash7, 32 );
}
int scanhash_x13_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
const uint32_t last_nonce = max_nonce -8;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x13_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( ( hash+(i<<3) )[7] < Htarg
&& fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(X13_4WAY)
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;

View File

@@ -2,7 +2,11 @@
bool register_x13_algo( algo_gate_t* gate )
{
#if defined (X13_4WAY)
#if defined (X13_8WAY)
init_x13_8way_ctx();
gate->scanhash = (void*)&scanhash_x13_8way;
gate->hash = (void*)&x13_8way_hash;
#elif defined (X13_4WAY)
init_x13_4way_ctx();
gate->scanhash = (void*)&scanhash_x13_4way;
gate->hash = (void*)&x13_4way_hash;
@@ -11,7 +15,7 @@ bool register_x13_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_x13;
gate->hash = (void*)&x13hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -4,29 +4,35 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define X13_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X13_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X13_4WAY 1
#endif
bool register_x13_algo( algo_gate_t* gate );
#if defined(X13_4WAY)
#if defined(X13_8WAY)
void x13_8way_hash( void *state, const void *input );
int scanhash_x13_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13_8way_ctx();
#elif defined(X13_4WAY)
void x13_4way_hash( void *state, const void *input );
int scanhash_x13_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13_4way_ctx();
#endif
#else
void x13hash( void *state, const void *input );
int scanhash_x13( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x13_ctx();
#endif
#endif

View File

@@ -1,7 +1,4 @@
#include "x14-gate.h"
#if defined(X14_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -13,6 +10,7 @@
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
@@ -22,6 +20,263 @@
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#if defined(X14_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
hashState_groestl groestl;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
sph_shavite512_context shavite;
simd_4way_context simd;
hashState_echo echo;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
} x14_8way_ctx_holder;
x14_8way_ctx_holder x14_8way_ctx __attribute__ ((aligned (64)));
void init_x14_8way_ctx()
{
blake512_8way_init( &x14_8way_ctx.blake );
bmw512_8way_init( &x14_8way_ctx.bmw );
init_groestl( &x14_8way_ctx.groestl, 64 );
skein512_8way_init( &x14_8way_ctx.skein );
jh512_8way_init( &x14_8way_ctx.jh );
keccak512_8way_init( &x14_8way_ctx.keccak );
luffa_4way_init( &x14_8way_ctx.luffa, 512 );
cube_4way_init( &x14_8way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x14_8way_ctx.shavite );
simd_4way_init( &x14_8way_ctx.simd, 512 );
init_echo( &x14_8way_ctx.echo, 512 );
hamsi512_8way_init( &x14_8way_ctx.hamsi );
sph_fugue512_init( &x14_8way_ctx.fugue );
shabal512_8way_init( &x14_8way_ctx.shabal );
};
void x14_8way_hash( void *state, const void *input )
{
uint64_t vhash[8*8] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
x14_8way_ctx_holder ctx;
memcpy( &ctx, &x14_8way_ctx, sizeof(x14_8way_ctx) );
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
memcpy( &ctx.groestl, &x14_8way_ctx.groestl,
sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// Luffa + Cube
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
luffa_4way_init( &ctx.luffa, 512 );
cube_4way_init( &ctx.cube, 512, 16, 32 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash4, 64 );
sph_shavite512_close( &ctx.shavite, hash4 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash5, 64 );
sph_shavite512_close( &ctx.shavite, hash5 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash6, 64 );
sph_shavite512_close( &ctx.shavite, hash6 );
memcpy( &ctx.shavite, &x14_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash7, 64 );
sph_shavite512_close( &ctx.shavite, hash7 );
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
simd_4way_init( &ctx.simd, 512 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash4,
(const BitSequence *) hash4, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash5,
