This commit is contained in:
Jay D Dee
2023-10-06 22:18:09 -04:00
parent bc5a5c6df8
commit 31c4dedf59
144 changed files with 5931 additions and 3746 deletions

View File

@@ -31,6 +31,7 @@
#include "hmac-sha256-hash-4way.h"
#include "compat.h"
#if defined(__SSE2__)
// HMAC 4-way SSE2
/**
@@ -169,6 +170,8 @@ pbkdf2_sha256_4way( uint8_t *buf, size_t dkLen,
}
}
#endif
#if defined(__AVX2__)
// HMAC 8-way AVX2

View File

@@ -38,6 +38,7 @@
#include "simd-utils.h"
#include "sha256-hash.h"
#if defined(__SSE2__)
typedef struct _hmac_sha256_4way_context
{
sha256_4way_context ictx;
@@ -60,6 +61,8 @@ void hmac_sha256_4way_full( void*, const void *, size_t Klen, const void *,
void pbkdf2_sha256_4way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif
#if defined(__AVX2__)
typedef struct _hmac_sha256_8way_context
@@ -78,7 +81,9 @@ void hmac_sha256_8way_full( void*, const void *, size_t Klen, const void *,
void pbkdf2_sha256_8way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
typedef struct _hmac_sha256_16way_context
@@ -100,8 +105,6 @@ void pbkdf2_sha256_16way( uint8_t *, size_t, const uint8_t *, size_t,
const uint8_t *, size_t, uint64_t );
#endif // AVX512
#endif // AVX2
#endif // HMAC_SHA256_4WAY_H__

View File

@@ -666,6 +666,9 @@ bool register_sha256d_algo( algo_gate_t* gate )
#elif defined(SHA256D_SHA)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256d_sha;
#elif defined(SHA256D_NEON_SHA2)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256d_neon_sha2;
//#elif defined(SHA256D_8WAY)
// gate->scanhash = (void*)&scanhash_sha256d_8way;
#else

View File

@@ -1,6 +1,3 @@
#if defined(__SSE2__)
#include <stddef.h>
#include <string.h>
#include "sha256-hash.h"
@@ -36,30 +33,29 @@ static const uint32_t K256[64] =
// SHA-256 4 way SSE2
#define CHs(X, Y, Z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
v128_xor( v128_and( v128_xor( Y, Z ), X ), Z )
#define MAJs(X, Y, Z) \
_mm_xor_si128( Y, _mm_and_si128( X_xor_Y = _mm_xor_si128( X, Y ), \
Y_xor_Z ) )
v128_xor( Y, v128_and( X_xor_Y = v128_xor( X, Y ), Y_xor_Z ) )
#define BSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 2), mm128_ror_32(x, 13) ), mm128_ror_32( x, 22) )
v128_xor( v128_xor( \
v128_ror32(x, 2), v128_ror32(x, 13) ), v128_ror32( x, 22) )
#define BSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 6), mm128_ror_32(x, 11) ), mm128_ror_32( x, 25) )
v128_xor( v128_xor( \
v128_ror32(x, 6), v128_ror32(x, 11) ), v128_ror32( x, 25) )
#define SSG2_0(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 7), mm128_ror_32(x, 18) ), _mm_srli_epi32(x, 3) )
v128_xor( v128_xor( \
v128_ror32(x, 7), v128_ror32(x, 18) ), v128_sr32(x, 3) )
#define SSG2_1(x) \
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) )
v128_xor( v128_xor( \
v128_ror32(x, 17), v128_ror32(x, 19) ), v128_sr32(x, 10) )
#define SHA2s_MEXP( a, b, c, d ) \
mm128_add4_32( SSG2_1( a ), b, SSG2_0( c ), d );
v128_add4_32( SSG2_1( a ), b, SSG2_0( c ), d );
#define SHA256x4_MSG_EXPANSION( W ) \
W[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] ); \
@@ -81,19 +77,19 @@ static const uint32_t K256[64] =
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i T1, T2; \
__m128i K = v128_32( K256[( (j)+(i) )] ); \
T1 = _mm_add_epi32( H, mm128_add4_32( BSG2_1(E), CHs(E, F, G), \
v128_t T1, T2; \
v128_t K = v128_32( K256[( (j)+(i) )] ); \
T1 = v128_add32( H, v128_add4_32( BSG2_1(E), CHs(E, F, G), \
K, W[i] ) ); \
T2 = _mm_add_epi32( BSG2_0(A), MAJs(A, B, C) ); \
T2 = v128_add32( BSG2_0(A), MAJs(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm_add_epi32( D, T1 ); \
H = _mm_add_epi32( T1, T2 ); \
D = v128_add32( D, T1 ); \
H = v128_add32( T1, T2 ); \
} while (0)
#define SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, j ) \
{ \
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C ); \
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C ); \
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j ); \
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j ); \
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j ); \
@@ -113,10 +109,10 @@ do { \
}
// LE data, no need to byte swap
static inline void SHA256_4WAY_TRANSFORM( __m128i *out, __m128i *W,
const __m128i *in )
static inline void SHA256_4WAY_TRANSFORM( v128_t *out, v128_t *W,
const v128_t *in )
{
__m128i A, B, C, D, E, F, G, H;
v128_t A, B, C, D, E, F, G, H;
A = in[0];
B = in[1];
@@ -135,109 +131,102 @@ static inline void SHA256_4WAY_TRANSFORM( __m128i *out, __m128i *W,
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
out[0] = _mm_add_epi32( in[0], A );
out[1] = _mm_add_epi32( in[1], B );
out[2] = _mm_add_epi32( in[2], C );
out[3] = _mm_add_epi32( in[3], D );
out[4] = _mm_add_epi32( in[4], E );
out[5] = _mm_add_epi32( in[5], F );
out[6] = _mm_add_epi32( in[6], G );
out[7] = _mm_add_epi32( in[7], H );
out[0] = v128_add32( in[0], A );
out[1] = v128_add32( in[1], B );
out[2] = v128_add32( in[2], C );
out[3] = v128_add32( in[3], D );
out[4] = v128_add32( in[4], E );
out[5] = v128_add32( in[5], F );
out[6] = v128_add32( in[6], G );
out[7] = v128_add32( in[7], H );
}
// LE data, no need to byte swap
void sha256_4way_transform_le( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
void sha256_4way_transform_le( v128_t *state_out, const v128_t *data,
const v128_t *state_in )
{
__m128i W[16];
memcpy_128( W, data, 16 );
v128_t W[16];
v128_memcpy( W, data, 16 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
}
// BE data, need to byte swap input data
void sha256_4way_transform_be( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
void sha256_4way_transform_be( v128_t *state_out, const v128_t *data,
const v128_t *state_in )
{
__m128i W[16];
mm128_block_bswap_32( W, data );
mm128_block_bswap_32( W+8, data+8 );
v128_t W[16];
v128_block_bswap32( W, data );
v128_block_bswap32( W+8, data+8 );
SHA256_4WAY_TRANSFORM( state_out, W, state_in );
}
// prehash_3rounds & final_rounds are not working
void sha256_4way_prehash_3rounds( __m128i *state_mid, __m128i *X,
const __m128i *W, const __m128i *state_in )
void sha256_4way_prehash_3rounds( v128_t *state_mid, v128_t *X,
const v128_t *W, const v128_t *state_in )
{
__m128i A, B, C, D, E, F, G, H;
v128_t A, B, C, D, E, F, G, H;
// precalculate constant part msg expansion for second iteration.
X[ 0] = SHA2s_MEXP( W[14], W[ 9], W[ 1], W[ 0] );
X[ 1] = SHA2s_MEXP( W[15], W[10], W[ 2], W[ 1] );
X[ 2] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 0] ), W[11] ),
W[ 2] );
X[ 3] = _mm_add_epi32( _mm_add_epi32( SSG2_1( X[ 1] ), W[12] ),
SSG2_0( W[ 4] ) );
X[ 4] = _mm_add_epi32( _mm_add_epi32( W[13], SSG2_0( W[ 5] ) ),
W[ 4] );
X[ 5] = _mm_add_epi32( _mm_add_epi32( W[14], SSG2_0( W[ 6] ) ),
W[ 5] );
X [6] = _mm_add_epi32( _mm_add_epi32( W[15], SSG2_0( W[ 7] ) ),
W[ 6] );
X[ 7] = _mm_add_epi32( _mm_add_epi32( X[ 0], SSG2_0( W[ 8] ) ),
W[ 7] );
X[ 8] = _mm_add_epi32( _mm_add_epi32( X[ 1], SSG2_0( W[ 9] ) ),
W[ 8] );
X[ 9] = _mm_add_epi32( SSG2_0( W[10] ), W[ 9] );
X[10] = _mm_add_epi32( SSG2_0( W[11] ), W[10] );
X[11] = _mm_add_epi32( SSG2_0( W[12] ), W[11] );
X[12] = _mm_add_epi32( SSG2_0( W[13] ), W[12] );
X[13] = _mm_add_epi32( SSG2_0( W[14] ), W[13] );
X[14] = _mm_add_epi32( SSG2_0( W[15] ), W[14] );
X[15] = _mm_add_epi32( SSG2_0( X[ 0] ), W[15] );
X[ 2] = v128_add32( v128_add32( SSG2_1( X[ 0] ), W[11] ), W[ 2] );
X[ 3] = v128_add32( v128_add32( SSG2_1( X[ 1] ), W[12] ), SSG2_0( W[ 4] ) );
X[ 4] = v128_add32( v128_add32( W[13], SSG2_0( W[ 5] ) ), W[ 4] );
X[ 5] = v128_add32( v128_add32( W[14], SSG2_0( W[ 6] ) ), W[ 5] );
X [6] = v128_add32( v128_add32( W[15], SSG2_0( W[ 7] ) ), W[ 6] );
X[ 7] = v128_add32( v128_add32( X[ 0], SSG2_0( W[ 8] ) ), W[ 7] );
X[ 8] = v128_add32( v128_add32( X[ 1], SSG2_0( W[ 9] ) ), W[ 8] );
X[ 9] = v128_add32( SSG2_0( W[10] ), W[ 9] );
X[10] = v128_add32( SSG2_0( W[11] ), W[10] );
X[11] = v128_add32( SSG2_0( W[12] ), W[11] );
X[12] = v128_add32( SSG2_0( W[13] ), W[12] );
X[13] = v128_add32( SSG2_0( W[14] ), W[13] );
X[14] = v128_add32( SSG2_0( W[15] ), W[14] );
X[15] = v128_add32( SSG2_0( X[ 0] ), W[15] );
A = _mm_load_si128( state_in );
B = _mm_load_si128( state_in + 1 );
C = _mm_load_si128( state_in + 2 );