(const BitSequence *) hash5, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash6,
(const BitSequence *) hash6, 512 );
memcpy( &ctx.echo, &x14_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash7,
(const BitSequence *) hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// 13 Fugue serial
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash4, 64 );
sph_fugue512_close( &ctx.fugue, hash4 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash5, 64 );
sph_fugue512_close( &ctx.fugue, hash5 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash6, 64 );
sph_fugue512_close( &ctx.fugue, hash6 );
memcpy( &ctx.fugue, &x14_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash7, 64 );
sph_fugue512_close( &ctx.fugue, hash7 );
// 14 Shabal, parallel 32 bit
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
shabal512_8way_update( &ctx.shabal, vhash, 64 );
shabal512_8way_close( &ctx.shabal, state );
}
int scanhash_x14_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x14_8way_hash( hash, vdata );
pdata[19] = n;
uint32_t *hash7 = &(hash[7<<3]);
for ( int lane = 0; lane < 8; lane++ )
if ( hash7[ lane ] < Htarg )
{
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(X14_4WAY)
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
@@ -61,11 +316,11 @@ void init_x14_4way_ctx()
void x14_4way_hash( void *state, const void *input )
{
uint64_t vhash[8*4] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
x14_4way_ctx_holder ctx;
memcpy( &ctx, &x14_4way_ctx, sizeof(x14_4way_ctx) );
@@ -184,61 +439,49 @@ void x14_4way_hash( void *state, const void *input )
// 14 Shabal, parallel 32 bit
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_update( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, state );
}
int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t hash[4*16] __attribute__ ((aligned (128)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9; // aligned
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
int thr_id = mythr->id;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x14_4way_hash( hash, vdata );
pdata[19] = n;
uint32_t *hash7 = &(hash[7<<2]);
for ( int lane = 0; lane < 4; lane++ )
if ( hash7[ lane ] < Htarg )
{
uint32_t mask = masks[m];
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
uint32_t lane_hash[8];
extr_lane_4x32( lane_hash, hash, lane, 256 );
x14_4way_hash( hash, vdata );
pdata[19] = n;
uint32_t *hash7 = &(hash[7<<2]);
for ( int lane = 0; lane < 4; lane++ )
if ( ( hash7[ lane ] & mask ) == 0 )
{
// deinterleave hash for lane
uint32_t lane_hash[8];
extr_lane_4x32( lane_hash, hash, lane, 256 );
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
if ( fulltest( lane_hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n + lane;
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -2,7 +2,11 @@
bool register_x14_algo( algo_gate_t* gate )
{
#if defined (X14_4WAY)
#if defined (X14_8WAY)
init_x14_8way_ctx();
gate->scanhash = (void*)&scanhash_x14_8way;
gate->hash = (void*)&x14_8way_hash;
#elif defined (X14_4WAY)
init_x14_4way_ctx();
gate->scanhash = (void*)&scanhash_x14_4way;
gate->hash = (void*)&x14_4way_hash;
@@ -11,7 +15,7 @@ bool register_x14_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_x14;
gate->hash = (void*)&x14hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -4,20 +4,29 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define X14_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X14_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X14_4WAY 1
#endif
bool register_x14_algo( algo_gate_t* gate );
#if defined(X14_4WAY)
#if defined(X14_8WAY)
void x14_8way_hash( void *state, const void *input );
int scanhash_x14_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x14_8way_ctx();
#elif defined(X14_4WAY)
void x14_4way_hash( void *state, const void *input );
int scanhash_x14_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x14_4way_ctx();
#endif
#else
void x14hash( void *state, const void *input );
int scanhash_x14( struct work *work, uint32_t max_nonce,
@@ -26,3 +35,4 @@ void init_x14_ctx();
#endif
#endif