D = _mm_load_si128( state_in + 3 );
E = _mm_load_si128( state_in + 4 );
F = _mm_load_si128( state_in + 5 );
G = _mm_load_si128( state_in + 6 );
H = _mm_load_si128( state_in + 7 );
A = v128_load( state_in );
B = v128_load( state_in + 1 );
C = v128_load( state_in + 2 );
D = v128_load( state_in + 3 );
E = v128_load( state_in + 4 );
F = v128_load( state_in + 5 );
G = v128_load( state_in + 6 );
H = v128_load( state_in + 7 );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C );
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
_mm_store_si128( state_mid , A );
_mm_store_si128( state_mid + 1, B );
_mm_store_si128( state_mid + 2, C );
_mm_store_si128( state_mid + 3, D );
_mm_store_si128( state_mid + 4, E );
_mm_store_si128( state_mid + 5, F );
_mm_store_si128( state_mid + 6, G );
_mm_store_si128( state_mid + 7, H );
v128_store( state_mid , A );
v128_store( state_mid + 1, B );
v128_store( state_mid + 2, C );
v128_store( state_mid + 3, D );
v128_store( state_mid + 4, E );
v128_store( state_mid + 5, F );
v128_store( state_mid + 6, G );
v128_store( state_mid + 7, H );
}
void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data,
const __m128i *state_in, const __m128i *state_mid, const __m128i *X )
void sha256_4way_final_rounds( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const v128_t *state_mid, const v128_t *X )
{
__m128i A, B, C, D, E, F, G, H;
__m128i W[16];
v128_t A, B, C, D, E, F, G, H;
v128_t W[16];
memcpy_128( W, data, 16 );
v128_memcpy( W, data, 16 );
A = _mm_load_si128( state_mid );
B = _mm_load_si128( state_mid + 1 );
C = _mm_load_si128( state_mid + 2 );
D = _mm_load_si128( state_mid + 3 );
E = _mm_load_si128( state_mid + 4 );
F = _mm_load_si128( state_mid + 5 );
G = _mm_load_si128( state_mid + 6 );
H = _mm_load_si128( state_mid + 7 );
A = v128_load( state_mid );
B = v128_load( state_mid + 1 );
C = v128_load( state_mid + 2 );
D = v128_load( state_mid + 3 );
E = v128_load( state_mid + 4 );
F = v128_load( state_mid + 5 );
G = v128_load( state_mid + 6 );
H = v128_load( state_mid + 7 );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( G, H );
v128_t X_xor_Y, Y_xor_Z = v128_xor( G, H );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
@@ -256,27 +245,20 @@ void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data,
// update precalculated msg expansion with new nonce: W[3].
W[ 0] = X[ 0];
W[ 1] = X[ 1];
W[ 2] = _mm_add_epi32( X[ 2], SSG2_0( W[ 3] ) );
W[ 3] = _mm_add_epi32( X[ 3], W[ 3] );
W[ 4] = _mm_add_epi32( X[ 4], SSG2_1( W[ 2] ) );
W[ 5] = _mm_add_epi32( X[ 5], SSG2_1( W[ 3] ) );
W[ 6] = _mm_add_epi32( X[ 6], SSG2_1( W[ 4] ) );
W[ 7] = _mm_add_epi32( X[ 7], SSG2_1( W[ 5] ) );
W[ 8] = _mm_add_epi32( X[ 8], SSG2_1( W[ 6] ) );
W[ 9] = _mm_add_epi32( X[ 9], _mm_add_epi32( SSG2_1( W[ 7] ),
W[ 2] ) );
W[10] = _mm_add_epi32( X[10], _mm_add_epi32( SSG2_1( W[ 8] ),
W[ 3] ) );
W[11] = _mm_add_epi32( X[11], _mm_add_epi32( SSG2_1( W[ 9] ),
W[ 4] ) );
W[12] = _mm_add_epi32( X[12], _mm_add_epi32( SSG2_1( W[10] ),
W[ 5] ) );
W[13] = _mm_add_epi32( X[13], _mm_add_epi32( SSG2_1( W[11] ),
W[ 6] ) );
W[14] = _mm_add_epi32( X[14], _mm_add_epi32( SSG2_1( W[12] ),
W[ 7] ) );
W[15] = _mm_add_epi32( X[15], _mm_add_epi32( SSG2_1( W[13] ),
W[ 8] ) );
W[ 2] = v128_add32( X[ 2], SSG2_0( W[ 3] ) );
W[ 3] = v128_add32( X[ 3], W[ 3] );
W[ 4] = v128_add32( X[ 4], SSG2_1( W[ 2] ) );
W[ 5] = v128_add32( X[ 5], SSG2_1( W[ 3] ) );
W[ 6] = v128_add32( X[ 6], SSG2_1( W[ 4] ) );
W[ 7] = v128_add32( X[ 7], SSG2_1( W[ 5] ) );
W[ 8] = v128_add32( X[ 8], SSG2_1( W[ 6] ) );
W[ 9] = v128_add32( X[ 9], v128_add32( SSG2_1( W[ 7] ), W[ 2] ) );
W[10] = v128_add32( X[10], v128_add32( SSG2_1( W[ 8] ), W[ 3] ) );
W[11] = v128_add32( X[11], v128_add32( SSG2_1( W[ 9] ), W[ 4] ) );
W[12] = v128_add32( X[12], v128_add32( SSG2_1( W[10] ), W[ 5] ) );
W[13] = v128_add32( X[13], v128_add32( SSG2_1( W[11] ), W[ 6] ) );
W[14] = v128_add32( X[14], v128_add32( SSG2_1( W[12] ), W[ 7] ) );
W[15] = v128_add32( X[15], v128_add32( SSG2_1( W[13] ), W[ 8] ) );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 16 );
SHA256x4_MSG_EXPANSION( W );
@@ -284,45 +266,47 @@ void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data,
SHA256x4_MSG_EXPANSION( W );
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 48 );
A = _mm_add_epi32( A, _mm_load_si128( state_in ) );
B = _mm_add_epi32( B, _mm_load_si128( state_in + 1 ) );
C = _mm_add_epi32( C, _mm_load_si128( state_in + 2 ) );
D = _mm_add_epi32( D, _mm_load_si128( state_in + 3 ) );
E = _mm_add_epi32( E, _mm_load_si128( state_in + 4 ) );
F = _mm_add_epi32( F, _mm_load_si128( state_in + 5 ) );
G = _mm_add_epi32( G, _mm_load_si128( state_in + 6 ) );
H = _mm_add_epi32( H, _mm_load_si128( state_in + 7 ) );
A = v128_add32( A, v128_load( state_in ) );
B = v128_add32( B, v128_load( state_in + 1 ) );
C = v128_add32( C, v128_load( state_in + 2 ) );
D = v128_add32( D, v128_load( state_in + 3 ) );
E = v128_add32( E, v128_load( state_in + 4 ) );
F = v128_add32( F, v128_load( state_in + 5 ) );
G = v128_add32( G, v128_load( state_in + 6 ) );
H = v128_add32( H, v128_load( state_in + 7 ) );
_mm_store_si128( state_out , A );
_mm_store_si128( state_out + 1, B );
_mm_store_si128( state_out + 2, C );
_mm_store_si128( state_out + 3, D );
_mm_store_si128( state_out + 4, E );
_mm_store_si128( state_out + 5, F );
_mm_store_si128( state_out + 6, G );
_mm_store_si128( state_out + 7, H );
v128_store( state_out , A );
v128_store( state_out + 1, B );
v128_store( state_out + 2, C );
v128_store( state_out + 3, D );
v128_store( state_out + 4, E );
v128_store( state_out + 5, F );
v128_store( state_out + 6, G );
v128_store( state_out + 7, H );
}
# if 0
// Working correctly but still slower
int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
const __m128i *state_in, const uint32_t *target )
int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const uint32_t *target )
{
__m128i A, B, C, D, E, F, G, H, T0, T1, T2;
__m128i vmask, targ, hash;
v128_t A, B, C, D, E, F, G, H, T0, T1, T2;
v128_t vmask, targ, hash;
int t6_mask, flip;
__m128i W[16]; memcpy_128( W, data, 16 );
v128_t W[16]; memcpy_128( W, data, 16 );
A = _mm_load_si128( state_in );
B = _mm_load_si128( state_in+1 );
C = _mm_load_si128( state_in+2 );
D = _mm_load_si128( state_in+3 );
E = _mm_load_si128( state_in+4 );
F = _mm_load_si128( state_in+5 );
G = _mm_load_si128( state_in+6 );
H = _mm_load_si128( state_in+7 );
A = v128_load( state_in );
B = v128_load( state_in+1 );
C = v128_load( state_in+2 );
D = v128_load( state_in+3 );
E = v128_load( state_in+4 );
F = v128_load( state_in+5 );
G = v128_load( state_in+6 );
H = v128_load( state_in+7 );
const __m128i IV7 = H;
const __m128i IV6 = G;
const v128_t IV7 = H;
const v128_t IV6 = G;
SHA256x4_16ROUNDS( A, B, C, D, E, F, G, H, 0 );
SHA256x4_MSG_EXPANSION( W );
@@ -344,7 +328,7 @@ int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
W[11] = SHA2s_MEXP( W[ 9], W[ 4], W[12], W[11] );
W[12] = SHA2s_MEXP( W[10], W[ 5], W[13], W[12] );
__m128i X_xor_Y, Y_xor_Z = _mm_xor_si128( B, C );
v128_t X_xor_Y, Y_xor_Z = v128_xor( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 48 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 48 );
@@ -357,65 +341,64 @@ int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 48 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 48 );
T0 = _mm_add_epi32( v128_32( K256[58] ),
mm128_add4_32( BSG2_1( C ), CHs( C, D, E ), W[10], F ) );
B = _mm_add_epi32( B, T0 );
T0 = v128_add32( v128_32( K256[58] ),
v128_add4_32( BSG2_1( C ), CHs( C, D, E ), W[10], F ) );
B = v128_add32( B, T0 );
T1 = _mm_add_epi32( v128_32( K256[59] ),
mm128_add4_32( BSG2_1( B ), CHs( B, C, D ), W[11], E ) );
A = _mm_add_epi32( A, T1 );
T1 = v128_add32( v128_32( K256[59] ),
v128_add4_32( BSG2_1( B ), CHs( B, C, D ), W[11], E ) );
A = v128_add32( A, T1 );
T2 = _mm_add_epi32( v128_32( K256[60] ),
mm128_add4_32( BSG2_1( A ), CHs( A, B, C ), W[12], D ) );
H = _mm_add_epi32( H, T2 );
T2 = v128_add32( v128_32( K256[60] ),
v128_add4_32( BSG2_1( A ), CHs( A, B, C ), W[12], D ) );
H = v128_add32( H, T2 );
targ = v128_32( target[7] );
hash = mm128_bswap_32( _mm_add_epi32( H, IV7 ) );
hash = v128_bswap32( v128_add32( H, IV7 ) );
flip = ( (int)target[7] < 0 ? 0xf : 0 ) ^ mm128_movmask_32( hash );
flip = ( (int)target[7] < 0 ? 0xf : 0 ) ^ v128_movmask32( hash );
if ( likely( 0xf == ( flip ^
mm128_movmask_32( _mm_cmpgt_epi32( hash, targ ) ) ) ))
if ( likely(
0xf == ( flip ^ v128_movmask32( v128_cmpgt32( hash, targ ) ) ) ))
return 0;
t6_mask = mm128_movmask_32( vmask =_mm_cmpeq_epi32( hash, targ ) );
t6_mask = v128_movmask32( vmask = v128_cmpeq32( hash, targ ) );
// round 58 part 2
F = _mm_add_epi32( T0, _mm_add_epi32( BSG2_0( G ), MAJs( G, H, A ) ) );
F = v128_add32( T0, v128_add32( BSG2_0( G ), MAJs( G, H, A ) ) );
// round 61 part 1
W[13] = SHA2s_MEXP( W[11], W[ 6], W[14], W[13] );
T0 = _mm_add_epi32( v128_32( K256[61] ),
mm128_add4_32( BSG2_1( H ), CHs( H, A, B ), W[13], C ) );
G = _mm_add_epi32( G, T0 );
T0 = v128_add32( v128_32( K256[61] ),
v128_add4_32( BSG2_1( H ), CHs( H, A, B ), W[13], C ) );
G = v128_add32( G, T0 );
if ( t6_mask )
{
targ = _mm_and_si128( vmask, v128_32( target[6] ) );
hash = mm128_bswap_32( _mm_add_epi32( G, IV6 ) );
targ = v128_and( vmask, v128_32( target[6] ) );
hash = v128_bswap32( v128_add32( G, IV6 ) );
if ( ( 0 != ( t6_mask & mm128_movmask_32(
_mm_cmpeq_epi32( hash, targ ) ) ) ))
if ( ( 0 != ( t6_mask & v128_movmask32( v128_cmpeq32( hash, targ ) ) ) ))
return 0;
else
{
flip = ( (int)target[6] < 0 ? 0xf : 0 ) ^ mm128_movmask_32( hash );
if ( 0 != ( t6_mask & ( flip ^ mm128_movmask_32(
_mm_cmpgt_epi32( hash, targ ) ) ) ) )
flip = ( (int)target[6] < 0 ? 0xf : 0 ) ^ v128_movmask32( hash );
if ( 0 != ( t6_mask & ( flip ^ v128_movmask32(
v128_cmpgt32( hash, targ ) ) ) ) )
return 0;
else if ( target[6] == 0x80000000 )
{
if ( 0 == ( t6_mask & mm128_movmask_32(
_mm_cmpgt_epi32( hash, _mm_xor_si128( hash, hash ) ) ) ) )
if ( 0 == ( t6_mask & v128_movmask32(
v128_cmpgt32( hash, v128_xor( hash, hash ) ) ) ) )
return 0;
}
}
}
// rounds 59 to 61 part 2
E = _mm_add_epi32( T1, _mm_add_epi32( BSG2_0( F ), MAJs( F, G, H ) ) );
D = _mm_add_epi32( T2, _mm_add_epi32( BSG2_0( E ), MAJs( E, F, G ) ) );
C = _mm_add_epi32( T0, _mm_add_epi32( BSG2_0( D ), MAJs( D, E, F ) ) );
E = v128_add32( T1, v128_add32( BSG2_0( F ), MAJs( F, G, H ) ) );
D = v128_add32( T2, v128_add32( BSG2_0( E ), MAJs( E, F, G ) ) );
C = v128_add32( T0, v128_add32( BSG2_0( D ), MAJs( D, E, F ) ) );
// rounds 62 & 63
W[14] = SHA2s_MEXP( W[12], W[ 7], W[15], W[14] );
@@ -424,17 +407,18 @@ int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 48 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 48 );
state_out[0] = _mm_add_epi32( state_in[0], A );
state_out[1] = _mm_add_epi32( state_in[1], B );
state_out[2] = _mm_add_epi32( state_in[2], C );
state_out[3] = _mm_add_epi32( state_in[3], D );
state_out[4] = _mm_add_epi32( state_in[4], E );
state_out[5] = _mm_add_epi32( state_in[5], F );
state_out[6] = _mm_add_epi32( state_in[6], G );
state_out[7] = _mm_add_epi32( state_in[7], H );
state_out[0] = v128_add32( state_in[0], A );
state_out[1] = v128_add32( state_in[1], B );
state_out[2] = v128_add32( state_in[2], C );
state_out[3] = v128_add32( state_in[3], D );
state_out[4] = v128_add32( state_in[4], E );
state_out[5] = v128_add32( state_in[5], F );
state_out[6] = v128_add32( state_in[6], G );
state_out[7] = v128_add32( state_in[7], H );
return 1;
}
#endif
void sha256_4way_init( sha256_4way_context *sc )
{
@@ -451,7 +435,7 @@ void sha256_4way_init( sha256_4way_context *sc )
void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
{
__m128i *vdata = (__m128i*)data;
v128_t *vdata = (v128_t*)data;
size_t ptr;
const int buf_size = 64;
@@ -464,7 +448,7 @@ void sha256_4way_update( sha256_4way_context *sc, const void *data, size_t len )
clen = buf_size - ptr;
if ( clen > len )
clen = len;
memcpy_128( sc->buf + (ptr>>2), vdata, clen>>2 );
v128_memcpy( sc->buf + (ptr>>2), vdata, clen>>2 );
vdata = vdata + (clen>>2);
ptr += clen;
len -= clen;
@@ -494,12 +478,12 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
if ( ptr > pad )
{
memset_zero_128( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
v128_memset_zero( sc->buf + (ptr>>2), (buf_size - ptr) >> 2 );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
memset_zero_128( sc->buf, pad >> 2 );
v128_memset_zero( sc->buf, pad >> 2 );
}
else
memset_zero_128( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
v128_memset_zero( sc->buf + (ptr>>2), (pad - ptr) >> 2 );
low = sc->count_low;
high = (sc->count_high << 3) | (low >> 29);
@@ -509,7 +493,7 @@ void sha256_4way_close( sha256_4way_context *sc, void *dst )
sc->buf[( pad+4 ) >> 2 ] = v128_32( bswap_32( low ) );
sha256_4way_transform_be( sc->val, sc->buf, sc->val );
mm128_block_bswap_32( dst, sc->val );
v128_block_bswap32( dst, sc->val );
}
void sha256_4way_full( void *dst, const void *data, size_t len )
@@ -1725,4 +1709,3 @@ void sha256_16way_full( void *dst, const void *data, size_t len )
#endif // AVX512
#endif // __AVX2__
#endif // __SSE2__