View File

@@ -1,7 +1,4 @@
#include "x15-gate.h"
#if defined(X15_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -14,6 +11,7 @@
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
@@ -23,6 +21,306 @@
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#if defined(X15_8WAY)
typedef struct {
blake512_8way_context blake;
bmw512_8way_context bmw;
hashState_groestl groestl;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
sph_shavite512_context shavite;
simd_4way_context simd;
hashState_echo echo;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
sph_whirlpool_context whirlpool;
} x15_8way_ctx_holder;
x15_8way_ctx_holder x15_8way_ctx __attribute__ ((aligned (64)));
void init_x15_8way_ctx()
{
blake512_8way_init( &x15_8way_ctx.blake );
bmw512_8way_init( &x15_8way_ctx.bmw );
init_groestl( &x15_8way_ctx.groestl, 64 );
skein512_8way_init( &x15_8way_ctx.skein );
jh512_8way_init( &x15_8way_ctx.jh );
keccak512_8way_init( &x15_8way_ctx.keccak );
luffa_4way_init( &x15_8way_ctx.luffa, 512 );
cube_4way_init( &x15_8way_ctx.cube, 512, 16, 32 );
sph_shavite512_init( &x15_8way_ctx.shavite );
simd_4way_init( &x15_8way_ctx.simd, 512 );
init_echo( &x15_8way_ctx.echo, 512 );
hamsi512_8way_init( &x15_8way_ctx.hamsi );
sph_fugue512_init( &x15_8way_ctx.fugue );
shabal512_8way_init( &x15_8way_ctx.shabal );
sph_whirlpool_init( &x15_8way_ctx.whirlpool );
};
void x15_8way_hash( void *state, const void *input )
{
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t hash4[8] __attribute__ ((aligned (64)));
uint64_t hash5[8] __attribute__ ((aligned (64)));
uint64_t hash6[8] __attribute__ ((aligned (64)));
uint64_t hash7[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*8] __attribute__ ((aligned (64)));
x15_8way_ctx_holder ctx;
memcpy( &ctx, &x15_8way_ctx, sizeof(x15_8way_ctx) );
// 1 Blake
blake512_8way_update( &ctx.blake, input, 80 );
blake512_8way_close( &ctx.blake, vhash );
// 2 Bmw
bmw512_8way_update( &ctx.bmw, vhash, 64 );
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// 3 Groestl
update_and_final_groestl( &ctx.groestl, (char*)hash0, (char*)hash0, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash1, (char*)hash1, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash2, (char*)hash2, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash3, (char*)hash3, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash4, (char*)hash4, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash5, (char*)hash5, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash6, (char*)hash6, 512 );
memcpy( &ctx.groestl, &x15_8way_ctx.groestl, sizeof(hashState_groestl) );
update_and_final_groestl( &ctx.groestl, (char*)hash7, (char*)hash7, 512 );
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
skein512_8way_update( &ctx.skein, vhash, 64 );
skein512_8way_close( &ctx.skein, vhash );
// 5 JH
jh512_8way_update( &ctx.jh, vhash, 64 );
jh512_8way_close( &ctx.jh, vhash );
// 6 Keccak
keccak512_8way_update( &ctx.keccak, vhash, 64 );
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// Luffa + Cube
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
luffa_4way_init( &ctx.luffa, 512 );
cube_4way_init( &ctx.cube, 512, 16, 32 );
luffa_4way_update_close( &ctx.luffa, vhash, vhash, 64 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 64 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
// 9 Shavite
sph_shavite512( &ctx.shavite, hash0, 64 );
sph_shavite512_close( &ctx.shavite, hash0 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash1, 64 );
sph_shavite512_close( &ctx.shavite, hash1 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash2, 64 );
sph_shavite512_close( &ctx.shavite, hash2 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash3, 64 );
sph_shavite512_close( &ctx.shavite, hash3 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash4, 64 );
sph_shavite512_close( &ctx.shavite, hash4 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash5, 64 );
sph_shavite512_close( &ctx.shavite, hash5 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash6, 64 );
sph_shavite512_close( &ctx.shavite, hash6 );
memcpy( &ctx.shavite, &x15_8way_ctx.shavite,
sizeof(sph_shavite512_context) );
sph_shavite512( &ctx.shavite, hash7, 64 );
sph_shavite512_close( &ctx.shavite, hash7 );
// 10 Simd
intrlv_4x128_512( vhash, hash0, hash1, hash2, hash3 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128_512( vhash, hash4, hash5, hash6, hash7 );
simd_4way_init( &ctx.simd, 512 );
simd_4way_update_close( &ctx.simd, vhash, vhash, 512 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
// 11 Echo
update_final_echo( &ctx.echo, (BitSequence *)hash0,
(const BitSequence *) hash0, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash1,
(const BitSequence *) hash1, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash2,
(const BitSequence *) hash2, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash3,
(const BitSequence *) hash3, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash4,
(const BitSequence *) hash4, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash5,
(const BitSequence *) hash5, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash6,
(const BitSequence *) hash6, 512 );
memcpy( &ctx.echo, &x15_8way_ctx.echo, sizeof(hashState_echo) );
update_final_echo( &ctx.echo, (BitSequence *)hash7,
(const BitSequence *) hash7, 512 );
// 12 Hamsi parallel 4way 64 bit
intrlv_8x64_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
hamsi512_8way_update( &ctx.hamsi, vhash, 64 );
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// 13 Fugue
sph_fugue512( &ctx.fugue, hash0, 64 );
sph_fugue512_close( &ctx.fugue, hash0 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash1, 64 );
sph_fugue512_close( &ctx.fugue, hash1 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash2, 64 );
sph_fugue512_close( &ctx.fugue, hash2 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash3, 64 );
sph_fugue512_close( &ctx.fugue, hash3 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash4, 64 );