File diff suppressed because it is too large Load Diff

View File

@@ -25,7 +25,7 @@ void sha256_transform_le( uint32_t *state_out, const uint32_t *data,
void sha256_transform_be( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in );
#if defined(__SHA__)
#if defined(__x86_64__) && defined(__SHA__)
void sha256_opt_transform_le( uint32_t *state_out, const void *input,
const uint32_t *state_in );
@@ -33,34 +33,67 @@ void sha256_opt_transform_le( uint32_t *state_out, const void *input,
void sha256_opt_transform_be( uint32_t *state_out, const void *input,
const uint32_t *state_in );
// 2 way with interleaved instructions
void sha256_ni2way_transform_le( uint32_t *out_X, uint32_t*out_Y,
// 2 way serial with interleaved instructions
void sha256_ni2x_transform_le( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
void sha256_ni2way_transform_be( uint32_t *out_X, uint32_t*out_Y,
void sha256_ni2x_transform_be( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
void sha256_ni_prehash_3rounds( uint32_t *ostate, const void *msg,
uint32_t *sstate, const uint32_t *istate );
void sha256_ni2way_final_rounds( uint32_t *state_out_X, uint32_t *state_out_Y,
void sha256_ni2x_final_rounds( uint32_t *state_out_X, uint32_t *state_out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *state_mid_X, const uint32_t *state_mid_Y,
const uint32_t *state_save_X, const uint32_t *state_save_Y );
// Select target
// with SHA...
#define sha256_transform_le sha256_opt_transform_le
#define sha256_transform_be sha256_opt_transform_be
#define sha256_transform_le sha256_opt_transform_le
#define sha256_transform_be sha256_opt_transform_be
#define sha256_2x_transform_le sha256_ni2x_transform_le
#define sha256_2x_transform_be sha256_ni2x_transform_be
#define sha256_prehash_3rounds sha256_ni_prehash_3rounds
#define sha256_2x_final_rounds sha256_ni2x_final_rounds
#elif defined(__aarch64__) && defined(__ARM_NEON)
void sha256_neon_transform_be( uint32_t *state_out, const void *input,
const uint32_t *state_in );
void sha256_neon_transform_le( uint32_t *state_out, const void *input,
const uint32_t *state_in );
void sha256_neon2x_transform_le( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
void sha256_neon2x_transform_be( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
void sha256_neon_prehash_3rounds( uint32_t *ostate, const void *msg,
uint32_t *sstate, const uint32_t *istate );
void sha256_neon2x_final_rounds( uint32_t *state_out_X, uint32_t *state_out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *state_mid_X, const uint32_t *state_mid_Y,
const uint32_t *state_save_X, const uint32_t *state_save_Y );
#define sha256_transform_le sha256_neon_transform_le
#define sha256_transform_be sha256_neon_transform_be
#define sha256_2x_transform_le sha256_neon2x_transform_le
#define sha256_2x_transform_be sha256_neon2x_transform_be
#define sha256_prehash_3rounds sha256_neon_prehash_3rounds
#define sha256_2x_final_rounds sha256_neon2x_final_rounds
#else
// without SHA...
// without HW acceleration...
#include "sph_sha2.h"
#define sha256_transform_le sph_sha256_transform_le
#define sha256_transform_be sph_sha256_transform_be
#define sha256_transform_le sph_sha256_transform_le
#define sha256_transform_be sph_sha256_transform_be
#define sha256_prehash_3rounds sph_sha256_prehash_3rounds
#endif
@@ -122,14 +155,12 @@ int sha256_8way_transform_le_short( __m256i *state_out, const __m256i *data,
#endif // AVX2
#if defined(__SSE2__)
// SHA-256 4 way
typedef struct
{
__m128i buf[64>>2];
__m128i val[8];
v128_t buf[64>>2];
v128_t val[8];
uint32_t count_high, count_low;
} sha256_4way_context __attribute__ ((aligned (32)));
@@ -138,17 +169,16 @@ void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
void sha256_4way_transform_le( __m128i *state_out, const __m128i *data,
const __m128i *state_in );
void sha256_4way_transform_be( __m128i *state_out, const __m128i *data,
const __m128i *state_in );
void sha256_4way_prehash_3rounds( __m128i *state_mid, __m128i *X,
const __m128i *W, const __m128i *state_in );
void sha256_4way_final_rounds( __m128i *state_out, const __m128i *data,
const __m128i *state_in, const __m128i *state_mid, const __m128i *X );
int sha256_4way_transform_le_short( __m128i *state_out, const __m128i *data,
const __m128i *state_in, const uint32_t *target );
void sha256_4way_transform_le( v128_t *state_out, const v128_t *data,
const v128_t *state_in );
void sha256_4way_transform_be( v128_t *state_out, const v128_t *data,
const v128_t *state_in );
void sha256_4way_prehash_3rounds( v128_t *state_mid, v128_t *X,
const v128_t *W, const v128_t *state_in );
void sha256_4way_final_rounds( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const v128_t *state_mid, const v128_t *X );
int sha256_4way_transform_le_short( v128_t *state_out, const v128_t *data,
const v128_t *state_in, const uint32_t *target );
#endif // SSE2
#endif

View File

@@ -32,11 +32,11 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
const v128_t shuf_bswap32 =
v128_set_64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_opt_transform_le( mstatea, pdata, sha256_iv );
sha256_transform_le( mstatea, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
@@ -48,7 +48,7 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 80*8; // bit count
sha256_ni_prehash_3rounds( mstateb, block1a, sstate, mstatea);
sha256_prehash_3rounds( mstateb, block1a, sstate, mstatea);
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
@@ -61,18 +61,18 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_ni2way_final_rounds( block2a, block2b, block1a, block1b,
sha256_2x_final_rounds( block2a, block2b, block1a, block1b,
mstateb, mstateb, sstate, sstate );
sha256_ni2way_transform_le( hasha, hashb, block2a, block2b,
sha256_2x_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_m128i( hasha, 0 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 0 ), shuf_bswap32 );
casti_m128i( hasha, 1 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 1 ), shuf_bswap32 );
casti_v128( hasha, 0 ) =
_mm_shuffle_epi8( casti_v128( hasha, 0 ), shuf_bswap32 );
casti_v128( hasha, 1 ) =
_mm_shuffle_epi8( casti_v128( hasha, 1 ), shuf_bswap32 );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
@@ -81,10 +81,94 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_m128i( hashb, 0 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 0 ), shuf_bswap32 );
casti_m128i( hashb, 1 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 1 ), shuf_bswap32 );
casti_v128( hashb, 0 ) =
_mm_shuffle_epi8( casti_v128( hashb, 0 ), shuf_bswap32 );
casti_v128( hashb, 1 ) =
_mm_shuffle_epi8( casti_v128( hashb, 1 ), shuf_bswap32 );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256D_NEON_SHA2)
int scanhash_sha256d_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstatea[8] __attribute__ ((aligned (32)));
uint32_t sstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t shuf_bswap32 =
v128_set_64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_transform_le( mstatea, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = 0;
block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 80*8; // bit count
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 32*8; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_neon2x_transform_le( block2a, block2b, block1a, block1b,
mstatea, mstatea );
sha256_neon2x_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
@@ -282,11 +366,11 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m128i vdata[32] __attribute__ ((aligned (64)));
__m128i block[16] __attribute__ ((aligned (32)));
__m128i hash32[8] __attribute__ ((aligned (32)));
__m128i istate[8] __attribute__ ((aligned (32)));
__m128i mstate[8] __attribute__ ((aligned (32)));
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t istate[8] __attribute__ ((aligned (32)));
v128_t mstate[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
@@ -295,23 +379,23 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m128i *noncev = vdata + 19;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i last_byte = v128_32( 0x80000000 );
const __m128i four = v128_32( 4 );
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = _mm_set_epi32( n+ 3, n+ 2, n+1, n );
*noncev = v128_set_32( n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_128( vdata+16 + 5, 10 );
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 80*8 );
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
v128_memset_zero( block + 9, 6 );
block[15] = v128_32( 32*8 );
// initialize state
@@ -332,7 +416,7 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
sha256_4way_transform_le( block, vdata+16, mstate );
sha256_4way_transform_le( hash32, block, istate );
mm128_block_bswap_32( hash32, hash32 );
v128_block_bswap32( hash32, hash32 );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
@@ -344,7 +428,7 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, four );
*noncev = v128_add32( *noncev, four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;

View File

@@ -8,6 +8,8 @@
#define SHA256D_16WAY 1
#elif defined(__SHA__)
#define SHA256D_SHA 1
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_SHA2)
#define SHA256D_NEON_SHA2 1
#elif defined(__AVX2__)
#define SHA256D_8WAY 1
#else
@@ -41,5 +43,12 @@ int scanhash_sha256d_sha( struct work *work, uint32_t max_nonce,
#endif
#if defined(SHA256D_NEON_SHA2)
int scanhash_sha256d_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
#endif