sph_fugue512_close( &ctx.fugue, hash4 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash5, 64 );
sph_fugue512_close( &ctx.fugue, hash5 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash6, 64 );
sph_fugue512_close( &ctx.fugue, hash6 );
memcpy( &ctx.fugue, &x15_8way_ctx.fugue, sizeof(sph_fugue512_context) );
sph_fugue512( &ctx.fugue, hash7, 64 );
sph_fugue512_close( &ctx.fugue, hash7 );
// 14 Shabal, parallel 32 bit
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
shabal512_8way_update( &ctx.shabal, vhash, 64 );
shabal512_8way_close( &ctx.shabal, vhash );
dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhash );
// 15 Whirlpool
sph_whirlpool( &ctx.whirlpool, hash0, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash1, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash2, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash3, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash4, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash5, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash6, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
memcpy( &ctx.whirlpool, &x15_8way_ctx.whirlpool,
sizeof(sph_whirlpool_context) );
sph_whirlpool( &ctx.whirlpool, hash7, 64 );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
memcpy( state, hash0, 32 );
memcpy( state+ 32, hash1, 32 );
memcpy( state+ 64, hash2, 32 );
memcpy( state+ 96, hash3, 32 );
memcpy( state+128, hash4, 32 );
memcpy( state+160, hash5, 32 );
memcpy( state+192, hash6, 32 );
memcpy( state+224, hash7, 32 );
}
int scanhash_x15_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 8;
__m512i *noncev = (__m512i*)vdata + 9;
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id;
mm512_bswap32_intrlv80_8x64( vdata, pdata );
do
{
*noncev = mm512_intrlv_blend_32( mm512_bswap_32(
_mm512_set_epi32( n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x15_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( ( hash+(i<<3) )[7] < Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
}
n += 8;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
#elif defined(X15_4WAY)
typedef struct {
blake512_4way_context blake;
bmw512_4way_context bmw;
@@ -64,11 +362,11 @@ void init_x15_4way_ctx()
void x15_4way_hash( void *state, const void *input )
{
uint64_t vhash[8*4] __attribute__ ((aligned (128)));
uint64_t hash0[8] __attribute__ ((aligned (64)));
uint64_t hash1[8] __attribute__ ((aligned (64)));
uint64_t hash2[8] __attribute__ ((aligned (64)));
uint64_t hash3[8] __attribute__ ((aligned (64)));
uint64_t vhash[8*4] __attribute__ ((aligned (64)));
x15_4way_ctx_holder ctx;
memcpy( &ctx, &x15_4way_ctx, sizeof(x15_4way_ctx) );
@@ -187,7 +485,7 @@ void x15_4way_hash( void *state, const void *input )
// 14 Shabal, parallel 32 bit
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
shabal512_4way( &ctx.shabal, vhash, 64 );
shabal512_4way_update( &ctx.shabal, vhash, 64 );
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
@@ -216,48 +514,37 @@ void x15_4way_hash( void *state, const void *input )
int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t hash[4*8] __attribute__ ((aligned (128)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19];
const uint32_t first_nonce = pdata[19];
__m256i *noncev = (__m256i*)vdata + 9; // aligned
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 4;
__m256i *noncev = (__m256i*)vdata + 9;
const uint32_t Htarg = ptarget[7];
int thr_id = mythr->id; // thr_id arg is deprecated
uint64_t htmax[] = { 0, 0xF, 0xFF,
0xFFF, 0xFFFF, 0x10000000 };
uint32_t masks[] = { 0xFFFFFFFF, 0xFFFFFFF0, 0xFFFFFF00,
0xFFFFF000, 0xFFFF0000, 0 };
int thr_id = mythr->id;
mm256_bswap32_intrlv80_4x64( vdata, pdata );
for ( int m=0; m < 6; m++ )
if ( Htarg <= htmax[m] )
{
uint32_t mask = masks[m];
do
do
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
x15_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( hash+(i<<3) )[7] < Htarg )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
*noncev = mm256_intrlv_blend_32( mm256_bswap_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ) ), *noncev );
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
}
n += 4;
} while ( ( n < last_nonce ) && !work_restart[thr_id].restart );
x15_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( ( (hash+(i<<3))[7] & mask ) == 0 )
if ( fulltest( hash+(i<<3), ptarget ) && !opt_benchmark )
{
pdata[19] = n+i;
submit_lane_solution( work, hash, mythr, i );
}
n += 4;
} while ( ( n < max_nonce ) && !work_restart[thr_id].restart );
break;
}
*hashes_done = n - first_nonce + 1;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -2,7 +2,11 @@
bool register_x15_algo( algo_gate_t* gate )
{
#if defined (X15_4WAY)
#if defined (X15_8WAY)
init_x15_8way_ctx();
gate->scanhash = (void*)&scanhash_x15_8way;
gate->hash = (void*)&x15_8way_hash;
#elif defined (X15_4WAY)
init_x15_4way_ctx();
gate->scanhash = (void*)&scanhash_x15_4way;
gate->hash = (void*)&x15_4way_hash;
@@ -11,7 +15,7 @@ bool register_x15_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_x15;
gate->hash = (void*)&x15hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
return true;
};

View File

@@ -4,20 +4,30 @@
#include "algo-gate-api.h"
#include <stdint.h>
#if defined(__AVX2__) && defined(__AES__)
#define X15_4WAY
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X15_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X15_4WAY 1
#endif
bool register_x15_algo( algo_gate_t* gate );
#if defined(X15_4WAY)
#if defined(X15_8WAY)
void x15_8way_hash( void *state, const void *input );
int scanhash_x15_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x15_8way_ctx();
#elif defined(X15_4WAY)
void x15_4way_hash( void *state, const void *input );
int scanhash_x15_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
void init_x15_4way_ctx();
#endif
#else
void x15hash( void *state, const void *input );
int scanhash_x15( struct work *work, uint32_t max_nonce,
@@ -26,3 +36,5 @@ void init_x15_ctx();
#endif
#endif