View File

@@ -9,6 +9,8 @@
#define SHA256DT_16WAY 1
#elif defined(__SHA__)
#define SHA256DT_SHA 1
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_SHA2)
#define SHA256DT_NEON_SHA2 1
#elif defined(__AVX2__)
#define SHA256DT_8WAY 1
#else
@@ -42,11 +44,11 @@ int scanhash_sha256dt_sha( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
const v128_t shuf_bswap32 =
v128_set64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_opt_transform_le( mstatea, pdata, sha256dt_iv );
sha256_transform_le( mstatea, pdata, sha256dt_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
@@ -57,7 +59,7 @@ int scanhash_sha256dt_sha( struct work *work, uint32_t max_nonce,
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 0x480; // funky bit count
sha256_ni_prehash_3rounds( mstateb, block1a, sstate, mstatea);
sha256_prehash_3rounds( mstateb, block1a, sstate, mstatea);
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
@@ -70,18 +72,16 @@ int scanhash_sha256dt_sha( struct work *work, uint32_t max_nonce,
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_ni2way_final_rounds( block2a, block2b, block1a, block1b,
sha256_2x_final_rounds( block2a, block2b, block1a, block1b,
mstateb, mstateb, sstate, sstate );
sha256_ni2way_transform_le( hasha, hashb, block2a, block2b,
sha256_2x_transform_le( hasha, hashb, block2a, block2b,
sha256dt_iv, sha256dt_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_m128i( hasha, 0 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 0 ), shuf_bswap32 );
casti_m128i( hasha, 1 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 1 ), shuf_bswap32 );
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
@@ -90,10 +90,92 @@ int scanhash_sha256dt_sha( struct work *work, uint32_t max_nonce,
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_m128i( hashb, 0 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 0 ), shuf_bswap32 );
casti_m128i( hashb, 1 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 1 ), shuf_bswap32 );
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256DT_NEON_SHA2)
#pragma message "SHA256DT MEON SHA"
int scanhash_sha256dt_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstatea[8] __attribute__ ((aligned (32)));
uint32_t sstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const v128_t shuf_bswap32 =
v128_set64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_neon_transform_le( mstatea, pdata, sha256dt_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 0x480; // funky bit count
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 0x300; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_neon2x_transform_le( block2a, block2b, block1a, block1b,
mstatea, mstatea );
sha256_neon2x_transform_le( hasha, hashb, block2a, block2b,
sha256dt_iv, sha256dt_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
@@ -132,7 +214,7 @@ int scanhash_sha256dt_16way( struct work *work, const uint32_t max_nonce,
const int thr_id = mythr->id;
const __m512i sixteen = v512_32( 16 );
const bool bench = opt_benchmark;
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
const __m256i bswap_shuf = mm256_bcast_m128( v128_set64(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
// prehash first block directly from pdata
@@ -227,7 +309,7 @@ int scanhash_sha256dt_8way( struct work *work, const uint32_t max_nonce,
const bool bench = opt_benchmark;
const __m256i last_byte = v256_32( 0x80000000 );
const __m256i eight = v256_32( 8 );
const __m256i bswap_shuf = mm256_bcast_m128( _mm_set_epi64x(
const __m256i bswap_shuf = mm256_bcast_m128( v128_set64(
0x0c0d0e0f08090a0b, 0x0405060700010203 ) );
for ( int i = 0; i < 19; i++ )
@@ -291,11 +373,11 @@ int scanhash_sha256dt_8way( struct work *work, const uint32_t max_nonce,
int scanhash_sha256dt_4way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m128i vdata[32] __attribute__ ((aligned (64)));
__m128i block[16] __attribute__ ((aligned (32)));
__m128i hash32[8] __attribute__ ((aligned (32)));
__m128i initstate[8] __attribute__ ((aligned (32)));
__m128i midstate[8] __attribute__ ((aligned (32)));
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t initstate[8] __attribute__ ((aligned (32)));
v128_t midstate[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
@@ -304,23 +386,23 @@ int scanhash_sha256dt_4way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m128i *noncev = vdata + 19;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i last_byte = v128_32( 0x80000000 );
const __m128i four = v128_32( 4 );
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = _mm_set_epi32( n+ 3, n+ 2, n+1, n );
*noncev = v128_set32( n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_128( vdata+16 + 5, 10 );
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 0x480 );
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
v128_memset_zero( block + 9, 6 );
block[15] = v128_32( 0x300 );
// initialize state
@@ -341,7 +423,7 @@ int scanhash_sha256dt_4way( struct work *work, const uint32_t max_nonce,
sha256_4way_transform_le( block, vdata+16, midstate );
sha256_4way_transform_le( hash32, block, initstate );
mm128_block_bswap_32( hash32, hash32 );
v128_block_bswap32( hash32, hash32 );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
@@ -353,7 +435,7 @@ int scanhash_sha256dt_4way( struct work *work, const uint32_t max_nonce,
submit_solution( work, lane_hash, mythr );
}
}
*noncev = _mm_add_epi32( *noncev, four );
*noncev = v128_add32( *noncev, four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
@@ -371,11 +453,16 @@ bool register_sha256dt_algo( algo_gate_t* gate )
#elif defined(SHA256DT_SHA)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_sha;
#elif defined(SHA256DT_NEON_SHA2)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256dt_neon_sha2;
#elif defined(SHA256DT_8WAY)
gate->scanhash = (void*)&scanhash_sha256dt_8way;
#else
#elif defined(SHA256DT_4WAY)
gate->scanhash = (void*)&scanhash_sha256dt_4way;
#endif
return true;
}

View File

@@ -188,7 +188,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
__m128i *noncev = (__m128i*)vdata + 19; // aligned
v128_t *noncev = (v128_t*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const uint64_t htmax[] = { 0,
@@ -204,7 +204,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
0xFFFF0000,
0 };
mm128_bswap32_intrlv80_4x32( vdata, pdata );
v128_bswap32_intrlv80_4x32( vdata, pdata );
sha256_4way_init( &sha256_ctx4 );
sha256_4way_update( &sha256_ctx4, vdata, 64 );
@@ -212,7 +212,7 @@ int scanhash_sha256q_4way( struct work *work, uint32_t max_nonce,
{
uint32_t mask = masks[m];
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3,n+2,n+1,n ) );
*noncev = v128_bswap32( v128_set32( n+3,n+2,n+1,n ) );
pdata[19] = n;
sha256q_4way_hash( hash, vdata );

View File

@@ -45,7 +45,7 @@ int scanhash_sha256q( struct work *work, uint32_t max_nonce,
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
v128_bswap32_80( edata, pdata );
sha256q_midstate( edata );
do

View File

@@ -131,11 +131,11 @@ int scanhash_sha256t_sha( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// const v128_t shuf_bswap32 =
// v128_set_64( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// hash first 64 byte block of data
sha256_opt_transform_le( mstatea, pdata, sha256_iv );
sha256_transform_le( mstatea, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
@@ -147,7 +147,7 @@ int scanhash_sha256t_sha( struct work *work, uint32_t max_nonce,
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 0x480; // funky bit count
sha256_ni_prehash_3rounds( mstateb, block1a, sstate, mstatea);
sha256_prehash_3rounds( mstateb, block1a, sstate, mstatea);
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
@@ -160,19 +160,17 @@ int scanhash_sha256t_sha( struct work *work, uint32_t max_nonce,
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_ni2way_final_rounds( block2a, block2b, block1a, block1b,
sha256_2x_final_rounds( block2a, block2b, block1a, block1b,
mstateb, mstateb, sstate, sstate );
sha256_ni2way_transform_le( block2a, block2b, block2a, block2b,
sha256_2x_transform_le( block2a, block2b, block2a, block2b,
sha256_iv, sha256_iv );
sha256_ni2way_transform_le( hasha, hashb, block2a, block2b,
sha256_2x_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_m128i( hasha, 0 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 0 ), shuf_bswap32 );
casti_m128i( hasha, 1 ) =
_mm_shuffle_epi8( casti_m128i( hasha, 1 ), shuf_bswap32 );
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
@@ -181,10 +179,90 @@ int scanhash_sha256t_sha( struct work *work, uint32_t max_nonce,
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_m128i( hashb, 0 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 0 ), shuf_bswap32 );
casti_m128i( hashb, 1 ) =
_mm_shuffle_epi8( casti_m128i( hashb, 1 ), shuf_bswap32 );
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
submit_solution( work, hashb, mythr );
}
}
n += 2;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
#endif
#if defined(SHA256T_NEON_SHA2)
int scanhash_sha256t_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block1a[16] __attribute__ ((aligned (64)));
uint32_t block1b[16] __attribute__ ((aligned (64)));
uint32_t block2a[16] __attribute__ ((aligned (64)));
uint32_t block2b[16] __attribute__ ((aligned (64)));
uint32_t hasha[8] __attribute__ ((aligned (32)));
uint32_t hashb[8] __attribute__ ((aligned (32)));
uint32_t mstatea[8] __attribute__ ((aligned (32)));
uint32_t sstate[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 2;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
// hash first 64 byte block of data
sha256_transform_le( mstatea, pdata, sha256_iv );
// fill & pad second bock without nonce
memcpy( block1a, pdata + 16, 12 );
memcpy( block1b, pdata + 16, 12 );
block1a[ 3] = 0;
block1b[ 3] = 0;
block1a[ 4] = block1b[ 4] = 0x80000000;
memset( block1a + 5, 0, 40 );
memset( block1b + 5, 0, 40 );
block1a[15] = block1b[15] = 0x480; // funky bit count
// Pad third block
block2a[ 8] = block2b[ 8] = 0x80000000;
memset( block2a + 9, 0, 24 );
memset( block2b + 9, 0, 24 );
block2a[15] = block2b[15] = 80*8; // bit count
do
{
// Insert nonce for second block
block1a[3] = n;
block1b[3] = n+1;
sha256_neon2x_transform_le( block2a, block2b, block1a, block1b,
mstatea, mstatea );
sha256_neon2x_transform_le( block2a, block2b, block2a, block2b,
sha256_iv, sha256_iv );
sha256_neon2x_transform_le( hasha, hashb, block2a, block2b,
sha256_iv, sha256_iv );
if ( unlikely( bswap_32( hasha[7] ) <= ptarget[7] ) )
{
casti_v128( hasha, 0 ) = v128_bswap32( casti_v128( hasha, 0 ) );
casti_v128( hasha, 1 ) = v128_bswap32( casti_v128( hasha, 1 ) );
if ( likely( valid_hash( hasha, ptarget ) && !bench ) )
{
pdata[19] = n;
submit_solution( work, hasha, mythr );
}
}
if ( unlikely( bswap_32( hashb[7] ) <= ptarget[7] ) )
{
casti_v128( hashb, 0 ) = v128_bswap32( casti_v128( hashb, 0 ) );
casti_v128( hashb, 1 ) = v128_bswap32( casti_v128( hashb, 1 ) );
if ( likely( valid_hash( hashb, ptarget ) && !bench ) )
{
pdata[19] = n+1;
@@ -295,13 +373,13 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
__m128i vdata[32] __attribute__ ((aligned (64)));
__m128i block[16] __attribute__ ((aligned (32)));
__m128i hash32[8] __attribute__ ((aligned (32)));
__m128i istate[8] __attribute__ ((aligned (32)));
__m128i mstate[8] __attribute__ ((aligned (32)));
// __m128i mstate2[8] __attribute__ ((aligned (32)));
// __m128i mexp_pre[8] __attribute__ ((aligned (32)));
v128_t vdata[32] __attribute__ ((aligned (64)));
v128_t block[16] __attribute__ ((aligned (32)));
v128_t hash32[8] __attribute__ ((aligned (32)));
v128_t istate[8] __attribute__ ((aligned (32)));
v128_t mstate[8] __attribute__ ((aligned (32)));
// v128_t mstate2[8] __attribute__ ((aligned (32)));
// v128_t mexp_pre[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
uint32_t *pdata = work->data;
@@ -310,23 +388,23 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m128i *noncev = vdata + 19;
v128_t *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m128i last_byte = v128_32( 0x80000000 );
const __m128i four = v128_32( 4 );
const v128_t last_byte = v128_32( 0x80000000 );
const v128_t four = v128_32( 4 );
for ( int i = 0; i < 19; i++ )
vdata[i] = v128_32( pdata[i] );
*noncev = _mm_set_epi32( n+ 3, n+ 2, n+1, n );
*noncev = v128_set_32( n+ 3, n+ 2, n+1, n );
vdata[16+4] = last_byte;
memset_zero_128( vdata+16 + 5, 10 );
v128_memset_zero( vdata+16 + 5, 10 );
vdata[16+15] = v128_32( 80*8 ); // bit count
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
v128_memset_zero( block + 9, 6 );
block[15] = v128_32( 32*8 ); // bit count
// initialize state
@@ -353,10 +431,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
sha256_4way_transform_le( block, block, istate );
sha256_4way_transform_le( hash32, block, istate );
// if ( unlikely( sha256_4way_transform_le_short(
// hash32, block, initstate, ptarget ) ))
// {
mm128_block_bswap_32( hash32, hash32 );
v128_block_bswap32( hash32, hash32 );
for ( int lane = 0; lane < 4; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
{
@@ -367,8 +442,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
submit_solution( work, lane_hash, mythr );
}
}
// }
*noncev = _mm_add_epi32( *noncev, four );
*noncev = v128_add32( *noncev, four );
n += 4;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
pdata[19] = n;

View File

@@ -10,8 +10,11 @@ bool register_sha256t_algo( algo_gate_t* gate )
gate->scanhash = (void*)&scanhash_sha256t_sha;
#elif defined(SHA256T_8WAY)
gate->scanhash = (void*)&scanhash_sha256t_8way;
#else
#elif defined(SHA256T_4WAY)
gate->scanhash = (void*)&scanhash_sha256t_4way;
#else
gate->scanhash = (void*)&scanhash_sha256t;
#endif
return true;
}
@@ -22,16 +25,19 @@ bool register_sha256q_algo( algo_gate_t* gate )
#if defined(SHA256T_16WAY)
gate->scanhash = (void*)&scanhash_sha256q_16way;
gate->hash = (void*)&sha256q_16way_hash;
#elif defined(SHA256T_SHA)
gate->optimizations = SHA_OPT;
gate->scanhash = (void*)&scanhash_sha256q;
gate->hash = (void*)&sha256q_hash;
//#elif defined(SHA256T_SHA)
// gate->optimizations = SHA_OPT;
// gate->scanhash = (void*)&scanhash_sha256q;
// gate->hash = (void*)&sha256q_hash;
#elif defined(SHA256T_8WAY)
gate->scanhash = (void*)&scanhash_sha256q_8way;
gate->hash = (void*)&sha256q_8way_hash;
#else
#elif defined(SHA256T_4WAY)
gate->scanhash = (void*)&scanhash_sha256q_4way;
gate->hash = (void*)&sha256q_4way_hash;
//#else
// gate->scanhash = (void*)&scanhash_sha256q;
// gate->hash = (void*)&sha256q_4way;
#endif
return true;
}

View File

@@ -8,6 +8,8 @@
#define SHA256T_16WAY 1
#elif defined(__SHA__)
#define SHA256T_SHA 1
#elif defined(__ARM_NEON) && defined(__ARM_FEATURE_SHA2)
#define SHA125DT_NEON_SHA2 1
#elif defined(__AVX2__)
#define SHA256T_8WAY 1
#else
@@ -51,6 +53,17 @@ int scanhash_sha256t_sha( struct work *work, uint32_t max_nonce,
#endif
#if defined(SHA256T_NEON_SHA2)
int scanhash_sha256t_neon_sha2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
int sha256t_hash( void *output, const void *input );
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
int sha256q_hash( void *output, const void *input );
int scanhash_sha256q( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );