This commit is contained in:
Jay D Dee
2021-09-29 17:31:16 -04:00
parent 9b905fccc8
commit 2cd1507c2e
80 changed files with 8145 additions and 2097 deletions

View File

@@ -328,7 +328,7 @@ static BLAKE2_INLINE __m128i fBlaMka(__m128i x, __m128i y) {
#include <immintrin.h>
#define ror64(x, n) _mm512_ror_epi64((x), (n))
#define ROR64(x, n) _mm512_ror_epi64((x), (n))
static __m512i muladd(__m512i x, __m512i y)
{
@@ -344,8 +344,8 @@ static __m512i muladd(__m512i x, __m512i y)
D0 = _mm512_xor_si512(D0, A0); \
D1 = _mm512_xor_si512(D1, A1); \
\
D0 = ror64(D0, 32); \
D1 = ror64(D1, 32); \
D0 = ROR64(D0, 32); \
D1 = ROR64(D1, 32); \
\
C0 = muladd(C0, D0); \
C1 = muladd(C1, D1); \
@@ -353,8 +353,8 @@ static __m512i muladd(__m512i x, __m512i y)
B0 = _mm512_xor_si512(B0, C0); \
B1 = _mm512_xor_si512(B1, C1); \
\
B0 = ror64(B0, 24); \
B1 = ror64(B1, 24); \
B0 = ROR64(B0, 24); \
B1 = ROR64(B1, 24); \
} while ((void)0, 0)
#define G2(A0, B0, C0, D0, A1, B1, C1, D1) \
@@ -365,8 +365,8 @@ static __m512i muladd(__m512i x, __m512i y)
D0 = _mm512_xor_si512(D0, A0); \
D1 = _mm512_xor_si512(D1, A1); \
\
D0 = ror64(D0, 16); \
D1 = ror64(D1, 16); \
D0 = ROR64(D0, 16); \
D1 = ROR64(D1, 16); \
\
C0 = muladd(C0, D0); \
C1 = muladd(C1, D1); \
@@ -374,8 +374,8 @@ static __m512i muladd(__m512i x, __m512i y)
B0 = _mm512_xor_si512(B0, C0); \
B1 = _mm512_xor_si512(B1, C1); \
\
B0 = ror64(B0, 63); \
B1 = ror64(B1, 63); \
B0 = ROR64(B0, 63); \
B1 = ROR64(B1, 63); \
} while ((void)0, 0)
#define DIAGONALIZE(A0, B0, C0, D0, A1, B1, C1, D1) \

View File

@@ -594,22 +594,15 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
#define rb6(x) mm256_rol_64( x, 43 )
#define rb7(x) mm256_rol_64( x, 53 )
#define rol_off_64( M, j, off ) \
mm256_rol_64( M[ ( (j) + (off) ) & 0xF ] , \
( ( (j) + (off) ) & 0xF ) + 1 )
#define rol_off_64( M, j ) \
mm256_rol_64( M[ (j) & 0xF ], ( (j) & 0xF ) + 1 )
#define add_elt_b( M, H, j ) \
_mm256_xor_si256( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_add_epi64( rol_off_64( M, j, 0 ), \
rol_off_64( M, j, 3 ) ), \
rol_off_64( M, j, 10 ) ), \
_mm256_set1_epi64x( ( (j) + 16 ) * 0x0555555555555555ULL ) ), \
H[ ( (j)+7 ) & 0xF ] )
#define add_elt_b( mj0, mj3, mj10, h, K ) \
_mm256_xor_si256( h, _mm256_add_epi64( K, \
_mm256_sub_epi64( _mm256_add_epi64( mj0, mj3 ), mj10 ) ) )
#define expand1b( qt, M, H, i ) \
_mm256_add_epi64( mm256_add4_64( \
#define expand1_b( qt, i ) \
mm256_add4_64( \
mm256_add4_64( sb1( qt[ (i)-16 ] ), sb2( qt[ (i)-15 ] ), \
sb3( qt[ (i)-14 ] ), sb0( qt[ (i)-13 ] )), \
mm256_add4_64( sb1( qt[ (i)-12 ] ), sb2( qt[ (i)-11 ] ), \
@@ -617,11 +610,10 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
mm256_add4_64( sb1( qt[ (i)- 8 ] ), sb2( qt[ (i)- 7 ] ), \
sb3( qt[ (i)- 6 ] ), sb0( qt[ (i)- 5 ] )), \
mm256_add4_64( sb1( qt[ (i)- 4 ] ), sb2( qt[ (i)- 3 ] ), \
sb3( qt[ (i)- 2 ] ), sb0( qt[ (i)- 1 ] ) ) ), \
add_elt_b( M, H, (i)-16 ) )
sb3( qt[ (i)- 2 ] ), sb0( qt[ (i)- 1 ] ) ) )
#define expand2b( qt, M, H, i) \
_mm256_add_epi64( mm256_add4_64( \
#define expand2_b( qt, i) \
mm256_add4_64( \
mm256_add4_64( qt[ (i)-16 ], rb1( qt[ (i)-15 ] ), \
qt[ (i)-14 ], rb2( qt[ (i)-13 ] ) ), \
mm256_add4_64( qt[ (i)-12 ], rb3( qt[ (i)-11 ] ), \
@@ -629,159 +621,98 @@ void bmw512_2way_close( bmw_2way_big_context *ctx, void *dst )
mm256_add4_64( qt[ (i)- 8 ], rb5( qt[ (i)- 7 ] ), \
qt[ (i)- 6 ], rb6( qt[ (i)- 5 ] ) ), \
mm256_add4_64( qt[ (i)- 4 ], rb7( qt[ (i)- 3 ] ), \
sb4( qt[ (i)- 2 ] ), sb5( qt[ (i)- 1 ] ) ) ), \
add_elt_b( M, H, (i)-16 ) )
sb4( qt[ (i)- 2 ] ), sb5( qt[ (i)- 1 ] ) ) )
#define Wb0 \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 5], mh[ 7] ), mh[10] ), \
_mm256_add_epi64( mh[13], mh[14] ) )
#define Wb1 \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 6], H[ 6] ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_xor_si256( M[11], H[11] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[14], H[14] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 6], mh[ 8] ), mh[11] ), \
_mm256_sub_epi64( mh[14], mh[15] ) )
#define Wb2 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
_mm256_add_epi64( _mm256_add_epi64( mh[ 0], mh[ 7] ), mh[ 9] ), \
_mm256_sub_epi64( mh[12], mh[15] ) )
#define Wb3 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 0], mh[ 1] ), mh[ 8] ), \
_mm256_sub_epi64( mh[10], \
mh[13] ) )
#define Wb4 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
_mm256_add_epi64( _mm256_add_epi64( mh[ 1], mh[ 2] ), mh[ 9] ), \
_mm256_add_epi64( mh[11], mh[14] ) )
#define Wb5 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_xor_si256( M[10], H[10] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 3], mh[ 2] ), mh[10] ), \
_mm256_sub_epi64( mh[12], mh[15] ) )
#define Wb6 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 4], H[ 4] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[ 4], mh[ 0] ), mh[ 3] ), \
_mm256_sub_epi64( mh[11], mh[13] ) )
#define Wb7 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[ 1], mh[ 4] ), mh[ 5] ), \
_mm256_add_epi64( mh[12], mh[14] ) )
#define Wb8 \
_mm256_add_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[13], H[13] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[ 2], mh[ 5] ), mh[ 6] ), \
_mm256_sub_epi64( mh[13], mh[15] ) )
#define Wb9 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 0], H[ 0] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[14], H[14] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 0], mh[ 3] ), mh[ 6] ), \
_mm256_sub_epi64( mh[ 7], mh[14] ) )
#define Wb10 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 1], H[ 1] ) ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 7], H[ 7] ), \
_mm256_xor_si256( M[15], H[15] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[ 8], mh[ 1] ), mh[ 4] ), \
_mm256_sub_epi64( mh[ 7], mh[15] ) )
#define Wb11 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 8], H[ 8] ), \
_mm256_xor_si256( M[ 0], H[ 0] ) ), \
_mm256_xor_si256( M[ 2], H[ 2] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 5], H[ 5] ), \
_mm256_xor_si256( M[ 9], H[ 9] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[ 8], mh[ 0] ), mh[ 2] ), \
_mm256_sub_epi64( mh[ 5], mh[ 9] ) )
#define Wb12 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 1], H[ 1] ), \
_mm256_xor_si256( M[ 3], H[ 3] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[10], H[10] ) ) )
_mm256_sub_epi64( _mm256_add_epi64( mh[ 1], mh[ 3] ), mh[ 6] ), \
_mm256_sub_epi64( mh[ 9], mh[10] ) )
#define Wb13 \
_mm256_add_epi64( \
_mm256_add_epi64( \
_mm256_add_epi64( _mm256_xor_si256( M[ 2], H[ 2] ), \
_mm256_xor_si256( M[ 4], H[ 4] ) ), \
_mm256_xor_si256( M[ 7], H[ 7] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[10], H[10] ), \
_mm256_xor_si256( M[11], H[11] ) ) )
_mm256_add_epi64( _mm256_add_epi64( mh[ 2], mh[ 4] ), mh[ 7] ), \
_mm256_add_epi64( mh[10], mh[11] ) )
#define Wb14 \
_mm256_sub_epi64( \
_mm256_add_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[ 3], H[ 3] ), \
_mm256_xor_si256( M[ 5], H[ 5] ) ), \
_mm256_xor_si256( M[ 8], H[ 8] ) ), \
_mm256_add_epi64( _mm256_xor_si256( M[11], H[11] ), \
_mm256_xor_si256( M[12], H[12] ) ) )
_mm256_add_epi64( _mm256_sub_epi64( mh[ 3], mh[ 5] ), mh[ 8] ), \
_mm256_add_epi64( mh[11], mh[12] ) )
#define Wb15 \
_mm256_sub_epi64( \
_mm256_sub_epi64( \
_mm256_sub_epi64( _mm256_xor_si256( M[12], H[12] ), \
_mm256_xor_si256( M[ 4], H[4] ) ), \
_mm256_xor_si256( M[ 6], H[ 6] ) ), \
_mm256_sub_epi64( _mm256_xor_si256( M[ 9], H[ 9] ), \
_mm256_xor_si256( M[13], H[13] ) ) )
_mm256_sub_epi64( _mm256_sub_epi64( mh[12], mh[ 4] ), mh[ 6] ), \
_mm256_sub_epi64( mh[ 9], mh[13] ) )
void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
{
__m256i qt[32], xl, xh;
__m256i mh[16];
int i;
for ( i = 0; i < 16; i++ )
mh[i] = _mm256_xor_si256( M[i], H[i] );
qt[ 0] = _mm256_add_epi64( sb0( Wb0 ), H[ 1] );
qt[ 1] = _mm256_add_epi64( sb1( Wb1 ), H[ 2] );
@@ -799,22 +730,60 @@ void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
qt[13] = _mm256_add_epi64( sb3( Wb13), H[14] );
qt[14] = _mm256_add_epi64( sb4( Wb14), H[15] );
qt[15] = _mm256_add_epi64( sb0( Wb15), H[ 0] );
qt[16] = expand1b( qt, M, H, 16 );
qt[17] = expand1b( qt, M, H, 17 );
qt[18] = expand2b( qt, M, H, 18 );
qt[19] = expand2b( qt, M, H, 19 );
qt[20] = expand2b( qt, M, H, 20 );
qt[21] = expand2b( qt, M, H, 21 );
qt[22] = expand2b( qt, M, H, 22 );
qt[23] = expand2b( qt, M, H, 23 );
qt[24] = expand2b( qt, M, H, 24 );
qt[25] = expand2b( qt, M, H, 25 );
qt[26] = expand2b( qt, M, H, 26 );
qt[27] = expand2b( qt, M, H, 27 );
qt[28] = expand2b( qt, M, H, 28 );
qt[29] = expand2b( qt, M, H, 29 );
qt[30] = expand2b( qt, M, H, 30 );
qt[31] = expand2b( qt, M, H, 31 );
__m256i mj[16];
for ( i = 0; i < 16; i++ )
mj[i] = rol_off_64( M, i );
qt[16] = add_elt_b( mj[ 0], mj[ 3], mj[10], H[ 7],
(const __m256i)_mm256_set1_epi64x( 16 * 0x0555555555555555ULL ) );
qt[17] = add_elt_b( mj[ 1], mj[ 4], mj[11], H[ 8],
(const __m256i)_mm256_set1_epi64x( 17 * 0x0555555555555555ULL ) );
qt[18] = add_elt_b( mj[ 2], mj[ 5], mj[12], H[ 9],
(const __m256i)_mm256_set1_epi64x( 18 * 0x0555555555555555ULL ) );
qt[19] = add_elt_b( mj[ 3], mj[ 6], mj[13], H[10],
(const __m256i)_mm256_set1_epi64x( 19 * 0x0555555555555555ULL ) );
qt[20] = add_elt_b( mj[ 4], mj[ 7], mj[14], H[11],
(const __m256i)_mm256_set1_epi64x( 20 * 0x0555555555555555ULL ) );
qt[21] = add_elt_b( mj[ 5], mj[ 8], mj[15], H[12],
(const __m256i)_mm256_set1_epi64x( 21 * 0x0555555555555555ULL ) );
qt[22] = add_elt_b( mj[ 6], mj[ 9], mj[ 0], H[13],
(const __m256i)_mm256_set1_epi64x( 22 * 0x0555555555555555ULL ) );
qt[23] = add_elt_b( mj[ 7], mj[10], mj[ 1], H[14],
(const __m256i)_mm256_set1_epi64x( 23 * 0x0555555555555555ULL ) );
qt[24] = add_elt_b( mj[ 8], mj[11], mj[ 2], H[15],
(const __m256i)_mm256_set1_epi64x( 24 * 0x0555555555555555ULL ) );
qt[25] = add_elt_b( mj[ 9], mj[12], mj[ 3], H[ 0],
(const __m256i)_mm256_set1_epi64x( 25 * 0x0555555555555555ULL ) );
qt[26] = add_elt_b( mj[10], mj[13], mj[ 4], H[ 1],
(const __m256i)_mm256_set1_epi64x( 26 * 0x0555555555555555ULL ) );
qt[27] = add_elt_b( mj[11], mj[14], mj[ 5], H[ 2],
(const __m256i)_mm256_set1_epi64x( 27 * 0x0555555555555555ULL ) );
qt[28] = add_elt_b( mj[12], mj[15], mj[ 6], H[ 3],
(const __m256i)_mm256_set1_epi64x( 28 * 0x0555555555555555ULL ) );
qt[29] = add_elt_b( mj[13], mj[ 0], mj[ 7], H[ 4],
(const __m256i)_mm256_set1_epi64x( 29 * 0x0555555555555555ULL ) );
qt[30] = add_elt_b( mj[14], mj[ 1], mj[ 8], H[ 5],
(const __m256i)_mm256_set1_epi64x( 30 * 0x0555555555555555ULL ) );
qt[31] = add_elt_b( mj[15], mj[ 2], mj[ 9], H[ 6],
(const __m256i)_mm256_set1_epi64x( 31 * 0x0555555555555555ULL ) );
qt[16] = _mm256_add_epi64( qt[16], expand1_b( qt, 16 ) );
qt[17] = _mm256_add_epi64( qt[17], expand1_b( qt, 17 ) );
qt[18] = _mm256_add_epi64( qt[18], expand2_b( qt, 18 ) );
qt[19] = _mm256_add_epi64( qt[19], expand2_b( qt, 19 ) );
qt[20] = _mm256_add_epi64( qt[20], expand2_b( qt, 20 ) );
qt[21] = _mm256_add_epi64( qt[21], expand2_b( qt, 21 ) );
qt[22] = _mm256_add_epi64( qt[22], expand2_b( qt, 22 ) );
qt[23] = _mm256_add_epi64( qt[23], expand2_b( qt, 23 ) );
qt[24] = _mm256_add_epi64( qt[24], expand2_b( qt, 24 ) );
qt[25] = _mm256_add_epi64( qt[25], expand2_b( qt, 25 ) );
qt[26] = _mm256_add_epi64( qt[26], expand2_b( qt, 26 ) );
qt[27] = _mm256_add_epi64( qt[27], expand2_b( qt, 27 ) );
qt[28] = _mm256_add_epi64( qt[28], expand2_b( qt, 28 ) );
qt[29] = _mm256_add_epi64( qt[29], expand2_b( qt, 29 ) );
qt[30] = _mm256_add_epi64( qt[30], expand2_b( qt, 30 ) );
qt[31] = _mm256_add_epi64( qt[31], expand2_b( qt, 31 ) );
xl = _mm256_xor_si256(
mm256_xor4( qt[16], qt[17], qt[18], qt[19] ),
@@ -823,7 +792,6 @@ void compress_big( const __m256i *M, const __m256i H[16], __m256i dH[16] )
mm256_xor4( qt[24], qt[25], qt[26], qt[27] ),
mm256_xor4( qt[28], qt[29], qt[30], qt[31] ) ) );
#define DH1L( m, sl, sr, a, b, c ) \
_mm256_add_epi64( \
_mm256_xor_si256( M[m], \
@@ -1066,21 +1034,15 @@ bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#define r8b6(x) mm512_rol_64( x, 43 )
#define r8b7(x) mm512_rol_64( x, 53 )
#define rol8w_off_64( M, j, off ) \
mm512_rol_64( M[ ( (j) + (off) ) & 0xF ] , \
( ( (j) + (off) ) & 0xF ) + 1 )
#define rol8w_off_64( M, j ) \
mm512_rol_64( M[ (j) & 0xF ], ( (j) & 0xF ) + 1 )
#define add_elt_b8( M, H, j ) \
_mm512_xor_si512( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_add_epi64( rol8w_off_64( M, j, 0 ), \
rol8w_off_64( M, j, 3 ) ), \
rol8w_off_64( M, j, 10 ) ), \
_mm512_set1_epi64( ( (j) + 16 ) * 0x0555555555555555ULL ) ), \
H[ ( (j)+7 ) & 0xF ] )
#define add_elt_b8( mj0, mj3, mj10, h, K ) \
_mm512_xor_si512( h, _mm512_add_epi64( K, \
_mm512_sub_epi64( _mm512_add_epi64( mj0, mj3 ), mj10 ) ) )
#define expand1b8( qt, M, H, i ) \
_mm512_add_epi64( mm512_add4_64( \
#define expand1_b8( qt, i ) \
mm512_add4_64( \
mm512_add4_64( s8b1( qt[ (i)-16 ] ), s8b2( qt[ (i)-15 ] ), \
s8b3( qt[ (i)-14 ] ), s8b0( qt[ (i)-13 ] )), \
mm512_add4_64( s8b1( qt[ (i)-12 ] ), s8b2( qt[ (i)-11 ] ), \
@@ -1088,11 +1050,10 @@ bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
mm512_add4_64( s8b1( qt[ (i)- 8 ] ), s8b2( qt[ (i)- 7 ] ), \
s8b3( qt[ (i)- 6 ] ), s8b0( qt[ (i)- 5 ] )), \
mm512_add4_64( s8b1( qt[ (i)- 4 ] ), s8b2( qt[ (i)- 3 ] ), \
s8b3( qt[ (i)- 2 ] ), s8b0( qt[ (i)- 1 ] ) ) ), \
add_elt_b8( M, H, (i)-16 ) )
s8b3( qt[ (i)- 2 ] ), s8b0( qt[ (i)- 1 ] ) ) )
#define expand2b8( qt, M, H, i) \
_mm512_add_epi64( mm512_add4_64( \
#define expand2_b8( qt, i) \
mm512_add4_64( \
mm512_add4_64( qt[ (i)-16 ], r8b1( qt[ (i)-15 ] ), \
qt[ (i)-14 ], r8b2( qt[ (i)-13 ] ) ), \
mm512_add4_64( qt[ (i)-12 ], r8b3( qt[ (i)-11 ] ), \
@@ -1100,157 +1061,97 @@ bmw512_4way_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
mm512_add4_64( qt[ (i)- 8 ], r8b5( qt[ (i)- 7 ] ), \
qt[ (i)- 6 ], r8b6( qt[ (i)- 5 ] ) ), \
mm512_add4_64( qt[ (i)- 4 ], r8b7( qt[ (i)- 3 ] ), \
s8b4( qt[ (i)- 2 ] ), s8b5( qt[ (i)- 1 ] ) ) ), \
add_elt_b8( M, H, (i)-16 ) )
s8b4( qt[ (i)- 2 ] ), s8b5( qt[ (i)- 1 ] ) ) )
#define W8b0 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 5], H[ 5] ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_xor_si512( M[10], H[10] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[13], H[13] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 5], mh[ 7] ), mh[10] ), \
_mm512_add_epi64( mh[13], mh[14] ) )
#define W8b1 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 6], H[ 6] ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_xor_si512( M[11], H[11] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[14], H[14] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 6], mh[ 8] ), mh[11] ), \
_mm512_sub_epi64( mh[14], mh[15] ) )
#define W8b2 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
_mm512_add_epi64( _mm512_add_epi64( mh[ 0], mh[ 7] ), mh[ 9] ), \
_mm512_sub_epi64( mh[12], mh[15] ) )
#define W8b3 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 1], H[ 1] ) ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[10], H[10] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 0], mh[ 1] ), mh[ 8] ), \
_mm512_sub_epi64( mh[10], mh[13] ) )
#define W8b4 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
_mm512_add_epi64( _mm512_add_epi64( mh[ 1], mh[ 2] ), mh[ 9] ), \
_mm512_add_epi64( mh[11], mh[14] ) )
#define W8b5 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 3], H[ 3] ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_xor_si512( M[10], H[10] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 3], mh[ 2] ), mh[10] ), \
_mm512_sub_epi64( mh[12], mh[15] ) )
#define W8b6 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 4], H[ 4] ), \
_mm512_xor_si512( M[ 0], H[ 0] ) ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[ 4], mh[ 0] ), mh[ 3] ), \
_mm512_sub_epi64( mh[11], mh[13] ) )
#define W8b7 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[ 1], mh[ 4] ), mh[ 5] ), \
_mm512_add_epi64( mh[12], mh[14] ) )
#define W8b8 \
_mm512_add_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 2], H[ 2] ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[13], H[13] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[ 2], mh[ 5] ), mh[ 6] ), \
_mm512_sub_epi64( mh[13], mh[15] ) )
#define W8b9 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 0], H[ 0] ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 7], H[ 7] ), \
_mm512_xor_si512( M[14], H[14] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 0], mh[ 3] ), mh[ 6] ), \
_mm512_sub_epi64( mh[ 7], mh[14] ) )
#define W8b10 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 8], H[ 8] ), \
_mm512_xor_si512( M[ 1], H[ 1] ) ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 7], H[ 7] ), \
_mm512_xor_si512( M[15], H[15] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[ 8], mh[ 1] ), mh[ 4] ), \
_mm512_sub_epi64( mh[ 7], mh[15] ) )
#define W8b11 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 8], H[ 8] ), \
_mm512_xor_si512( M[ 0], H[ 0] ) ), \
_mm512_xor_si512( M[ 2], H[ 2] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 5], H[ 5] ), \
_mm512_xor_si512( M[ 9], H[ 9] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[ 8], mh[ 0] ), mh[ 2] ), \
_mm512_sub_epi64( mh[ 5], mh[ 9] ) )
#define W8b12 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 1], H[ 1] ), \
_mm512_xor_si512( M[ 3], H[ 3] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 9], H[ 9] ), \
_mm512_xor_si512( M[10], H[10] ) ) )
_mm512_sub_epi64( _mm512_add_epi64( mh[ 1], mh[ 3] ), mh[ 6] ), \
_mm512_sub_epi64( mh[ 9], mh[10] ) )
#define W8b13 \
_mm512_add_epi64( \
_mm512_add_epi64( \
_mm512_add_epi64( _mm512_xor_si512( M[ 2], H[ 2] ), \
_mm512_xor_si512( M[ 4], H[ 4] ) ), \
_mm512_xor_si512( M[ 7], H[ 7] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[10], H[10] ), \
_mm512_xor_si512( M[11], H[11] ) ) )
_mm512_add_epi64( _mm512_add_epi64( mh[ 2], mh[ 4] ), mh[ 7] ), \
_mm512_add_epi64( mh[10], mh[11] ) )
#define W8b14 \
_mm512_sub_epi64( \
_mm512_add_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[ 3], H[ 3] ), \
_mm512_xor_si512( M[ 5], H[ 5] ) ), \
_mm512_xor_si512( M[ 8], H[ 8] ) ), \
_mm512_add_epi64( _mm512_xor_si512( M[11], H[11] ), \
_mm512_xor_si512( M[12], H[12] ) ) )
_mm512_add_epi64( _mm512_sub_epi64( mh[ 3], mh[ 5] ), mh[ 8] ), \
_mm512_add_epi64( mh[11], mh[12] ) )
#define W8b15 \
_mm512_sub_epi64( \
_mm512_sub_epi64( \
_mm512_sub_epi64( _mm512_xor_si512( M[12], H[12] ), \
_mm512_xor_si512( M[ 4], H[4] ) ), \
_mm512_xor_si512( M[ 6], H[ 6] ) ), \
_mm512_sub_epi64( _mm512_xor_si512( M[ 9], H[ 9] ), \
_mm512_xor_si512( M[13], H[13] ) ) )
_mm512_sub_epi64( _mm512_sub_epi64( mh[12], mh[ 4] ), mh[ 6] ), \
_mm512_sub_epi64( mh[ 9], mh[13] ) )
void compress_big_8way( const __m512i *M, const __m512i H[16],
__m512i dH[16] )
{
__m512i qt[32], xl, xh;
__m512i mh[16];
int i;
for ( i = 0; i < 16; i++ )
mh[i] = _mm512_xor_si512( M[i], H[i] );
qt[ 0] = _mm512_add_epi64( s8b0( W8b0 ), H[ 1] );
qt[ 1] = _mm512_add_epi64( s8b1( W8b1 ), H[ 2] );
@@ -1268,22 +1169,60 @@ void compress_big_8way( const __m512i *M, const __m512i H[16],
qt[13] = _mm512_add_epi64( s8b3( W8b13), H[14] );
qt[14] = _mm512_add_epi64( s8b4( W8b14), H[15] );
qt[15] = _mm512_add_epi64( s8b0( W8b15), H[ 0] );
qt[16] = expand1b8( qt, M, H, 16 );
qt[17] = expand1b8( qt, M, H, 17 );
qt[18] = expand2b8( qt, M, H, 18 );
qt[19] = expand2b8( qt, M, H, 19 );
qt[20] = expand2b8( qt, M, H, 20 );
qt[21] = expand2b8( qt, M, H, 21 );
qt[22] = expand2b8( qt, M, H, 22 );
qt[23] = expand2b8( qt, M, H, 23 );
qt[24] = expand2b8( qt, M, H, 24 );
qt[25] = expand2b8( qt, M, H, 25 );
qt[26] = expand2b8( qt, M, H, 26 );
qt[27] = expand2b8( qt, M, H, 27 );
qt[28] = expand2b8( qt, M, H, 28 );
qt[29] = expand2b8( qt, M, H, 29 );
qt[30] = expand2b8( qt, M, H, 30 );
qt[31] = expand2b8( qt, M, H, 31 );
__m512i mj[16];
for ( i = 0; i < 16; i++ )
mj[i] = rol8w_off_64( M, i );
qt[16] = add_elt_b8( mj[ 0], mj[ 3], mj[10], H[ 7],
(const __m512i)_mm512_set1_epi64( 16 * 0x0555555555555555ULL ) );
qt[17] = add_elt_b8( mj[ 1], mj[ 4], mj[11], H[ 8],
(const __m512i)_mm512_set1_epi64( 17 * 0x0555555555555555ULL ) );
qt[18] = add_elt_b8( mj[ 2], mj[ 5], mj[12], H[ 9],
(const __m512i)_mm512_set1_epi64( 18 * 0x0555555555555555ULL ) );
qt[19] = add_elt_b8( mj[ 3], mj[ 6], mj[13], H[10],
(const __m512i)_mm512_set1_epi64( 19 * 0x0555555555555555ULL ) );
qt[20] = add_elt_b8( mj[ 4], mj[ 7], mj[14], H[11],
(const __m512i)_mm512_set1_epi64( 20 * 0x0555555555555555ULL ) );
qt[21] = add_elt_b8( mj[ 5], mj[ 8], mj[15], H[12],
(const __m512i)_mm512_set1_epi64( 21 * 0x0555555555555555ULL ) );
qt[22] = add_elt_b8( mj[ 6], mj[ 9], mj[ 0], H[13],
(const __m512i)_mm512_set1_epi64( 22 * 0x0555555555555555ULL ) );
qt[23] = add_elt_b8( mj[ 7], mj[10], mj[ 1], H[14],
(const __m512i)_mm512_set1_epi64( 23 * 0x0555555555555555ULL ) );
qt[24] = add_elt_b8( mj[ 8], mj[11], mj[ 2], H[15],
(const __m512i)_mm512_set1_epi64( 24 * 0x0555555555555555ULL ) );
qt[25] = add_elt_b8( mj[ 9], mj[12], mj[ 3], H[ 0],
(const __m512i)_mm512_set1_epi64( 25 * 0x0555555555555555ULL ) );
qt[26] = add_elt_b8( mj[10], mj[13], mj[ 4], H[ 1],
(const __m512i)_mm512_set1_epi64( 26 * 0x0555555555555555ULL ) );
qt[27] = add_elt_b8( mj[11], mj[14], mj[ 5], H[ 2],
(const __m512i)_mm512_set1_epi64( 27 * 0x0555555555555555ULL ) );
qt[28] = add_elt_b8( mj[12], mj[15], mj[ 6], H[ 3],
(const __m512i)_mm512_set1_epi64( 28 * 0x0555555555555555ULL ) );
qt[29] = add_elt_b8( mj[13], mj[ 0], mj[ 7], H[ 4],
(const __m512i)_mm512_set1_epi64( 29 * 0x0555555555555555ULL ) );
qt[30] = add_elt_b8( mj[14], mj[ 1], mj[ 8], H[ 5],
(const __m512i)_mm512_set1_epi64( 30 * 0x0555555555555555ULL ) );
qt[31] = add_elt_b8( mj[15], mj[ 2], mj[ 9], H[ 6],
(const __m512i)_mm512_set1_epi64( 31 * 0x0555555555555555ULL ) );
qt[16] = _mm512_add_epi64( qt[16], expand1_b8( qt, 16 ) );
qt[17] = _mm512_add_epi64( qt[17], expand1_b8( qt, 17 ) );
qt[18] = _mm512_add_epi64( qt[18], expand2_b8( qt, 18 ) );
qt[19] = _mm512_add_epi64( qt[19], expand2_b8( qt, 19 ) );
qt[20] = _mm512_add_epi64( qt[20], expand2_b8( qt, 20 ) );
qt[21] = _mm512_add_epi64( qt[21], expand2_b8( qt, 21 ) );
qt[22] = _mm512_add_epi64( qt[22], expand2_b8( qt, 22 ) );
qt[23] = _mm512_add_epi64( qt[23], expand2_b8( qt, 23 ) );
qt[24] = _mm512_add_epi64( qt[24], expand2_b8( qt, 24 ) );
qt[25] = _mm512_add_epi64( qt[25], expand2_b8( qt, 25 ) );
qt[26] = _mm512_add_epi64( qt[26], expand2_b8( qt, 26 ) );
qt[27] = _mm512_add_epi64( qt[27], expand2_b8( qt, 27 ) );
qt[28] = _mm512_add_epi64( qt[28], expand2_b8( qt, 28 ) );
qt[29] = _mm512_add_epi64( qt[29], expand2_b8( qt, 29 ) );
qt[30] = _mm512_add_epi64( qt[30], expand2_b8( qt, 30 ) );
qt[31] = _mm512_add_epi64( qt[31], expand2_b8( qt, 31 ) );
xl = mm512_xor3( mm512_xor3( qt[16], qt[17], qt[18] ),
mm512_xor3( qt[19], qt[20], qt[21] ),

View File

@@ -98,6 +98,138 @@ static void transform_4way( cube_4way_context *sp )
_mm512_store_si512( (__m512i*)sp->h + 7, x7 );
}
// 8 ways, 4 way parallel double buffered
static void transform_4way_2buf( cube_4way_2buf_context *sp )
{
int r;
const int rounds = sp->rounds;
__m512i x0, x1, x2, x3, x4, x5, x6, x7;
__m512i y0, y1, y2, y3, y4, y5, y6, y7;
__m512i tx0, tx1, ty0, ty1;
x0 = _mm512_load_si512( (__m512i*)sp->h0 );
x1 = _mm512_load_si512( (__m512i*)sp->h0 + 1 );
x2 = _mm512_load_si512( (__m512i*)sp->h0 + 2 );
x3 = _mm512_load_si512( (__m512i*)sp->h0 + 3 );
x4 = _mm512_load_si512( (__m512i*)sp->h0 + 4 );
x5 = _mm512_load_si512( (__m512i*)sp->h0 + 5 );
x6 = _mm512_load_si512( (__m512i*)sp->h0 + 6 );
x7 = _mm512_load_si512( (__m512i*)sp->h0 + 7 );
y0 = _mm512_load_si512( (__m512i*)sp->h1 );
y1 = _mm512_load_si512( (__m512i*)sp->h1 + 1 );
y2 = _mm512_load_si512( (__m512i*)sp->h1 + 2 );
y3 = _mm512_load_si512( (__m512i*)sp->h1 + 3 );
y4 = _mm512_load_si512( (__m512i*)sp->h1 + 4 );
y5 = _mm512_load_si512( (__m512i*)sp->h1 + 5 );
y6 = _mm512_load_si512( (__m512i*)sp->h1 + 6 );
y7 = _mm512_load_si512( (__m512i*)sp->h1 + 7 );
for ( r = 0; r < rounds; ++r )
{
x4 = _mm512_add_epi32( x0, x4 );
y4 = _mm512_add_epi32( y0, y4 );
tx0 = x0;
ty0 = y0;
x5 = _mm512_add_epi32( x1, x5 );
y5 = _mm512_add_epi32( y1, y5 );
tx1 = x1;
ty1 = y1;
x0 = mm512_rol_32( x2, 7 );
y0 = mm512_rol_32( y2, 7 );
x6 = _mm512_add_epi32( x2, x6 );
y6 = _mm512_add_epi32( y2, y6 );
x1 = mm512_rol_32( x3, 7 );
y1 = mm512_rol_32( y3, 7 );
x7 = _mm512_add_epi32( x3, x7 );
y7 = _mm512_add_epi32( y3, y7 );
x2 = mm512_rol_32( tx0, 7 );
y2 = mm512_rol_32( ty0, 7 );
x0 = _mm512_xor_si512( x0, x4 );
y0 = _mm512_xor_si512( y0, y4 );
x4 = mm512_swap128_64( x4 );
x3 = mm512_rol_32( tx1, 7 );
y3 = mm512_rol_32( ty1, 7 );
y4 = mm512_swap128_64( y4 );
x1 = _mm512_xor_si512( x1, x5 );
y1 = _mm512_xor_si512( y1, y5 );
x5 = mm512_swap128_64( x5 );
x2 = _mm512_xor_si512( x2, x6 );
y2 = _mm512_xor_si512( y2, y6 );
y5 = mm512_swap128_64( y5 );
x3 = _mm512_xor_si512( x3, x7 );
y3 = _mm512_xor_si512( y3, y7 );
x6 = mm512_swap128_64( x6 );
x4 = _mm512_add_epi32( x0, x4 );
y4 = _mm512_add_epi32( y0, y4 );
y6 = mm512_swap128_64( y6 );
x5 = _mm512_add_epi32( x1, x5 );
y5 = _mm512_add_epi32( y1, y5 );
x7 = mm512_swap128_64( x7 );
x6 = _mm512_add_epi32( x2, x6 );
y6 = _mm512_add_epi32( y2, y6 );
tx0 = x0;
ty0 = y0;
y7 = mm512_swap128_64( y7 );
tx1 = x2;
ty1 = y2;
x0 = mm512_rol_32( x1, 11 );
y0 = mm512_rol_32( y1, 11 );
x7 = _mm512_add_epi32( x3, x7 );
y7 = _mm512_add_epi32( y3, y7 );
x1 = mm512_rol_32( tx0, 11 );
y1 = mm512_rol_32( ty0, 11 );
x0 = _mm512_xor_si512( x0, x4 );
x4 = mm512_swap64_32( x4 );
y0 = _mm512_xor_si512( y0, y4 );
x2 = mm512_rol_32( x3, 11 );
y4 = mm512_swap64_32( y4 );
y2 = mm512_rol_32( y3, 11 );
x1 = _mm512_xor_si512( x1, x5 );
x5 = mm512_swap64_32( x5 );
y1 = _mm512_xor_si512( y1, y5 );
x3 = mm512_rol_32( tx1, 11 );
y5 = mm512_swap64_32( y5 );
y3 = mm512_rol_32( ty1, 11 );
x2 = _mm512_xor_si512( x2, x6 );
x6 = mm512_swap64_32( x6 );
y2 = _mm512_xor_si512( y2, y6 );
y6 = mm512_swap64_32( y6 );
x3 = _mm512_xor_si512( x3, x7 );
x7 = mm512_swap64_32( x7 );
y3 = _mm512_xor_si512( y3, y7 );
y7 = mm512_swap64_32( y7 );
}
_mm512_store_si512( (__m512i*)sp->h0, x0 );
_mm512_store_si512( (__m512i*)sp->h0 + 1, x1 );
_mm512_store_si512( (__m512i*)sp->h0 + 2, x2 );
_mm512_store_si512( (__m512i*)sp->h0 + 3, x3 );
_mm512_store_si512( (__m512i*)sp->h0 + 4, x4 );
_mm512_store_si512( (__m512i*)sp->h0 + 5, x5 );
_mm512_store_si512( (__m512i*)sp->h0 + 6, x6 );
_mm512_store_si512( (__m512i*)sp->h0 + 7, x7 );
_mm512_store_si512( (__m512i*)sp->h1, y0 );
_mm512_store_si512( (__m512i*)sp->h1 + 1, y1 );
_mm512_store_si512( (__m512i*)sp->h1 + 2, y2 );
_mm512_store_si512( (__m512i*)sp->h1 + 3, y3 );
_mm512_store_si512( (__m512i*)sp->h1 + 4, y4 );
_mm512_store_si512( (__m512i*)sp->h1 + 5, y5 );
_mm512_store_si512( (__m512i*)sp->h1 + 6, y6 );
_mm512_store_si512( (__m512i*)sp->h1 + 7, y7 );
}
int cube_4way_init( cube_4way_context *sp, int hashbitlen, int rounds,
int blockbytes )
{
@@ -219,6 +351,67 @@ int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
return 0;
}
int cube_4way_2buf_full( cube_4way_2buf_context *sp,
void *output0, void *output1, int hashbitlen,
const void *data0, const void *data1, size_t size )
{
__m512i *h0 = (__m512i*)sp->h0;
__m512i *h1 = (__m512i*)sp->h1;
__m128i *iv = (__m128i*)( hashbitlen == 512 ? (__m128i*)IV512
: (__m128i*)IV256 );
sp->hashlen = hashbitlen/128;
sp->blocksize = 32/16;
sp->rounds = 16;
sp->pos = 0;
h1[0] = h0[0] = m512_const1_128( iv[0] );
h1[1] = h0[1] = m512_const1_128( iv[1] );
h1[2] = h0[2] = m512_const1_128( iv[2] );
h1[3] = h0[3] = m512_const1_128( iv[3] );
h1[4] = h0[4] = m512_const1_128( iv[4] );
h1[5] = h0[5] = m512_const1_128( iv[5] );
h1[6] = h0[6] = m512_const1_128( iv[6] );
h1[7] = h0[7] = m512_const1_128( iv[7] );
const int len = size >> 4;
const __m512i *in0 = (__m512i*)data0;
const __m512i *in1 = (__m512i*)data1;
__m512i *hash0 = (__m512i*)output0;
__m512i *hash1 = (__m512i*)output1;
int i;
for ( i = 0; i < len; i++ )
{
sp->h0[ sp->pos ] = _mm512_xor_si512( sp->h0[ sp->pos ], in0[i] );
sp->h1[ sp->pos ] = _mm512_xor_si512( sp->h1[ sp->pos ], in1[i] );
sp->pos++;
if ( sp->pos == sp->blocksize )
{
transform_4way_2buf( sp );
sp->pos = 0;
}
}
// pos is zero for 64 byte data, 1 for 80 byte data.
__m512i tmp = m512_const2_64( 0, 0x0000000000000080 );
sp->h0[ sp->pos ] = _mm512_xor_si512( sp->h0[ sp->pos ], tmp );
sp->h1[ sp->pos ] = _mm512_xor_si512( sp->h1[ sp->pos ], tmp );
transform_4way_2buf( sp );
tmp = m512_const2_64( 0x0000000100000000, 0 );
sp->h0[7] = _mm512_xor_si512( sp->h0[7], tmp );
sp->h1[7] = _mm512_xor_si512( sp->h1[7], tmp );
for ( i = 0; i < 10; ++i )
transform_4way_2buf( sp );
memcpy( hash0, sp->h0, sp->hashlen<<6);
memcpy( hash1, sp->h1, sp->hashlen<<6);
return 0;
}
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size )
@@ -259,6 +452,21 @@ int cube_4way_update_close( cube_4way_context *sp, void *output,
// 2 way 128
// This isn't expected to be used with AVX512 so HW rotate intruction
// is assumed not avaiable.
// Use double buffering to optimize serial bit rotations. Full double
// buffering isn't practical because it needs twice as many registers
// with AVX2 having only half as many as AVX512.
#define ROL2( out0, out1, in0, in1, c ) \
{ \
__m256i t0 = _mm256_slli_epi32( in0, c ); \
__m256i t1 = _mm256_slli_epi32( in1, c ); \
out0 = _mm256_srli_epi32( in0, 32-(c) ); \
out1 = _mm256_srli_epi32( in1, 32-(c) ); \
out0 = _mm256_or_si256( out0, t0 ); \
out1 = _mm256_or_si256( out1, t1 ); \
}
static void transform_2way( cube_2way_context *sp )
{
int r;
@@ -283,35 +491,31 @@ static void transform_2way( cube_2way_context *sp )
x7 = _mm256_add_epi32( x3, x7 );
y0 = x0;
y1 = x1;
x0 = mm256_rol_32( x2, 7 );
x1 = mm256_rol_32( x3, 7 );
x2 = mm256_rol_32( y0, 7 );
x3 = mm256_rol_32( y1, 7 );
ROL2( x0, x1, x2, x3, 7 );
ROL2( x2, x3, y0, y1, 7 );
x0 = _mm256_xor_si256( x0, x4 );
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
x3 = _mm256_xor_si256( x3, x7 );
x4 = mm256_swap128_64( x4 );
x5 = mm256_swap128_64( x5 );
x6 = mm256_swap128_64( x6 );
x7 = mm256_swap128_64( x7 );
x4 = _mm256_add_epi32( x0, x4 );
x5 = _mm256_add_epi32( x1, x5 );
x6 = _mm256_add_epi32( x2, x6 );
x7 = _mm256_add_epi32( x3, x7 );
y0 = x0;
y1 = x2;
x0 = mm256_rol_32( x1, 11 );
x1 = mm256_rol_32( y0, 11 );
x2 = mm256_rol_32( x3, 11 );
x3 = mm256_rol_32( y1, 11 );
x0 = _mm256_xor_si256( x0, x4 );
x1 = _mm256_xor_si256( x1, x5 );
x2 = _mm256_xor_si256( x2, x6 );
x5 = mm256_swap128_64( x5 );
x3 = _mm256_xor_si256( x3, x7 );
x4 = _mm256_add_epi32( x0, x4 );
x6 = mm256_swap128_64( x6 );
y0 = x0;
x5 = _mm256_add_epi32( x1, x5 );
x7 = mm256_swap128_64( x7 );
x6 = _mm256_add_epi32( x2, x6 );
y1 = x2;
ROL2( x0, x1, x1, y0, 11 );
x7 = _mm256_add_epi32( x3, x7 );
ROL2( x2, x3, x3, y1, 11 );
x0 = _mm256_xor_si256( x0, x4 );
x4 = mm256_swap64_32( x4 );
x1 = _mm256_xor_si256( x1, x5 );
x5 = mm256_swap64_32( x5 );
x2 = _mm256_xor_si256( x2, x6 );
x6 = mm256_swap64_32( x6 );
x3 = _mm256_xor_si256( x3, x7 );
x7 = mm256_swap64_32( x7 );
}

View File

@@ -17,41 +17,41 @@ struct _cube_4way_context
int pos;
} __attribute__ ((aligned (128)));
struct _cube_4way_2buf_context
{
__m512i h0[8];
__m512i h1[8];
int hashlen;
int rounds;
int blocksize;
int pos;
} __attribute__ ((aligned (128)));
typedef struct _cube_4way_context cube_4way_context;
typedef struct _cube_4way_2buf_context cube_4way_2buf_context;
int cube_4way_init( cube_4way_context* sp, int hashbitlen, int rounds,
int blockbytes );
int blockbytes );
int cube_4way_update( cube_4way_context *sp, const void *data, size_t size );
int cube_4way_close( cube_4way_context *sp, void *output );
int cube_4way_update_close( cube_4way_context *sp, void *output,
const void *data, size_t size );
int cube_4way_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
int cube_4x256_full( cube_4way_context *sp, void *output, int hashbitlen,
const void *data, size_t size );
#define cube512_4way_init( sp ) cube_4way_update( sp, 512 )
#define cube512_4way_update cube_4way_update
#define cube512_4way_update_close cube_4way_update
#define cube512_4way_close cube_4way_update
#define cube512_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 512, data, size )
#define cube512_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 512, data, size )
#define cube256_4way_init( sp ) cube_4way_update( sp, 256 )
#define cube256_4way_update cube_4way_update
#define cube256_4way_update_close cube_4way_update
#define cube256_4way_close cube_4way_update
#define cube256_4way_full( sp, output, data, size ) \
cube_4way_full( sp, output, 256, data, size )
#define cube256_4x256_full( sp, output, data, size ) \
cube_4x256_full( sp, output, 256, data, size )
int cube_4way_2buf_full( cube_4way_2buf_context *sp,
void *output0, void *output1, int hashbitlen,
const void *data0, const void *data1, size_t size );
#endif
// 2x128, 2 way parallel SSE2
// 2x128, 2 way parallel AVX2
struct _cube_2way_context
{

View File

@@ -31,10 +31,14 @@ static void transform( cubehashParam *sp )
for ( r = 0; r < rounds; ++r )
{
x1 = _mm512_add_epi32( x0, x1 );
x0 = _mm512_xor_si512( mm512_rol_32( mm512_swap_256( x0 ), 7 ), x1 );
x1 = _mm512_add_epi32( x0, mm512_swap128_64( x1 ) );
x0 = _mm512_xor_si512( mm512_rol_32(
mm512_swap256_128( x0 ), 11 ), x1 );
x0 = mm512_swap_256( x0 );
x0 = mm512_rol_32( x0, 7 );
x0 = _mm512_xor_si512( x0, x1 );
x1 = mm512_swap128_64( x1 );
x1 = _mm512_add_epi32( x0, x1 );
x0 = mm512_swap256_128( x0 );
x0 = mm512_rol_32( x0, 11 );
x0 = _mm512_xor_si512( x0, x1 );
x1 = mm512_swap64_32( x1 );
}

View File

@@ -43,7 +43,8 @@
#define ROUNDS (ROUNDS1024)
//#endif
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
//#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
#define ROTL64(a,n) rol64( a, n )
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*(7-(n)))))

View File

@@ -63,7 +63,8 @@ typedef crypto_uint64 u64;
//#define ROUNDS (ROUNDS1024)
//#endif
#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
//#define ROTL64(a,n) ((((a)<<(n))|((a)>>(64-(n))))&li_64(ffffffffffffffff))
#define ROTL64(a,n) rol64( a, n )
#if (PLATFORM_BYTE_ORDER == IS_BIG_ENDIAN)
#define EXT_BYTE(var,n) ((u8)((u64)(var) >> (8*(7-(n)))))

View File

@@ -11,7 +11,7 @@
#else
#include "sph_groestl.h"
#endif
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
typedef struct {
#ifdef __AES__
@@ -19,7 +19,6 @@ typedef struct {
#else
sph_groestl512_context groestl;
#endif
sph_sha256_context sha;
} myrgr_ctx_holder;
myrgr_ctx_holder myrgr_ctx;
@@ -31,7 +30,6 @@ void init_myrgr_ctx()
#else
sph_groestl512_init( &myrgr_ctx.groestl );
#endif
sph_sha256_init( &myrgr_ctx.sha );
}
void myriad_hash(void *output, const void *input)
@@ -49,8 +47,7 @@ void myriad_hash(void *output, const void *input)
sph_groestl512_close(&ctx.groestl, hash);
#endif
sph_sha256( &ctx.sha, hash, 64 );
sph_sha256_close( &ctx.sha, hash );
sha256_full( hash, hash, 64 );
memcpy(output, hash, 32);
}

View File

@@ -632,26 +632,25 @@ do { \
} while (0)
#define ROUND_BIG8(rc, alpha) \
#define ROUND_BIG8( alpha ) \
do { \
__m512i t0, t1, t2, t3; \
s0 = _mm512_xor_si512( s0, m512_const1_64( \
( (uint64_t)(rc) << 32 ) ^ ( (uint64_t*)(alpha) )[ 0] ) ); \
s1 = _mm512_xor_si512( s1, m512_const1_64( ( (uint64_t*)(alpha) )[ 1] ) ); \
s2 = _mm512_xor_si512( s2, m512_const1_64( ( (uint64_t*)(alpha) )[ 2] ) ); \
s3 = _mm512_xor_si512( s3, m512_const1_64( ( (uint64_t*)(alpha) )[ 3] ) ); \
s4 = _mm512_xor_si512( s4, m512_const1_64( ( (uint64_t*)(alpha) )[ 4] ) ); \
s5 = _mm512_xor_si512( s5, m512_const1_64( ( (uint64_t*)(alpha) )[ 5] ) ); \
s6 = _mm512_xor_si512( s6, m512_const1_64( ( (uint64_t*)(alpha) )[ 6] ) ); \
s7 = _mm512_xor_si512( s7, m512_const1_64( ( (uint64_t*)(alpha) )[ 7] ) ); \
s8 = _mm512_xor_si512( s8, m512_const1_64( ( (uint64_t*)(alpha) )[ 8] ) ); \
s9 = _mm512_xor_si512( s9, m512_const1_64( ( (uint64_t*)(alpha) )[ 9] ) ); \
sA = _mm512_xor_si512( sA, m512_const1_64( ( (uint64_t*)(alpha) )[10] ) ); \
sB = _mm512_xor_si512( sB, m512_const1_64( ( (uint64_t*)(alpha) )[11] ) ); \
sC = _mm512_xor_si512( sC, m512_const1_64( ( (uint64_t*)(alpha) )[12] ) ); \
sD = _mm512_xor_si512( sD, m512_const1_64( ( (uint64_t*)(alpha) )[13] ) ); \
sE = _mm512_xor_si512( sE, m512_const1_64( ( (uint64_t*)(alpha) )[14] ) ); \
sF = _mm512_xor_si512( sF, m512_const1_64( ( (uint64_t*)(alpha) )[15] ) ); \
s0 = _mm512_xor_si512( s0, alpha[ 0] ); \
s1 = _mm512_xor_si512( s1, alpha[ 1] ); \
s2 = _mm512_xor_si512( s2, alpha[ 2] ); \
s3 = _mm512_xor_si512( s3, alpha[ 3] ); \
s4 = _mm512_xor_si512( s4, alpha[ 4] ); \
s5 = _mm512_xor_si512( s5, alpha[ 5] ); \
s6 = _mm512_xor_si512( s6, alpha[ 6] ); \
s7 = _mm512_xor_si512( s7, alpha[ 7] ); \
s8 = _mm512_xor_si512( s8, alpha[ 8] ); \
s9 = _mm512_xor_si512( s9, alpha[ 9] ); \
sA = _mm512_xor_si512( sA, alpha[10] ); \
sB = _mm512_xor_si512( sB, alpha[11] ); \
sC = _mm512_xor_si512( sC, alpha[12] ); \
sD = _mm512_xor_si512( sD, alpha[13] ); \
sE = _mm512_xor_si512( sE, alpha[14] ); \
sF = _mm512_xor_si512( sF, alpha[15] ); \
\
SBOX8( s0, s4, s8, sC ); \
SBOX8( s1, s5, s9, sD ); \
@@ -731,28 +730,66 @@ do { \
#define P_BIG8 \
do { \
ROUND_BIG8(0, alpha_n); \
ROUND_BIG8(1, alpha_n); \
ROUND_BIG8(2, alpha_n); \
ROUND_BIG8(3, alpha_n); \
ROUND_BIG8(4, alpha_n); \
ROUND_BIG8(5, alpha_n); \
__m512i alpha[16]; \
for( int i = 0; i < 16; i++ ) \
alpha[i] = m512_const1_64( ( (uint64_t*)alpha_n )[i] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)1 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)2 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)3 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)4 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)5 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG8( alpha ); \
} while (0)
#define PF_BIG8 \
do { \
ROUND_BIG8( 0, alpha_f); \
ROUND_BIG8( 1, alpha_f); \
ROUND_BIG8( 2, alpha_f); \
ROUND_BIG8( 3, alpha_f); \
ROUND_BIG8( 4, alpha_f); \
ROUND_BIG8( 5, alpha_f); \
ROUND_BIG8( 6, alpha_f); \
ROUND_BIG8( 7, alpha_f); \
ROUND_BIG8( 8, alpha_f); \
ROUND_BIG8( 9, alpha_f); \
ROUND_BIG8(10, alpha_f); \
ROUND_BIG8(11, alpha_f); \
__m512i alpha[16]; \
for( int i = 0; i < 16; i++ ) \
alpha[i] = m512_const1_64( ( (uint64_t*)alpha_f )[i] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)1 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)2 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)3 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)4 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)5 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)6 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)7 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)8 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)9 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)10 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
alpha[0] = m512_const1_64( ( (uint64_t)11 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG8( alpha ); \
} while (0)
#define T_BIG8 \
@@ -965,26 +1002,25 @@ do { \
#define sF m7
*/
#define ROUND_BIG(rc, alpha) \
#define ROUND_BIG( alpha ) \
do { \
__m256i t0, t1, t2, t3; \
s0 = _mm256_xor_si256( s0, m256_const1_64( \
( (uint64_t)(rc) << 32 ) ^ ( (uint64_t*)(alpha) )[ 0] ) ); \
s1 = _mm256_xor_si256( s1, m256_const1_64( ( (uint64_t*)(alpha) )[ 1] ) ); \
s2 = _mm256_xor_si256( s2, m256_const1_64( ( (uint64_t*)(alpha) )[ 2] ) ); \
s3 = _mm256_xor_si256( s3, m256_const1_64( ( (uint64_t*)(alpha) )[ 3] ) ); \
s4 = _mm256_xor_si256( s4, m256_const1_64( ( (uint64_t*)(alpha) )[ 4] ) ); \
s5 = _mm256_xor_si256( s5, m256_const1_64( ( (uint64_t*)(alpha) )[ 5] ) ); \
s6 = _mm256_xor_si256( s6, m256_const1_64( ( (uint64_t*)(alpha) )[ 6] ) ); \
s7 = _mm256_xor_si256( s7, m256_const1_64( ( (uint64_t*)(alpha) )[ 7] ) ); \
s8 = _mm256_xor_si256( s8, m256_const1_64( ( (uint64_t*)(alpha) )[ 8] ) ); \
s9 = _mm256_xor_si256( s9, m256_const1_64( ( (uint64_t*)(alpha) )[ 9] ) ); \
sA = _mm256_xor_si256( sA, m256_const1_64( ( (uint64_t*)(alpha) )[10] ) ); \
sB = _mm256_xor_si256( sB, m256_const1_64( ( (uint64_t*)(alpha) )[11] ) ); \
sC = _mm256_xor_si256( sC, m256_const1_64( ( (uint64_t*)(alpha) )[12] ) ); \
sD = _mm256_xor_si256( sD, m256_const1_64( ( (uint64_t*)(alpha) )[13] ) ); \
sE = _mm256_xor_si256( sE, m256_const1_64( ( (uint64_t*)(alpha) )[14] ) ); \
sF = _mm256_xor_si256( sF, m256_const1_64( ( (uint64_t*)(alpha) )[15] ) ); \
s0 = _mm256_xor_si256( s0, alpha[ 0] ); \
s1 = _mm256_xor_si256( s1, alpha[ 1] ); \
s2 = _mm256_xor_si256( s2, alpha[ 2] ); \
s3 = _mm256_xor_si256( s3, alpha[ 3] ); \
s4 = _mm256_xor_si256( s4, alpha[ 4] ); \
s5 = _mm256_xor_si256( s5, alpha[ 5] ); \
s6 = _mm256_xor_si256( s6, alpha[ 6] ); \
s7 = _mm256_xor_si256( s7, alpha[ 7] ); \
s8 = _mm256_xor_si256( s8, alpha[ 8] ); \
s9 = _mm256_xor_si256( s9, alpha[ 9] ); \
sA = _mm256_xor_si256( sA, alpha[10] ); \
sB = _mm256_xor_si256( sB, alpha[11] ); \
sC = _mm256_xor_si256( sC, alpha[12] ); \
sD = _mm256_xor_si256( sD, alpha[13] ); \
sE = _mm256_xor_si256( sE, alpha[14] ); \
sF = _mm256_xor_si256( sF, alpha[15] ); \
\
SBOX( s0, s4, s8, sC ); \
SBOX( s1, s5, s9, sD ); \
@@ -1064,28 +1100,66 @@ do { \
#define P_BIG \
do { \
ROUND_BIG(0, alpha_n); \
ROUND_BIG(1, alpha_n); \
ROUND_BIG(2, alpha_n); \
ROUND_BIG(3, alpha_n); \
ROUND_BIG(4, alpha_n); \
ROUND_BIG(5, alpha_n); \
__m256i alpha[16]; \
for( int i = 0; i < 16; i++ ) \
alpha[i] = m256_const1_64( ( (uint64_t*)alpha_n )[i] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)1 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)2 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)3 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)4 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)5 << 32 ) \
^ ( (uint64_t*)alpha_n )[0] ); \
ROUND_BIG( alpha ); \
} while (0)
#define PF_BIG \
do { \
ROUND_BIG( 0, alpha_f); \
ROUND_BIG( 1, alpha_f); \
ROUND_BIG( 2, alpha_f); \
ROUND_BIG( 3, alpha_f); \
ROUND_BIG( 4, alpha_f); \
ROUND_BIG( 5, alpha_f); \
ROUND_BIG( 6, alpha_f); \
ROUND_BIG( 7, alpha_f); \
ROUND_BIG( 8, alpha_f); \
ROUND_BIG( 9, alpha_f); \
ROUND_BIG(10, alpha_f); \
ROUND_BIG(11, alpha_f); \
__m256i alpha[16]; \
for( int i = 0; i < 16; i++ ) \
alpha[i] = m256_const1_64( ( (uint64_t*)alpha_f )[i] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)1 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)2 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)3 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)4 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)5 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)6 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)7 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)8 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)9 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)10 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
alpha[0] = m256_const1_64( ( (uint64_t)11 << 32 ) \
^ ( (uint64_t*)alpha_f )[0] ); \
ROUND_BIG( alpha ); \
} while (0)
#define T_BIG \

View File

@@ -7,6 +7,7 @@
#include "hodl-gate.h"
#include "hodl-wolf.h"
#include "miner.h"
#include "algo/sha/sha256d.h"
#if defined(__AES__)

View File

@@ -1,5 +1,6 @@
#include "keccak-gate.h"
#include "sph_keccak.h"
#include "algo/sha/sha256d.h"
int hard_coded_eb = 1;

View File

@@ -70,13 +70,13 @@ static const uint64_t RC[] = {
// Targetted macros, keccak-macros.h is included for each target.
#define DECL64(x) __m512i x
#define XOR64(d, a, b) (d = _mm512_xor_si512(a,b))
#define AND64(d, a, b) (d = _mm512_and_si512(a,b))
#define OR64(d, a, b) (d = _mm512_or_si512(a,b))
#define NOT64(d, s) (d = _mm512_xor_si512(s,m512_neg1))
#define ROL64(d, v, n) (d = mm512_rol_64(v, n))
#define XOROR(d, a, b, c) (d = mm512_xoror(a, b, c))
#define DECL64(x) __m512i x
#define XOR64(d, a, b) (d = _mm512_xor_si512(a,b))
#define AND64(d, a, b) (d = _mm512_and_si512(a,b))
#define OR64(d, a, b) (d = _mm512_or_si512(a,b))
#define NOT64(d, s) (d = _mm512_xor_si512(s,m512_neg1))
#define ROL64(d, v, n) (d = mm512_rol_64(v, n))
#define XOROR(d, a, b, c) (d = mm512_xoror(a, b, c))
#define XORAND(d, a, b, c) (d = mm512_xorand(a, b, c))

View File

@@ -16,7 +16,7 @@
typedef struct {
blake256_16way_context blake;
keccak256_8way_context keccak;
cube_4way_context cube;
cube_4way_2buf_context cube;
skein256_8way_context skein;
#if defined(__VAES__)
groestl256_4way_context groestl;
@@ -30,13 +30,7 @@ static __thread allium_16way_ctx_holder allium_16way_ctx;
bool init_allium_16way_ctx()
{
keccak256_8way_init( &allium_16way_ctx.keccak );
cube_4way_init( &allium_16way_ctx.cube, 256, 16, 32 );
skein256_8way_init( &allium_16way_ctx.skein );
#if defined(__VAES__)
groestl256_4way_init( &allium_16way_ctx.groestl, 32 );
#else
init_groestl256( &allium_16way_ctx.groestl, 32 );
#endif
return true;
}
@@ -111,12 +105,11 @@ void allium_16way_hash( void *state, const void *input )
intrlv_2x256( vhash, hash14, hash15, 256 );
LYRA2RE_2WAY( vhash, 32, vhash, 32, 1, 8, 8 );
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, 256 );
cube_4way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_4way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
cube_4way_2buf_full( &ctx.cube, vhashA, vhashB, 256, vhashA, vhashB, 32 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
@@ -124,8 +117,7 @@ void allium_16way_hash( void *state, const void *input )
intrlv_4x128( vhashA, hash8, hash9, hash10, hash11, 256 );
intrlv_4x128( vhashB, hash12, hash13, hash14, hash15, 256 );
cube_4way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_4way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
cube_4way_2buf_full( &ctx.cube, vhashA, vhashB, 256, vhashA, vhashB, 32 );
dintrlv_4x128( hash8, hash9, hash10, hash11, vhashA, 256 );
dintrlv_4x128( hash12, hash13, hash14, hash15, vhashB, 256 );
@@ -255,7 +247,7 @@ int scanhash_allium_16way( struct work *work, uint32_t max_nonce,
typedef struct {
blake256_8way_context blake;
keccak256_4way_context keccak;
cubehashParam cube;
cube_2way_context cube;
skein256_4way_context skein;
#if defined(__VAES__)
groestl256_2way_context groestl;
@@ -269,13 +261,7 @@ static __thread allium_8way_ctx_holder allium_8way_ctx;
bool init_allium_8way_ctx()
{
keccak256_4way_init( &allium_8way_ctx.keccak );
cubehashInit( &allium_8way_ctx.cube, 256, 16, 32 );
skein256_4way_init( &allium_8way_ctx.skein );
#if defined(__VAES__)
groestl256_2way_init( &allium_8way_ctx.groestl, 32 );
#else
init_groestl256( &allium_8way_ctx.groestl, 32 );
#endif
return true;
}
@@ -320,21 +306,20 @@ void allium_8way_hash( void *hash, const void *input )
LYRA2RE( hash6, 32, hash6, 32, hash6, 32, 1, 8, 8 );
LYRA2RE( hash7, 32, hash7, 32, hash7, 32, 1, 8, 8 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0, (const byte*)hash0, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1, (const byte*)hash1, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2, (const byte*)hash2, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3, (const byte*)hash3, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4, (const byte*)hash4, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5, (const byte*)hash5, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6, (const byte*)hash6, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7, (const byte*)hash7, 32 );
intrlv_2x128( vhashA, hash0, hash1, 256 );
intrlv_2x128( vhashB, hash2, hash3, 256 );
cube_2way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_2way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
dintrlv_2x128( hash0, hash1, vhashA, 256 );
dintrlv_2x128( hash2, hash3, vhashB, 256 );
intrlv_2x128( vhashA, hash4, hash5, 256 );
intrlv_2x128( vhashB, hash6, hash7, 256 );
cube_2way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_2way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
dintrlv_2x128( hash4, hash5, vhashA, 256 );
dintrlv_2x128( hash6, hash7, vhashB, 256 );
LYRA2RE( hash0, 32, hash0, 32, hash0, 32, 1, 8, 8 );
LYRA2RE( hash1, 32, hash1, 32, hash1, 32, 1, 8, 8 );

View File

@@ -66,13 +66,13 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#define LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
G2W_4X64( s0, s1, s2, s3 ); \
s1 = mm512_ror256_64( s1); \
s3 = mm512_shufll256_64( s3 ); \
s1 = mm512_shuflr256_64( s1); \
s2 = mm512_swap256_128( s2 ); \
s3 = mm512_rol256_64( s3 ); \
G2W_4X64( s0, s1, s2, s3 ); \
s1 = mm512_rol256_64( s1 ); \
s2 = mm512_swap256_128( s2 ); \
s3 = mm512_ror256_64( s3 );
s3 = mm512_shuflr256_64( s3 ); \
s1 = mm512_shufll256_64( s1 ); \
s2 = mm512_swap256_128( s2 );
#define LYRA_12_ROUNDS_2WAY_AVX512( s0, s1, s2, s3 ) \
LYRA_ROUND_2WAY_AVX512( s0, s1, s2, s3 ) \
@@ -107,13 +107,13 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#define LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm256_ror_1x64( s1); \
s3 = mm256_shufll_64( s3 ); \
s1 = mm256_shuflr_64( s1); \
s2 = mm256_swap_128( s2 ); \
s3 = mm256_rol_1x64( s3 ); \
G_4X64( s0, s1, s2, s3 ); \
s1 = mm256_rol_1x64( s1 ); \
s2 = mm256_swap_128( s2 ); \
s3 = mm256_ror_1x64( s3 );
s3 = mm256_shuflr_64( s3 ); \
s1 = mm256_shufll_64( s1 ); \
s2 = mm256_swap_128( s2 );
#define LYRA_12_ROUNDS_AVX2( s0, s1, s2, s3 ) \
LYRA_ROUND_AVX2( s0, s1, s2, s3 ) \
@@ -148,14 +148,14 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
#define LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
G_2X64( s0, s2, s4, s6 ); \
G_2X64( s1, s3, s5, s7 ); \
mm128_ror256_64( s2, s3 ); \
mm128_vrol256_64( s6, s7 ); \
mm128_vror256_64( s2, s3 ); \
mm128_swap256_128( s4, s5 ); \
mm128_rol256_64( s6, s7 ); \
G_2X64( s0, s2, s4, s6 ); \
G_2X64( s1, s3, s5, s7 ); \
mm128_rol256_64( s2, s3 ); \
mm128_swap256_128( s4, s5 ); \
mm128_ror256_64( s6, s7 );
mm128_vror256_64( s6, s7 ); \
mm128_vrol256_64( s2, s3 ); \
mm128_swap256_128( s4, s5 );
#define LYRA_12_ROUNDS_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \

View File

@@ -13,6 +13,7 @@
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/ripemd/sph_ripemd.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#define EPSa DBL_EPSILON
#define EPS1 DBL_EPSILON
@@ -104,8 +105,8 @@ uint32_t sw2_( int nnounce )
}
typedef struct {
sph_sha256_context sha256;
sph_sha512_context sha512;
sha256_context sha256;
sph_sha512_context sha512;
sph_keccak512_context keccak;
sph_whirlpool_context whirlpool;
sph_haval256_5_context haval;
@@ -117,7 +118,7 @@ m7m_ctx_holder m7m_ctx;
void init_m7m_ctx()
{
sph_sha256_init( &m7m_ctx );
sha256_ctx_init( &m7m_ctx.sha256 );
sph_sha512_init( &m7m_ctx.sha512 );
sph_keccak512_init( &m7m_ctx.keccak );
sph_whirlpool_init( &m7m_ctx.whirlpool );
@@ -153,11 +154,10 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
m7m_ctx_holder ctx1, ctx2 __attribute__ ((aligned (64)));
memcpy( &ctx1, &m7m_ctx, sizeof(m7m_ctx) );
sph_sha256_context ctxf_sha256;
memcpy(data, pdata, 80);
sph_sha256( &ctx1.sha256, data, M7_MIDSTATE_LEN );
sha256_update( &ctx1.sha256, data, M7_MIDSTATE_LEN );
sph_sha512( &ctx1.sha512, data, M7_MIDSTATE_LEN );
sph_keccak512( &ctx1.keccak, data, M7_MIDSTATE_LEN );
sph_whirlpool( &ctx1.whirlpool, data, M7_MIDSTATE_LEN );
@@ -189,8 +189,8 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
memcpy( &ctx2, &ctx1, sizeof(m7m_ctx) );
sph_sha256( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha256_close( &ctx2.sha256, bhash[0] );
sha256_update( &ctx2.sha256, data_p64, 80 - M7_MIDSTATE_LEN );
sha256_final( &ctx2.sha256, bhash[0] );
sph_sha512( &ctx2.sha512, data_p64, 80 - M7_MIDSTATE_LEN );
sph_sha512_close( &ctx2.sha512, bhash[1] );
@@ -225,9 +225,7 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
bytes = mpz_sizeinbase(product, 256);
mpz_export((void *)bdata, NULL, -1, 1, 0, 0, product);
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, hash );
sha256_full( hash, bdata, bytes );
digits=(int)((sqrt((double)(n/2))*(1.+EPS))/9000+75);
mp_bitcnt_t prec = (long int)(digits*BITS_PER_DIGIT+16);
@@ -260,10 +258,8 @@ int scanhash_m7m_hash( struct work* work, uint64_t max_nonce,
mpzscale=bytes;
mpz_export(bdata, NULL, -1, 1, 0, 0, product);
sph_sha256_init( &ctxf_sha256 );
sph_sha256( &ctxf_sha256, bdata, bytes );
sph_sha256_close( &ctxf_sha256, hash );
}
sha256_full( hash, bdata, bytes );
}
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !opt_benchmark ) )

View File

@@ -7,24 +7,19 @@
#include <string.h>
#include <stdio.h>
#include "sph_ripemd.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
void lbry_hash(void* output, const void* input)
{
sph_sha256_context ctx_sha256 __attribute__ ((aligned (64)));
sha256_context ctx_sha256 __attribute__ ((aligned (64)));
sph_sha512_context ctx_sha512 __attribute__ ((aligned (64)));
sph_ripemd160_context ctx_ripemd __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) hashA[16];
uint32_t _ALIGN(64) hashB[16];
uint32_t _ALIGN(64) hashC[16];
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, input, 112 );
sph_sha256_close( &ctx_sha256, hashA );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashA, 32 );
sph_sha256_close( &ctx_sha256, hashA );
sha256_full( hashA, input, 112 );
sha256_full( hashA, hashA, 32 );
sph_sha512_init( &ctx_sha512 );
sph_sha512( &ctx_sha512, hashA, 32 );
@@ -38,15 +33,13 @@ void lbry_hash(void* output, const void* input)
sph_ripemd160 ( &ctx_ripemd, hashA+8, 32 );
sph_ripemd160_close( &ctx_ripemd, hashC );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashB, 20 );
sph_sha256( &ctx_sha256, hashC, 20 );
sph_sha256_close( &ctx_sha256, hashA );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hashA, 32 );
sph_sha256_close( &ctx_sha256, hashA );
sha256_ctx_init( &ctx_sha256 );
sha256_update( &ctx_sha256, hashB, 20 );
sha256_update( &ctx_sha256, hashC, 20 );
sha256_final( &ctx_sha256, hashA );
sha256_full( hashA, hashA, 32 );
memcpy( output, hashA, 32 );
}

View File

@@ -69,8 +69,12 @@ typedef unsigned int uint;
#define SCRYPT_HASH_BLOCK_SIZE 64U
#define SCRYPT_HASH_DIGEST_SIZE 32U
#define ROTL32(a,b) (((a) << (b)) | ((a) >> (32 - b)))
#define ROTR32(a,b) (((a) >> (b)) | ((a) << (32 - b)))
//#define ROTL32(a,b) (((a) << (b)) | ((a) >> (32 - b)))
//#define ROTR32(a,b) (((a) >> (b)) | ((a) << (32 - b)))
#define ROTL32(a,b) rol32(a,b)
#define ROTR32(a,b) ror32(a,b)
#define U8TO32_BE(p) \
(((uint32_t)((p)[0]) << 24) | ((uint32_t)((p)[1]) << 16) | \

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,70 @@
#ifndef SCRYPT_CORE_4WAY_H__
#define SCRYPT_CORE_4WAY_H__
#include "simd-utils.h"
#include <stdlib.h>
#include <stdint.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
void scrypt_core_16way( __m512i *X, __m512i *V, const uint32_t N );
// Serial SIMD over 4 way parallel
void scrypt_core_simd128_4way( __m128i *X, __m128i *V, const uint32_t N );
// 4 way parallel over serial SIMD
void scrypt_core_4way_simd128( __m512i *X, __m512i *V, const uint32_t N );
#endif
#if defined(__AVX2__)
void scrypt_core_8way( __m256i *X, __m256i *V, uint32_t N );
// 2 way parallel over SIMD128
void scrypt_core_2way_simd128( __m256i *X, __m256i *V, const uint32_t N );
// Double buffered 2 way parallel over SIMD128
void scrypt_core_2way_simd128_2buf( __m256i *X, __m256i *V, const uint32_t N );
// Triplee buffered 2 way parallel over SIMD128
void scrypt_core_2way_simd128_3buf( __m256i *X, __m256i *V, const uint32_t N );
// Serial SIMD128 over 2 way parallel
void scrypt_core_simd128_2way( uint64_t *X, uint64_t *V, const uint32_t N );
// Double buffered simd over parallel
void scrypt_core_simd128_2way_2buf( uint64_t *X, uint64_t *V, const uint32_t N );
// Triple buffered 2 way
void scrypt_core_simd128_2way_3buf( uint64_t *X, uint64_t *V, const uint32_t N );
// Quadruple buffered
void scrypt_core_simd128_2way_4buf( uint64_t *X, uint64_t *V, const uint32_t N );
#endif
#if defined(__SSE2__)
// Parallel 4 way, 4x memory
void scrypt_core_4way( __m128i *X, __m128i *V, const uint32_t N );
// Linear SIMD 1 way, 1x memory, lowest
void scrypt_core_simd128( uint32_t *X, uint32_t *V, const uint32_t N );
// Double buffered, 2x memory
void scrypt_core_simd128_2buf( uint32_t *X, uint32_t *V, const uint32_t N );
// Triple buffered
void scrypt_core_simd128_3buf( uint32_t *X, uint32_t *V, const uint32_t N );
// Quadruple buffered, 4x memory
void scrypt_core_simd128_4buf( uint32_t *X, uint32_t *V, const uint32_t N );
#endif
// For reference only
void scrypt_core_1way( uint32_t *X, uint32_t *V, const uint32_t N );
#endif

View File

@@ -0,0 +1,206 @@
#include "scrypt-core-ref.h"
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
static void xor_salsa8(uint32_t * const B, const uint32_t * const C)
{
uint32_t x0 = (B[ 0] ^= C[ 0]),
x1 = (B[ 1] ^= C[ 1]),
x2 = (B[ 2] ^= C[ 2]),
x3 = (B[ 3] ^= C[ 3]);
uint32_t x4 = (B[ 4] ^= C[ 4]),
x5 = (B[ 5] ^= C[ 5]),
x6 = (B[ 6] ^= C[ 6]),
x7 = (B[ 7] ^= C[ 7]);
uint32_t x8 = (B[ 8] ^= C[ 8]),
x9 = (B[ 9] ^= C[ 9]),
xa = (B[10] ^= C[10]),
xb = (B[11] ^= C[11]);
uint32_t xc = (B[12] ^= C[12]),
xd = (B[13] ^= C[13]),
xe = (B[14] ^= C[14]),
xf = (B[15] ^= C[15]);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7);
x9 ^= ROTL(x5 + x1, 7);
xe ^= ROTL(xa + x6, 7);
x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9);
xd ^= ROTL(x9 + x5, 9);
x2 ^= ROTL(xe + xa, 9);
x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13);
x1 ^= ROTL(xd + x9, 13);
x6 ^= ROTL(x2 + xe, 13);
xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18);
x5 ^= ROTL(x1 + xd, 18);
xa ^= ROTL(x6 + x2, 18);
xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7);
x6 ^= ROTL(x5 + x4, 7);
xb ^= ROTL(xa + x9, 7);
xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9);
x7 ^= ROTL(x6 + x5, 9);
x8 ^= ROTL(xb + xa, 9);
xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13);
x4 ^= ROTL(x7 + x6, 13);
x9 ^= ROTL(x8 + xb, 13);
xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18);
x5 ^= ROTL(x4 + x7, 18);
xa ^= ROTL(x9 + x8, 18);
xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7);
x9 ^= ROTL(x5 + x1, 7);
xe ^= ROTL(xa + x6, 7);
x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9);
xd ^= ROTL(x9 + x5, 9);
x2 ^= ROTL(xe + xa, 9);
x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13);
x1 ^= ROTL(xd + x9, 13);
x6 ^= ROTL(x2 + xe, 13);
xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18);
x5 ^= ROTL(x1 + xd, 18);
xa ^= ROTL(x6 + x2, 18);
xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7);
x6 ^= ROTL(x5 + x4, 7);
xb ^= ROTL(xa + x9, 7);
xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9);
x7 ^= ROTL(x6 + x5, 9);
x8 ^= ROTL(xb + xa, 9);
xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13);
x4 ^= ROTL(x7 + x6, 13);
x9 ^= ROTL(x8 + xb, 13);
xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18);
x5 ^= ROTL(x4 + x7, 18);
xa ^= ROTL(x9 + x8, 18);
xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7);
x9 ^= ROTL(x5 + x1, 7);
xe ^= ROTL(xa + x6, 7);
x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9);
xd ^= ROTL(x9 + x5, 9);
x2 ^= ROTL(xe + xa, 9);
x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13);
x1 ^= ROTL(xd + x9, 13);
x6 ^= ROTL(x2 + xe, 13);
xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18);
x5 ^= ROTL(x1 + xd, 18);
xa ^= ROTL(x6 + x2, 18);
xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7);
x6 ^= ROTL(x5 + x4, 7);
xb ^= ROTL(xa + x9, 7);
xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9);
x7 ^= ROTL(x6 + x5, 9);
x8 ^= ROTL(xb + xa, 9);
xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13);
x4 ^= ROTL(x7 + x6, 13);
x9 ^= ROTL(x8 + xb, 13);
xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18);
x5 ^= ROTL(x4 + x7, 18);
xa ^= ROTL(x9 + x8, 18);
xf ^= ROTL(xe + xd, 18);
/* Operate on columns. */
x4 ^= ROTL(x0 + xc, 7);
x9 ^= ROTL(x5 + x1, 7);
xe ^= ROTL(xa + x6, 7);
x3 ^= ROTL(xf + xb, 7);
x8 ^= ROTL(x4 + x0, 9);
xd ^= ROTL(x9 + x5, 9);
x2 ^= ROTL(xe + xa, 9);
x7 ^= ROTL(x3 + xf, 9);
xc ^= ROTL(x8 + x4, 13);
x1 ^= ROTL(xd + x9, 13);
x6 ^= ROTL(x2 + xe, 13);
xb ^= ROTL(x7 + x3, 13);
x0 ^= ROTL(xc + x8, 18);
x5 ^= ROTL(x1 + xd, 18);
xa ^= ROTL(x6 + x2, 18);
xf ^= ROTL(xb + x7, 18);
/* Operate on rows. */
x1 ^= ROTL(x0 + x3, 7);
x6 ^= ROTL(x5 + x4, 7);
xb ^= ROTL(xa + x9, 7);
xc ^= ROTL(xf + xe, 7);
x2 ^= ROTL(x1 + x0, 9);
x7 ^= ROTL(x6 + x5, 9);
x8 ^= ROTL(xb + xa, 9);
xd ^= ROTL(xc + xf, 9);
x3 ^= ROTL(x2 + x1, 13);
x4 ^= ROTL(x7 + x6, 13);
x9 ^= ROTL(x8 + xb, 13);
xe ^= ROTL(xd + xc, 13);
x0 ^= ROTL(x3 + x2, 18);
x5 ^= ROTL(x4 + x7, 18);
xa ^= ROTL(x9 + x8, 18);
xf ^= ROTL(xe + xd, 18);
B[ 0] += x0;
B[ 1] += x1;
B[ 2] += x2;
B[ 3] += x3;
B[ 4] += x4;
B[ 5] += x5;
B[ 6] += x6;
B[ 7] += x7;
B[ 8] += x8;
B[ 9] += x9;
B[10] += xa;
B[11] += xb;
B[12] += xc;
B[13] += xd;
B[14] += xe;
B[15] += xf;
}
/**
* @param X input/ouput
* @param V scratch buffer
* @param N factor (def. 1024)
*/
void scrypt_core_ref(uint32_t *X, uint32_t *V, uint32_t N)
{
for (uint32_t i = 0; i < N; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (uint32_t i = 0; i < N; i++) {
uint32_t j = 32 * (X[16] & (N - 1));
for (uint8_t k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -39,10 +39,10 @@
void
SHA256_Buf( const void * in, size_t len, uint8_t digest[32] )
{
sph_sha256_context ctx;
sph_sha256_init( &ctx );
sph_sha256( &ctx, in, len );
sph_sha256_close( &ctx, digest );
sha256_context ctx;
sha256_ctx_init( &ctx );
sha256_update( &ctx, in, len );
sha256_final( &ctx, digest );
}
/**
@@ -64,7 +64,7 @@ HMAC_SHA256_Buf( const void *K, size_t Klen, const void *in, size_t len,
void
HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
{
unsigned char pad[64];
unsigned char pad[64] __attribute__ ((aligned (64)));
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
@@ -72,29 +72,28 @@ HMAC_SHA256_Init( HMAC_SHA256_CTX *ctx, const void *_K, size_t Klen )
/* If Klen > 64, the key is really SHA256(K). */
if ( Klen > 64 )
{
sph_sha256_init( &ctx->ictx );
sph_sha256( &ctx->ictx, K, Klen );
sph_sha256_close( &ctx->ictx, khash );
sha256_ctx_init( &ctx->ictx );
sha256_update( &ctx->ictx, K, Klen );
sha256_final( &ctx->ictx, khash );
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
sph_sha256_init( &ctx->ictx );
sha256_ctx_init( &ctx->ictx );
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x36;
memset( pad + Klen, 0x36, 64 - Klen );
sph_sha256( &ctx->ictx, pad, 64 );
sha256_update( &ctx->ictx, pad, 64 );
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
sph_sha256_init( &ctx->octx );
sha256_ctx_init( &ctx->octx );
for ( i = 0; i < Klen; i++ ) pad[i] = K[i] ^ 0x5c;
memset( pad + Klen, 0x5c, 64 - Klen );
sph_sha256( &ctx->octx, pad, 64 );
sha256_update( &ctx->octx, pad, 64 );
}
/* Add bytes to the HMAC-SHA256 operation. */
@@ -102,18 +101,17 @@ void
HMAC_SHA256_Update( HMAC_SHA256_CTX *ctx, const void *in, size_t len )
{
/* Feed data to the inner SHA256 operation. */
sph_sha256( &ctx->ictx, in, len );
sha256_update( &ctx->ictx, in, len );
}
/* Finish an HMAC-SHA256 operation. */
void
HMAC_SHA256_Final( unsigned char digest[32], HMAC_SHA256_CTX *ctx )
HMAC_SHA256_Final( void *digest, HMAC_SHA256_CTX *ctx )
{
unsigned char ihash[32];
sph_sha256_close( &ctx->ictx, ihash );
sph_sha256( &ctx->octx, ihash, 32 );
sph_sha256_close( &ctx->octx, digest );
uint32_t ihash[8] __attribute__ ((aligned (32)));
sha256_final( &ctx->ictx, ihash );
sha256_update( &ctx->octx, ihash, 32 );
sha256_final( &ctx->octx, digest );
}
/**
@@ -126,8 +124,10 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen )
{
HMAC_SHA256_CTX PShctx, hctx;
uint8_t _ALIGN(128) T[32];
uint8_t _ALIGN(128) U[32];
uint64_t _ALIGN(128) T[4];
uint64_t _ALIGN(128) U[4];
// uint8_t _ALIGN(128) T[32];
// uint8_t _ALIGN(128) U[32];
uint32_t ivec;
size_t i, clen;
uint64_t j;
@@ -163,10 +163,10 @@ PBKDF2_SHA256( const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
// _mm_xor_si128( ((__m128i*)T)[0], ((__m128i*)U)[0] );
// _mm_xor_si128( ((__m128i*)T)[1], ((__m128i*)U)[1] );
// for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 4; k++ ) T[k] ^= U[k];
for ( k = 0; k < 32; k++ )
T[k] ^= U[k];
// for ( k = 0; k < 32; k++ )
// T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */

View File

@@ -31,18 +31,18 @@
#include <sys/types.h>
#include <stdint.h>
#include "sph_sha2.h"
#include "sha256-hash.h"
typedef struct HMAC_SHA256Context
{
sph_sha256_context ictx;
sph_sha256_context octx;
sha256_context ictx;
sha256_context octx;
} HMAC_SHA256_CTX;
void SHA256_Buf( const void *, size_t len, uint8_t digest[32] );
void HMAC_SHA256_Init( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Update( HMAC_SHA256_CTX *, const void *, size_t );
void HMAC_SHA256_Final( unsigned char [32], HMAC_SHA256_CTX * );
void HMAC_SHA256_Final( void*, HMAC_SHA256_CTX * );
void HMAC_SHA256_Buf( const void *, size_t Klen, const void *,
size_t len, uint8_t digest[32] );

View File

@@ -59,7 +59,9 @@ void sha256_4way_update( sha256_4way_context *sc, const void *data,
size_t len );
void sha256_4way_close( sha256_4way_context *sc, void *dst );
void sha256_4way_full( void *dst, const void *data, size_t len );
void sha256_4way_transform( __m128i *state_out, const __m128i *data,
void sha256_4way_transform_le( __m128i *state_out, const __m128i *data,
const __m128i *state_in );
void sha256_4way_transform_be( __m128i *state_out, const __m128i *data,
const __m128i *state_in );
#endif // SSE2
@@ -79,8 +81,10 @@ void sha256_8way_init( sha256_8way_context *sc );
void sha256_8way_update( sha256_8way_context *sc, const void *data, size_t len );
void sha256_8way_close( sha256_8way_context *sc, void *dst );
void sha256_8way_full( void *dst, const void *data, size_t len );
void sha256_8way_transform( __m256i *state_out, const __m256i *data,
const __m256i *state_in );
void sha256_8way_transform_le( __m256i *state_out, const __m256i *data,
const __m256i *state_in );
void sha256_8way_transform_be( __m256i *state_out, const __m256i *data,
const __m256i *state_in );
#endif // AVX2
@@ -99,7 +103,9 @@ void sha256_16way_init( sha256_16way_context *sc );
void sha256_16way_update( sha256_16way_context *sc, const void *data, size_t len );
void sha256_16way_close( sha256_16way_context *sc, void *dst );
void sha256_16way_full( void *dst, const void *data, size_t len );
void sha256_16way_transform( __m512i *state_out, const __m512i *data,
void sha256_16way_transform_le( __m512i *state_out, const __m512i *data,
const __m512i *state_in );
void sha256_16way_transform_be( __m512i *state_out, const __m512i *data,
const __m512i *state_in );
void sha256_16way_prehash_3rounds( __m512i *state_mid, const __m512i *W,
const __m512i *state_in );

View File

@@ -180,6 +180,7 @@ static const uint32_t sha256d_hash1[16] = {
0x00000000, 0x00000000, 0x00000000, 0x00000100
};
// this performs the entire hash all over again, why?
static void sha256d_80_swap(uint32_t *hash, const uint32_t *data)
{
uint32_t S[16];
@@ -195,6 +196,7 @@ static void sha256d_80_swap(uint32_t *hash, const uint32_t *data)
hash[i] = swab32(hash[i]);
}
/*
#if defined (__SHA__)
#include "algo/sha/sph_sha2.h"
@@ -241,6 +243,7 @@ void sha256d(unsigned char *hash, const unsigned char *data, int len)
}
#endif
*/
static inline void sha256d_preextend(uint32_t *W)
{
@@ -653,6 +656,7 @@ int scanhash_sha256d( struct work *work,
return 0;
}
/*
int scanhash_SHA256d( struct work *work, const uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
@@ -682,13 +686,13 @@ int scanhash_SHA256d( struct work *work, const uint32_t max_nonce,
pdata[19] = n;
return 0;
}
*/
bool register_sha256d_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AVX2_OPT;
gate->scanhash = (void*)&scanhash_sha256d;
gate->hash = (void*)&sha256d;
// gate->hash = (void*)&sha256d;
return true;
};

View File

@@ -7,9 +7,9 @@
#if defined(__SHA__)
#include "sha256-hash-opt.h"
#include "sha256-hash.h"
void sha256_ni2way_transform( uint32_t *out_X, uint32_t*out_Y,
void sha256_ni2way_transform_le( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y )
{
@@ -342,4 +342,348 @@ void sha256_ni2way_transform( uint32_t *out_X, uint32_t*out_Y,
_mm_store_si128((__m128i*) &out_Y[4], STATE1_Y);
}
void sha256_ni2way_transform_be( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y )
{
__m128i STATE0_X, STATE1_X, STATE0_Y, STATE1_Y;
__m128i MSG_X, MSG_Y, TMP_X, TMP_Y, MASK;
__m128i TMSG0_X, TMSG1_X, TMSG2_X, TMSG3_X;
__m128i TMSG0_Y, TMSG1_Y, TMSG2_Y, TMSG3_Y;
__m128i ABEF_SAVE_X, CDGH_SAVE_X, ABEF_SAVE_Y, CDGH_SAVE_Y;
// Load initial values
TMP_X = _mm_load_si128((__m128i*) &in_X[0]);
STATE1_X = _mm_load_si128((__m128i*) &in_X[4]);
TMP_Y = _mm_load_si128((__m128i*) &in_Y[0]);
STATE1_Y = _mm_load_si128((__m128i*) &in_Y[4]);
MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
TMP_X = _mm_shuffle_epi32(TMP_X, 0xB1); // CDAB
TMP_Y = _mm_shuffle_epi32(TMP_Y, 0xB1); // CDAB
STATE1_X = _mm_shuffle_epi32(STATE1_X, 0x1B); // EFGH
STATE1_Y = _mm_shuffle_epi32(STATE1_Y, 0x1B); // EFGH
STATE0_X = _mm_alignr_epi8(TMP_X, STATE1_X, 8); // ABEF
STATE0_Y = _mm_alignr_epi8(TMP_Y, STATE1_Y, 8); // ABEF
STATE1_X = _mm_blend_epi16(STATE1_X, TMP_X, 0xF0); // CDGH
STATE1_Y = _mm_blend_epi16(STATE1_Y, TMP_Y, 0xF0); // CDGH
// Save current hash
ABEF_SAVE_X = STATE0_X;
ABEF_SAVE_Y = STATE0_Y;
CDGH_SAVE_X = STATE1_X;
CDGH_SAVE_Y = STATE1_Y;
// Rounds 0-3
TMSG0_X = _mm_load_si128((const __m128i*) (msg_X));
TMSG0_Y = _mm_load_si128((const __m128i*) (msg_Y));
TMP_X = _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL);
TMSG0_X = _mm_shuffle_epi8( TMSG0_X, MASK );
TMSG0_Y = _mm_shuffle_epi8( TMSG0_Y, MASK );
MSG_X = _mm_add_epi32( TMSG0_X, TMP_X );
MSG_Y = _mm_add_epi32( TMSG0_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
// Rounds 4-7
TMSG1_X = _mm_load_si128((const __m128i*) (msg_X+16));
TMSG1_Y = _mm_load_si128((const __m128i*) (msg_Y+16));
TMP_X = _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL);
TMSG1_X = _mm_shuffle_epi8( TMSG1_X, MASK );
TMSG1_Y = _mm_shuffle_epi8( TMSG1_Y, MASK );
MSG_X = _mm_add_epi32(TMSG1_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG1_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG0_X = _mm_sha256msg1_epu32(TMSG0_X, TMSG1_X);
TMSG0_Y = _mm_sha256msg1_epu32(TMSG0_Y, TMSG1_Y);
// Rounds 8-11
TMSG2_X = _mm_load_si128((const __m128i*) (msg_X+32));
TMSG2_Y = _mm_load_si128((const __m128i*) (msg_Y+32));
TMP_X = _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL);
TMSG2_X = _mm_shuffle_epi8( TMSG2_X, MASK );
TMSG2_Y = _mm_shuffle_epi8( TMSG2_Y, MASK );
MSG_X = _mm_add_epi32(TMSG2_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG2_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG1_X = _mm_sha256msg1_epu32(TMSG1_X, TMSG2_X);
TMSG1_Y = _mm_sha256msg1_epu32(TMSG1_Y, TMSG2_Y);
// Rounds 12-15
TMSG3_X = _mm_load_si128((const __m128i*) (msg_X+48));
TMSG3_Y = _mm_load_si128((const __m128i*) (msg_Y+48));
TMP_X = _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL);
TMSG3_X = _mm_shuffle_epi8( TMSG3_X, MASK );
TMSG3_Y = _mm_shuffle_epi8( TMSG3_Y, MASK );
MSG_X = _mm_add_epi32(TMSG3_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG3_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG3_X, TMSG2_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG3_Y, TMSG2_Y, 4);
TMSG0_X = _mm_add_epi32(TMSG0_X, TMP_X);
TMSG0_Y = _mm_add_epi32(TMSG0_Y, TMP_Y);
TMSG0_X = _mm_sha256msg2_epu32(TMSG0_X, TMSG3_X);
TMSG0_Y = _mm_sha256msg2_epu32(TMSG0_Y, TMSG3_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG2_X = _mm_sha256msg1_epu32(TMSG2_X, TMSG3_X);
TMSG2_Y = _mm_sha256msg1_epu32(TMSG2_Y, TMSG3_Y);
// Rounds 16-19
TMP_X = _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL);
MSG_X = _mm_add_epi32(TMSG0_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG0_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG0_X, TMSG3_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG0_Y, TMSG3_Y, 4);
TMSG1_X = _mm_add_epi32(TMSG1_X, TMP_X);
TMSG1_Y = _mm_add_epi32(TMSG1_Y, TMP_Y);
TMSG1_X = _mm_sha256msg2_epu32(TMSG1_X, TMSG0_X);
TMSG1_Y = _mm_sha256msg2_epu32(TMSG1_Y, TMSG0_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG3_X = _mm_sha256msg1_epu32(TMSG3_X, TMSG0_X);
TMSG3_Y = _mm_sha256msg1_epu32(TMSG3_Y, TMSG0_Y);
// Rounds 20-23
TMP_X = _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL);
MSG_X = _mm_add_epi32(TMSG1_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG1_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG1_X, TMSG0_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG1_Y, TMSG0_Y, 4);
TMSG2_X = _mm_add_epi32(TMSG2_X, TMP_X);
TMSG2_Y = _mm_add_epi32(TMSG2_Y, TMP_Y);
TMSG2_X = _mm_sha256msg2_epu32(TMSG2_X, TMSG1_X);
TMSG2_Y = _mm_sha256msg2_epu32(TMSG2_Y, TMSG1_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG0_X = _mm_sha256msg1_epu32(TMSG0_X, TMSG1_X);
TMSG0_Y = _mm_sha256msg1_epu32(TMSG0_Y, TMSG1_Y);
// Rounds 24-27
TMP_X = _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL);
MSG_X = _mm_add_epi32(TMSG2_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG2_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG2_X, TMSG1_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG2_Y, TMSG1_Y, 4);
TMSG3_X = _mm_add_epi32(TMSG3_X, TMP_X);
TMSG3_Y = _mm_add_epi32(TMSG3_Y, TMP_Y);
TMSG3_X = _mm_sha256msg2_epu32(TMSG3_X, TMSG2_X);
TMSG3_Y = _mm_sha256msg2_epu32(TMSG3_Y, TMSG2_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG1_X = _mm_sha256msg1_epu32(TMSG1_X, TMSG2_X);
TMSG1_Y = _mm_sha256msg1_epu32(TMSG1_Y, TMSG2_Y);
// Rounds 28-31
TMP_X = _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL);
MSG_X = _mm_add_epi32(TMSG3_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG3_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG3_X, TMSG2_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG3_Y, TMSG2_Y, 4);
TMSG0_X = _mm_add_epi32(TMSG0_X, TMP_X);
TMSG0_Y = _mm_add_epi32(TMSG0_Y, TMP_Y);
TMSG0_X = _mm_sha256msg2_epu32(TMSG0_X, TMSG3_X);
TMSG0_Y = _mm_sha256msg2_epu32(TMSG0_Y, TMSG3_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG2_X = _mm_sha256msg1_epu32(TMSG2_X, TMSG3_X);
TMSG2_Y = _mm_sha256msg1_epu32(TMSG2_Y, TMSG3_Y);
// Rounds 32-35
TMP_X = _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL);
MSG_X = _mm_add_epi32(TMSG0_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG0_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG0_X, TMSG3_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG0_Y, TMSG3_Y, 4);
TMSG1_X = _mm_add_epi32(TMSG1_X, TMP_X);
TMSG1_Y = _mm_add_epi32(TMSG1_Y, TMP_Y);
TMSG1_X = _mm_sha256msg2_epu32(TMSG1_X, TMSG0_X);
TMSG1_Y = _mm_sha256msg2_epu32(TMSG1_Y, TMSG0_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG3_X = _mm_sha256msg1_epu32(TMSG3_X, TMSG0_X);
TMSG3_Y = _mm_sha256msg1_epu32(TMSG3_Y, TMSG0_Y);
// Rounds 36-39
TMP_X = _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL);
MSG_X = _mm_add_epi32(TMSG1_X, TMP_X);
MSG_Y = _mm_add_epi32(TMSG1_Y, TMP_X);
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG1_X, TMSG0_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG1_Y, TMSG0_Y, 4);
TMSG2_X = _mm_add_epi32(TMSG2_X, TMP_X);
TMSG2_Y = _mm_add_epi32(TMSG2_Y, TMP_Y);
TMSG2_X = _mm_sha256msg2_epu32(TMSG2_X, TMSG1_X);
TMSG2_Y = _mm_sha256msg2_epu32(TMSG2_Y, TMSG1_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG0_X = _mm_sha256msg1_epu32(TMSG0_X, TMSG1_X);
TMSG0_Y = _mm_sha256msg1_epu32(TMSG0_Y, TMSG1_Y);
// Rounds 40-43
TMP_X = _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL);
MSG_X = _mm_add_epi32(TMSG2_X, TMP_X);
MSG_Y = _mm_add_epi32(TMSG2_Y, TMP_X);
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG2_X, TMSG1_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG2_Y, TMSG1_Y, 4);
TMSG3_X = _mm_add_epi32(TMSG3_X, TMP_X);
TMSG3_Y = _mm_add_epi32(TMSG3_Y, TMP_Y);
TMSG3_X = _mm_sha256msg2_epu32(TMSG3_X, TMSG2_X);
TMSG3_Y = _mm_sha256msg2_epu32(TMSG3_Y, TMSG2_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG1_X = _mm_sha256msg1_epu32(TMSG1_X, TMSG2_X);
TMSG1_Y = _mm_sha256msg1_epu32(TMSG1_Y, TMSG2_Y);
// Rounds 44-47
TMP_X = _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL);
MSG_X = _mm_add_epi32(TMSG3_X, TMP_X);
MSG_Y = _mm_add_epi32(TMSG3_Y, TMP_X);
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG3_X, TMSG2_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG3_Y, TMSG2_Y, 4);
TMSG0_X = _mm_add_epi32(TMSG0_X, TMP_X);
TMSG0_Y = _mm_add_epi32(TMSG0_Y, TMP_Y);
TMSG0_X = _mm_sha256msg2_epu32(TMSG0_X, TMSG3_X);
TMSG0_Y = _mm_sha256msg2_epu32(TMSG0_Y, TMSG3_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG2_X = _mm_sha256msg1_epu32(TMSG2_X, TMSG3_X);
TMSG2_Y = _mm_sha256msg1_epu32(TMSG2_Y, TMSG3_Y);
// Rounds 48-51
TMP_X = _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL);
MSG_X = _mm_add_epi32(TMSG0_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG0_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG0_X, TMSG3_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG0_Y, TMSG3_Y, 4);
TMSG1_X = _mm_add_epi32(TMSG1_X, TMP_X);
TMSG1_Y = _mm_add_epi32(TMSG1_Y, TMP_Y);
TMSG1_X = _mm_sha256msg2_epu32(TMSG1_X, TMSG0_X);
TMSG1_Y = _mm_sha256msg2_epu32(TMSG1_Y, TMSG0_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
TMSG3_X = _mm_sha256msg1_epu32(TMSG3_X, TMSG0_X);
TMSG3_Y = _mm_sha256msg1_epu32(TMSG3_Y, TMSG0_Y);
// Rounds 52-55
TMP_X = _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL);
MSG_X = _mm_add_epi32(TMSG1_X, TMP_X );
MSG_Y = _mm_add_epi32(TMSG1_Y, TMP_X );
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG1_X, TMSG0_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG1_Y, TMSG0_Y, 4);
TMSG2_X = _mm_add_epi32(TMSG2_X, TMP_X);
TMSG2_Y = _mm_add_epi32(TMSG2_Y, TMP_Y);
TMSG2_X = _mm_sha256msg2_epu32(TMSG2_X, TMSG1_X);
TMSG2_Y = _mm_sha256msg2_epu32(TMSG2_Y, TMSG1_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
// Rounds 56-59
TMP_X = _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL);
MSG_X = _mm_add_epi32(TMSG2_X, TMP_X);
MSG_Y = _mm_add_epi32(TMSG2_Y, TMP_X);
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
TMP_X = _mm_alignr_epi8(TMSG2_X, TMSG1_X, 4);
TMP_Y = _mm_alignr_epi8(TMSG2_Y, TMSG1_Y, 4);
TMSG3_X = _mm_add_epi32(TMSG3_X, TMP_X);
TMSG3_Y = _mm_add_epi32(TMSG3_Y, TMP_Y);
TMSG3_X = _mm_sha256msg2_epu32(TMSG3_X, TMSG2_X);
TMSG3_Y = _mm_sha256msg2_epu32(TMSG3_Y, TMSG2_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
// Rounds 60-63
TMP_X = _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL);
MSG_X = _mm_add_epi32(TMSG3_X, TMP_X);
MSG_Y = _mm_add_epi32(TMSG3_Y, TMP_X);
STATE1_X = _mm_sha256rnds2_epu32(STATE1_X, STATE0_X, MSG_X);
STATE1_Y = _mm_sha256rnds2_epu32(STATE1_Y, STATE0_Y, MSG_Y);
MSG_X = _mm_shuffle_epi32(MSG_X, 0x0E);
MSG_Y = _mm_shuffle_epi32(MSG_Y, 0x0E);
STATE0_X = _mm_sha256rnds2_epu32(STATE0_X, STATE1_X, MSG_X);
STATE0_Y = _mm_sha256rnds2_epu32(STATE0_Y, STATE1_Y, MSG_Y);
// Add values back to state
STATE0_X = _mm_add_epi32(STATE0_X, ABEF_SAVE_X);
STATE1_X = _mm_add_epi32(STATE1_X, CDGH_SAVE_X);
STATE0_Y = _mm_add_epi32(STATE0_Y, ABEF_SAVE_Y);
STATE1_Y = _mm_add_epi32(STATE1_Y, CDGH_SAVE_Y);
TMP_X = _mm_shuffle_epi32(STATE0_X, 0x1B); // FEBA
TMP_Y = _mm_shuffle_epi32(STATE0_Y, 0x1B); // FEBA
STATE1_X = _mm_shuffle_epi32(STATE1_X, 0xB1); // DCHG
STATE1_Y = _mm_shuffle_epi32(STATE1_Y, 0xB1); // DCHG
STATE0_X = _mm_blend_epi16(TMP_X, STATE1_X, 0xF0); // DCBA
STATE0_Y = _mm_blend_epi16(TMP_Y, STATE1_Y, 0xF0); // DCBA
STATE1_X = _mm_alignr_epi8(STATE1_X, TMP_X, 8); // ABEF
STATE1_Y = _mm_alignr_epi8(STATE1_Y, TMP_Y, 8); // ABEF
// Save state
_mm_store_si128((__m128i*) &out_X[0], STATE0_X);
_mm_store_si128((__m128i*) &out_X[4], STATE1_X);
_mm_store_si128((__m128i*) &out_Y[0], STATE0_Y);
_mm_store_si128((__m128i*) &out_Y[4], STATE1_Y);
}
#endif

View File

@@ -74,17 +74,6 @@ static const uint32_t K256[64] =
#define CHs(X, Y, Z) \
_mm_xor_si128( _mm_and_si128( _mm_xor_si128( Y, Z ), X ), Z )
/*
#define MAJs(X, Y, Z) \
_mm_or_si128( _mm_and_si128( X, Y ), \
_mm_and_si128( _mm_or_si128( X, Y ), Z ) )
*/
/*
#define MAJs(X, Y, Z) \
_mm_xor_si128( Y, _mm_and_si128( _mm_xor_si128( X, Y ), \
_mm_xor_si128( Y, Z ) ) )
*/
#define MAJs(X, Y, Z) \
_mm_xor_si128( Y, _mm_and_si128( X_xor_Y = _mm_xor_si128( X, Y ), \
Y_xor_Z ) )
@@ -105,38 +94,6 @@ static const uint32_t K256[64] =
_mm_xor_si128( _mm_xor_si128( \
mm128_ror_32(x, 17), mm128_ror_32(x, 19) ), _mm_srli_epi32(x, 10) )
/*
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i K = _mm_set1_epi32( K256[( (j)+(i) )] ); \
__m128i T1 = mm128_ror_32( E, 14 ); \
__m128i T2 = mm128_ror_32( A, 9 ); \
__m128i T3 = _mm_xor_si128( F, G ); \
__m128i T4 = _mm_or_si128( A, B ); \
__m128i T5 = _mm_and_si128( A, B ); \
K = _mm_add_epi32( K, W[i] ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T3 = _mm_and_si128( T3, E ); \
T4 = _mm_and_si128( T4, C ); \
K = _mm_add_epi32( H, K ); \
T1 = mm128_ror_32( T1, 5 ); \
T2 = mm128_ror_32( T2, 11 ); \
T3 = _mm_xor_si128( T3, G ); \
T4 = _mm_or_si128( T4, T5 ); \
T1 = _mm_xor_si128( T1, E ); \
T2 = _mm_xor_si128( T2, A ); \
T1 = mm128_ror_32( T1, 6 ); \
T2 = mm128_ror_32( T2, 2 ); \
T1 = _mm_add_epi32( T1, T3 ); \
T2 = _mm_add_epi32( T2, T4 ); \
T1 = _mm_add_epi32( T1, K ); \
H = _mm_add_epi32( T1, T2 ); \
D = _mm_add_epi32( D, T1 ); \
} while (0)
*/
#define SHA2s_4WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m128i T1, T2; \
@@ -149,8 +106,8 @@ do { \
H = _mm_add_epi32( T1, T2 ); \
} while (0)
void sha256_4way_transform( __m128i *state_out, const __m128i *data,
// LE data, no need to byte swap
void sha256_4way_transform_le( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
{
__m128i A, B, C, D, E, F, G, H, X_xor_Y, Y_xor_Z;
@@ -232,6 +189,91 @@ void sha256_4way_transform( __m128i *state_out, const __m128i *data,
state_out[7] = _mm_add_epi32( state_in[7], H );
}
// BE data, need to byte swap
void sha256_4way_transform_be( __m128i *state_out, const __m128i *data,
const __m128i *state_in )
{
__m128i A, B, C, D, E, F, G, H, X_xor_Y, Y_xor_Z;
__m128i W[16];
mm128_block_bswap_32( W, data );
mm128_block_bswap_32( W+8, data+8 );
A = state_in[0];
B = state_in[1];
C = state_in[2];
D = state_in[3];
E = state_in[4];
F = state_in[5];
G = state_in[6];
H = state_in[7];
Y_xor_Z = _mm_xor_si128( B, C );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
for ( int j = 16; j < 64; j += 16 )
{
W[ 0] = SHA2s_MEXP( 14, 9, 1, 0 );
W[ 1] = SHA2s_MEXP( 15, 10, 2, 1 );
W[ 2] = SHA2s_MEXP( 0, 11, 3, 2 );
W[ 3] = SHA2s_MEXP( 1, 12, 4, 3 );
W[ 4] = SHA2s_MEXP( 2, 13, 5, 4 );
W[ 5] = SHA2s_MEXP( 3, 14, 6, 5 );
W[ 6] = SHA2s_MEXP( 4, 15, 7, 6 );
W[ 7] = SHA2s_MEXP( 5, 0, 8, 7 );
W[ 8] = SHA2s_MEXP( 6, 1, 9, 8 );
W[ 9] = SHA2s_MEXP( 7, 2, 10, 9 );
W[10] = SHA2s_MEXP( 8, 3, 11, 10 );
W[11] = SHA2s_MEXP( 9, 4, 12, 11 );
W[12] = SHA2s_MEXP( 10, 5, 13, 12 );
W[13] = SHA2s_MEXP( 11, 6, 14, 13 );
W[14] = SHA2s_MEXP( 12, 7, 15, 14 );
W[15] = SHA2s_MEXP( 13, 8, 0, 15 );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 0, j );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 1, j );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 2, j );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 3, j );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 4, j );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 5, j );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 6, j );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 7, j );
SHA2s_4WAY_STEP( A, B, C, D, E, F, G, H, 8, j );
SHA2s_4WAY_STEP( H, A, B, C, D, E, F, G, 9, j );
SHA2s_4WAY_STEP( G, H, A, B, C, D, E, F, 10, j );
SHA2s_4WAY_STEP( F, G, H, A, B, C, D, E, 11, j );
SHA2s_4WAY_STEP( E, F, G, H, A, B, C, D, 12, j );
SHA2s_4WAY_STEP( D, E, F, G, H, A, B, C, 13, j );
SHA2s_4WAY_STEP( C, D, E, F, G, H, A, B, 14, j );
SHA2s_4WAY_STEP( B, C, D, E, F, G, H, A, 15, j );
}
state_out[0] = _mm_add_epi32( state_in[0], A );
state_out[1] = _mm_add_epi32( state_in[1], B );
state_out[2] = _mm_add_epi32( state_in[2], C );
state_out[3] = _mm_add_epi32( state_in[3], D );
state_out[4] = _mm_add_epi32( state_in[4], E );
state_out[5] = _mm_add_epi32( state_in[5], F );
state_out[6] = _mm_add_epi32( state_in[6], G );
state_out[7] = _mm_add_epi32( state_in[7], H );
}
static void
sha256_4way_round( sha256_4way_context *ctx, __m128i *in, __m128i r[8] )
{
@@ -436,61 +478,81 @@ void sha256_4way_full( void *dst, const void *data, size_t len )
// SHA-256 8 way
#if defined(__AVX512VL__)
#define CHx(X, Y, Z) \
_mm256_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx(X, Y, Z) \
_mm256_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define BSG2_0x(x) \
mm256_xor3( mm256_ror_32(x, 2), mm256_ror_32(x, 13), mm256_ror_32(x, 22) )
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 2 ), \
mm256_ror_32( x, 13 ) ), \
mm256_ror_32( x, 22 ) )
#define BSG2_1x(x) \
mm256_xor3( mm256_ror_32(x, 6), mm256_ror_32(x, 11), mm256_ror_32(x, 25) )
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 6 ), \
mm256_ror_32( x, 11 ) ), \
mm256_ror_32( x, 25 ) )
#define SSG2_0x(x) \
mm256_xor3( mm256_ror_32(x, 7), mm256_ror_32(x, 18), _mm256_srli_epi32(x, 3) )
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 7 ), \
mm256_ror_32( x, 18 ) ), \
_mm256_srli_epi32( x, 3 ) )
#define SSG2_1x(x) \
mm256_xor3( mm256_ror_32(x, 17), mm256_ror_32(x, 19), _mm256_srli_epi32(x, 10) )
_mm256_xor_si256( _mm256_xor_si256( mm256_ror_32( x, 17 ), \
mm256_ror_32( x, 19 ) ), \
_mm256_srli_epi32( x, 10 ) )
#define SHA2x_MEXP( a, b, c, d ) \
mm256_add4_32( SSG2_1x( W[a] ), W[b], SSG2_0x( W[c] ), W[d] );
// With AVX512VL ternary logic optimizations are available.
// If not optimize by forwarding the result of X^Y in MAJ to the next round
// to avoid recalculating it as Y^Z. This optimization is not applicable
// when MAJ is optimized with ternary logic.
#if defined(__AVX512VL__)
#define CHx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx(X, Y, Z) _mm256_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i) ] ), \
W[ i ] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
#else // AVX2
#define CHx(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
#define MAJx(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( _mm256_xor_si256( X, Y ), \
_mm256_xor_si256( Y, Z ) ) )
/*
// Use saved X_xor_Y from previous round, now called Y_xor_Z,
// and save new X_xor_Y, for next round.
#define MAJx(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
*/
#define BSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x, 2), mm256_ror_32(x, 13) ), mm256_ror_32( x, 22) )
#define BSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x, 6), mm256_ror_32(x, 11) ), mm256_ror_32( x, 25) )
#define SSG2_0x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x, 7), mm256_ror_32(x, 18) ), _mm256_srli_epi32(x, 3) )
#define SSG2_1x(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_32(x, 17), mm256_ror_32(x, 19) ), _mm256_srli_epi32(x, 10) )
#endif // AVX512 else AVX2
#define SHA2x_MEXP( a, b, c, d ) \
mm256_add4_32( SSG2_1x( W[a] ), W[b], SSG2_0x( W[c] ), W[d] );
#define SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m256i T0 = _mm256_add_epi32( _mm256_set1_epi32( K256[ (j)+(i) ] ), \
W[ i ] ); \
__m256i T1 = BSG2_1x( E ); \
__m256i T2 = BSG2_0x( A ); \
T0 = _mm256_add_epi32( T0, CHx( E, F, G ) ); \
T1 = _mm256_add_epi32( T1, H ); \
T2 = _mm256_add_epi32( T2, MAJx( A, B, C ) ); \
T1 = _mm256_add_epi32( T1, T0 ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
/*
#define SHA2s_8WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m256i T1, T2; \
@@ -498,16 +560,23 @@ do { \
T1 = _mm256_add_epi32( H, mm256_add4_32( BSG2_1x(E), CHx(E, F, G), \
K, W[i] ) ); \
T2 = _mm256_add_epi32( BSG2_0x(A), MAJx(A, B, C) ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi32( D, T1 ); \
H = _mm256_add_epi32( T1, T2 ); \
} while (0)
*/
void sha256_8way_transform( __m256i *state_out, const __m256i *data,
#endif // AVX512VL else AVX2
// accepts LE byte ordered data, skip the byte swap
void sha256_8way_transform_le( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i A, B, C, D, E, F, G, H;
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z;
#endif
__m256i W[16];
memcpy_256( W, data, 16 );
A = state_in[0];
@@ -519,6 +588,101 @@ void sha256_8way_transform( __m256i *state_out, const __m256i *data,
G = state_in[6];
H = state_in[7];
#if !defined(__AVX512VL__)
Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
for ( int j = 16; j < 64; j += 16 )
{
W[ 0] = SHA2x_MEXP( 14, 9, 1, 0 );
W[ 1] = SHA2x_MEXP( 15, 10, 2, 1 );
W[ 2] = SHA2x_MEXP( 0, 11, 3, 2 );
W[ 3] = SHA2x_MEXP( 1, 12, 4, 3 );
W[ 4] = SHA2x_MEXP( 2, 13, 5, 4 );
W[ 5] = SHA2x_MEXP( 3, 14, 6, 5 );
W[ 6] = SHA2x_MEXP( 4, 15, 7, 6 );
W[ 7] = SHA2x_MEXP( 5, 0, 8, 7 );
W[ 8] = SHA2x_MEXP( 6, 1, 9, 8 );
W[ 9] = SHA2x_MEXP( 7, 2, 10, 9 );
W[10] = SHA2x_MEXP( 8, 3, 11, 10 );
W[11] = SHA2x_MEXP( 9, 4, 12, 11 );
W[12] = SHA2x_MEXP( 10, 5, 13, 12 );
W[13] = SHA2x_MEXP( 11, 6, 14, 13 );
W[14] = SHA2x_MEXP( 12, 7, 15, 14 );
W[15] = SHA2x_MEXP( 13, 8, 0, 15 );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, j );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, j );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, j );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 3, j );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 4, j );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 5, j );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 6, j );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 7, j );
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 8, j );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 9, j );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 10, j );
SHA2s_8WAY_STEP( F, G, H, A, B, C, D, E, 11, j );
SHA2s_8WAY_STEP( E, F, G, H, A, B, C, D, 12, j );
SHA2s_8WAY_STEP( D, E, F, G, H, A, B, C, 13, j );
SHA2s_8WAY_STEP( C, D, E, F, G, H, A, B, 14, j );
SHA2s_8WAY_STEP( B, C, D, E, F, G, H, A, 15, j );
}
state_out[0] = _mm256_add_epi32( state_in[0], A );
state_out[1] = _mm256_add_epi32( state_in[1], B );
state_out[2] = _mm256_add_epi32( state_in[2], C );
state_out[3] = _mm256_add_epi32( state_in[3], D );
state_out[4] = _mm256_add_epi32( state_in[4], E );
state_out[5] = _mm256_add_epi32( state_in[5], F );
state_out[6] = _mm256_add_epi32( state_in[6], G );
state_out[7] = _mm256_add_epi32( state_in[7], H );
}
// Accepts BE byte ordered data, need to byte swap
void sha256_8way_transform_be( __m256i *state_out, const __m256i *data,
const __m256i *state_in )
{
__m256i A, B, C, D, E, F, G, H;
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z;
#endif
__m256i W[16];
mm256_block_bswap_32( W , data );
mm256_block_bswap_32( W+8, data+8 );
A = state_in[0];
B = state_in[1];
C = state_in[2];
D = state_in[3];
E = state_in[4];
F = state_in[5];
G = state_in[6];
H = state_in[7];
#if !defined(__AVX512VL__)
Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
@@ -587,6 +751,9 @@ static void
sha256_8way_round( sha256_8way_context *ctx, __m256i *in, __m256i r[8] )
{
register __m256i A, B, C, D, E, F, G, H;
#if !defined(__AVX512VL__)
__m256i X_xor_Y, Y_xor_Z;
#endif
__m256i W[16];
mm256_block_bswap_32( W , in );
@@ -615,6 +782,10 @@ sha256_8way_round( sha256_8way_context *ctx, __m256i *in, __m256i r[8] )
H = m256_const1_64( 0x5BE0CD195BE0CD19 );
}
#if !defined(__AVX512VL__)
Y_xor_Z = _mm256_xor_si256( B, C );
#endif
SHA2s_8WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_8WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_8WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
@@ -790,27 +961,44 @@ void sha256_8way_full( void *dst, const void *data, size_t len )
// SHA-256 16 way
#define CHx16(X, Y, Z) \
_mm512_ternarylogic_epi32( X, Y, Z, 0xca )
#define CHx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xca )
#define MAJx16(X, Y, Z) \
_mm512_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define MAJx16(X, Y, Z) _mm512_ternarylogic_epi32( X, Y, Z, 0xe8 )
#define BSG2_0x16(x) \
mm512_xor3( mm512_ror_32(x, 2), mm512_ror_32(x, 13), mm512_ror_32(x, 22) )
#define BSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 2 ), \
_mm512_ror_epi32( x, 13 ), \
_mm512_ror_epi32( x, 22 ) )
#define BSG2_1x16(x) \
mm512_xor3( mm512_ror_32(x, 6), mm512_ror_32(x, 11), mm512_ror_32(x, 25) )
#define BSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 6 ), \
_mm512_ror_epi32( x, 11 ), \
_mm512_ror_epi32( x, 25 ) )
#define SSG2_0x16(x) \
mm512_xor3( mm512_ror_32(x, 7), mm512_ror_32(x, 18), _mm512_srli_epi32(x, 3) )
#define SSG2_0x16(x) mm512_xor3( _mm512_ror_epi32( x, 7 ), \
_mm512_ror_epi32( x, 18 ), \
_mm512_srli_epi32( x, 3 ) )
#define SSG2_1x16(x) \
mm512_xor3( mm512_ror_32(x, 17), mm512_ror_32(x, 19), _mm512_srli_epi32(x, 10) )
#define SSG2_1x16(x) mm512_xor3( _mm512_ror_epi32( x, 17 ), \
_mm512_ror_epi32( x, 19 ), \
_mm512_srli_epi32( x, 10 ) )
#define SHA2x16_MEXP( a, b, c, d ) \
mm512_add4_32( SSG2_1x16( W[a] ), W[b], SSG2_0x16( W[c] ), W[d] );
#define SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, i, j ) \
do { \
__m512i T0 = _mm512_add_epi32( _mm512_set1_epi32( K256[ (j)+(i) ] ), \
W[ i ] ); \
__m512i T1 = BSG2_1x16( E ); \
__m512i T2 = BSG2_0x16( A ); \
T0 = _mm512_add_epi32( T0, CHx16( E, F, G ) ); \
T1 = _mm512_add_epi32( T1, H ); \
T2 = _mm512_add_epi32( T2, MAJx16( A, B, C ) ); \
T1 = _mm512_add_epi32( T1, T0 ); \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
/*
#define SHA2s_16WAY_STEP(A, B, C, D, E, F, G, H, i, j) \
do { \
__m512i T1, T2; \
@@ -821,14 +1009,10 @@ do { \
D = _mm512_add_epi32( D, T1 ); \
H = _mm512_add_epi32( T1, T2 ); \
} while (0)
*/
// Tranform one 16 lane by 64 byte message block and update state.
// Calling function is responsible for initializing the state, setting
// correct byte order, counting bits and padding of the final block.
// It's faster for multiple rounds of sha256 (sha256d/t/q) by eliminating
// redundant byte swapping.
//
void sha256_16way_transform( __m512i *state_out, const __m512i *data,
// accepts LE input data
void sha256_16way_transform_le( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i A, B, C, D, E, F, G, H;
@@ -909,6 +1093,89 @@ void sha256_16way_transform( __m512i *state_out, const __m512i *data,
state_out[7] = _mm512_add_epi32( state_in[7], H );
}
// Accepts BE input data, need to bswap
void sha256_16way_transform_be( __m512i *state_out, const __m512i *data,
const __m512i *state_in )
{
__m512i A, B, C, D, E, F, G, H;
__m512i W[16];
mm512_block_bswap_32( W , data );
mm512_block_bswap_32( W+8, data+8 );
A = state_in[0];
B = state_in[1];
C = state_in[2];
D = state_in[3];
E = state_in[4];
F = state_in[5];
G = state_in[6];
H = state_in[7];
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, 0 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, 0 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, 0 );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, 0 );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, 0 );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, 0 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, 0 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, 0 );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, 0 );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, 0 );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, 0 );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, 0 );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, 0 );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, 0 );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, 0 );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, 0 );
for ( int j = 16; j < 64; j += 16 )
{
W[ 0] = SHA2x16_MEXP( 14, 9, 1, 0 );
W[ 1] = SHA2x16_MEXP( 15, 10, 2, 1 );
W[ 2] = SHA2x16_MEXP( 0, 11, 3, 2 );
W[ 3] = SHA2x16_MEXP( 1, 12, 4, 3 );
W[ 4] = SHA2x16_MEXP( 2, 13, 5, 4 );
W[ 5] = SHA2x16_MEXP( 3, 14, 6, 5 );
W[ 6] = SHA2x16_MEXP( 4, 15, 7, 6 );
W[ 7] = SHA2x16_MEXP( 5, 0, 8, 7 );
W[ 8] = SHA2x16_MEXP( 6, 1, 9, 8 );
W[ 9] = SHA2x16_MEXP( 7, 2, 10, 9 );
W[10] = SHA2x16_MEXP( 8, 3, 11, 10 );
W[11] = SHA2x16_MEXP( 9, 4, 12, 11 );
W[12] = SHA2x16_MEXP( 10, 5, 13, 12 );
W[13] = SHA2x16_MEXP( 11, 6, 14, 13 );
W[14] = SHA2x16_MEXP( 12, 7, 15, 14 );
W[15] = SHA2x16_MEXP( 13, 8, 0, 15 );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 0, j );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 1, j );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 2, j );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 3, j );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 4, j );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 5, j );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 6, j );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 7, j );
SHA2s_16WAY_STEP( A, B, C, D, E, F, G, H, 8, j );
SHA2s_16WAY_STEP( H, A, B, C, D, E, F, G, 9, j );
SHA2s_16WAY_STEP( G, H, A, B, C, D, E, F, 10, j );
SHA2s_16WAY_STEP( F, G, H, A, B, C, D, E, 11, j );
SHA2s_16WAY_STEP( E, F, G, H, A, B, C, D, 12, j );
SHA2s_16WAY_STEP( D, E, F, G, H, A, B, C, 13, j );
SHA2s_16WAY_STEP( C, D, E, F, G, H, A, B, 14, j );
SHA2s_16WAY_STEP( B, C, D, E, F, G, H, A, 15, j );
}
state_out[0] = _mm512_add_epi32( state_in[0], A );
state_out[1] = _mm512_add_epi32( state_in[1], B );
state_out[2] = _mm512_add_epi32( state_in[2], C );
state_out[3] = _mm512_add_epi32( state_in[3], D );
state_out[4] = _mm512_add_epi32( state_in[4], E );
state_out[5] = _mm512_add_epi32( state_in[5], F );
state_out[6] = _mm512_add_epi32( state_in[6], G );
state_out[7] = _mm512_add_epi32( state_in[7], H );
}
// Aggresive prehashing
void sha256_16way_prehash_3rounds( __m512i *state_mid, const __m512i *W,
const __m512i *state_in )

View File

@@ -7,9 +7,9 @@
#if defined(__SHA__)
#include "sha256-hash-opt.h"
#include "sha256-hash.h"
void sha256_opt_transform( uint32_t *state_out, const void *input,
void sha256_opt_transform_le( uint32_t *state_out, const void *input,
const uint32_t *state_in )
{
__m128i STATE0, STATE1;
@@ -197,4 +197,192 @@ void sha256_opt_transform( uint32_t *state_out, const void *input,
_mm_store_si128((__m128i*) &state_out[4], STATE1);
}
void sha256_opt_transform_be( uint32_t *state_out, const void *input,
const uint32_t *state_in )
{
__m128i STATE0, STATE1;
__m128i MSG, TMP, MASK;
__m128i TMSG0, TMSG1, TMSG2, TMSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
// Load initial values
TMP = _mm_load_si128((__m128i*) &state_in[0]);
STATE1 = _mm_load_si128((__m128i*) &state_in[4]);
MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Rounds 0-3
TMSG0 = _mm_load_si128((const __m128i*) (input+0));
TMSG0 = _mm_shuffle_epi8( TMSG0, MASK );
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 4-7
TMSG1 = _mm_load_si128((const __m128i*) (input+16));
TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
TMSG2 = _mm_load_si128((const __m128i*) (input+32));
TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
TMSG3 = _mm_load_si128((const __m128i*) (input+48));
TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state
_mm_store_si128((__m128i*) &state_out[0], STATE0);
_mm_store_si128((__m128i*) &state_out[4], STATE1);
}
#endif

View File

@@ -1,18 +0,0 @@
#ifndef SHA2_HASH_OPT_H__
#define SHA2_HASH_OPT_H__ 1
#include <stddef.h>
#include "simd-utils.h"
#if defined(__SHA__)
void sha256_opt_transform( uint32_t *state_out, const void *input,
const uint32_t *state_in );
// 2 way with interleaved instructions
void sha256_ni2way_transform( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
#endif
#endif

142
algo/sha/sha256-hash.c Normal file
View File

@@ -0,0 +1,142 @@
#include "sha256-hash.h"
static const uint32_t SHA256_IV[8] =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
/*
static const uint8_t SHA256_PAD[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
*/
void sha256_ctx_init( sha256_context *ctx )
{
memcpy( ctx->state, SHA256_IV, sizeof SHA256_IV );
ctx->count = 0;
}
void sha256_update( sha256_context *ctx, const void *data, size_t len )
{
int ptr = ctx->count & 0x3f;
const uint8_t *src = data;
ctx->count += (uint64_t)len;
if ( len < 64 - ptr )
{
memcpy( ctx->buf + ptr, src, len );
return;
}
memcpy( ctx->buf + ptr, src, 64 - ptr );
sha256_transform_be( ctx->state, (uint32_t*)ctx->buf, ctx->state );
src += 64 - ptr;
len -= 64 - ptr;
while ( len >= 64 )
{
sha256_transform_be( ctx->state, (uint32_t*)src, ctx->state );
src += 64;
len -= 64;
}
memcpy( ctx->buf, src, len );
}
#if 0
void sha256_final( sha256_context *ctx, uint32_t *hash )
{
size_t r;
/* Figure out how many bytes we have buffered. */
r = ctx->count & 0x3f;
// r = ( ctx->count >> 3 ) & 0x3f;
//printf("final: count= %d, r= %d\n", ctx->count, r );
/* Pad to 56 mod 64, transforming if we finish a block en route. */
if ( r < 56 )
{
/* Pad to 56 mod 64. */
memcpy( &ctx->buf[r], SHA256_PAD, 56 - r );
}
else
{
/* Finish the current block and mix. */
memcpy( &ctx->buf[r], SHA256_PAD, 64 - r );
sha256_transform_be( ctx->state, (uint32_t*)ctx->buf, ctx->state );
// SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
/* The start of the final block is all zeroes. */
memset( &ctx->buf[0], 0, 56 );
}
/* Add the terminating bit-count. */
ctx->buf[56] = bswap_64( ctx->count << 3 );
// ctx->buf[56] = bswap_64( ctx->count );
// be64enc( &ctx->buf[56], ctx->count );
/* Mix in the final block. */
sha256_transform_be( ctx->state, (uint32_t*)ctx->buf, ctx->state );
// SHA256_Transform(ctx->state, ctx->buf, &tmp32[0], &tmp32[64]);
for ( int i = 0; i < 8; i++ ) hash[i] = bswap_32( ctx->state[i] );
// for ( int i = 0; i < 8; i++ ) be32enc( hash + 4*i, ctx->state + i );
/*
// be32enc_vect(digest, ctx->state, 4);
// be32enc_vect(uint8_t * dst, const uint32_t * src, size_t len)
// Encode vector, two words at a time.
do {
be32enc(&dst[0], src[0]);
be32enc(&dst[4], src[1]);
src += 2;
dst += 8;
} while (--len);
*/
}
#endif
void sha256_final( sha256_context *ctx, void *hash )
{
int ptr = ctx->count & 0x3f;
ctx->buf[ ptr++ ] = 0x80;
if ( ptr > 56 )
{
memset( ctx->buf + ptr, 0, 64 - ptr );
sha256_transform_be( ctx->state, (uint32_t*)ctx->buf, ctx->state );
memset( ctx->buf, 0, 56 );
}
else
memset( ctx->buf + ptr, 0, 56 - ptr );
*(uint64_t*)(&ctx->buf[56]) = bswap_64( ctx->count << 3 );
sha256_transform_be( ctx->state, (uint32_t*)ctx->buf, ctx->state );
for ( int i = 0; i < 8; i++ )
( (uint32_t*)hash )[i] = bswap_32( ctx->state[i] );
}
void sha256_full( void *hash, const void *data, size_t len )
{
sha256_context ctx;
sha256_ctx_init( &ctx );
sha256_update( &ctx, data, len );
sha256_final( &ctx, hash );
}

56
algo/sha/sha256-hash.h Normal file
View File

@@ -0,0 +1,56 @@
#ifndef SHA256_HASH_H__
#define SHA256_HASH_H__ 1
#include <stddef.h>
#include "simd-utils.h"
#include "cpuminer-config.h"
#include "sph_sha2.h"
// generic interface
typedef struct {
unsigned char buf[64]; /* first field, for alignment */
uint32_t state[8];
uint64_t count;
} sha256_context __attribute__((aligned(64)));
void sha256_full( void *hash, const void *data, size_t len );
void sha256_update( sha256_context *ctx, const void *data, size_t len );
void sha256_final( sha256_context *ctx, void *hash );
void sha256_ctx_init( sha256_context *ctx );
void sha256_transform_le( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in );
void sha256_transform_be( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in );
#if defined(__SHA__)
void sha256_opt_transform_le( uint32_t *state_out, const void *input,
const uint32_t *state_in );
void sha256_opt_transform_be( uint32_t *state_out, const void *input,
const uint32_t *state_in );
// 2 way with interleaved instructions
void sha256_ni2way_transform_le( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
void sha256_ni2way_transform_be( uint32_t *out_X, uint32_t*out_Y,
const void *msg_X, const void *msg_Y,
const uint32_t *in_X, const uint32_t *in_Y );
// Select target
// with SHA...
#define sha256_transform_le sha256_opt_transform_le
#define sha256_transform_be sha256_opt_transform_be
#else
// without SHA...
#define sha256_transform_le sph_sha256_transform_le
#define sha256_transform_be sph_sha256_transform_be
#endif
#endif

View File

@@ -14,6 +14,7 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
__m512i hash32[8] __attribute__ ((aligned (32)));
__m512i initstate[8] __attribute__ ((aligned (32)));
__m512i midstate[8] __attribute__ ((aligned (32)));
__m512i midstate2[8] __attribute__ ((aligned (32)));
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
__m512i vdata[20] __attribute__ ((aligned (32)));
uint32_t *hash32_d7 = (uint32_t*)&( hash32[7] );
@@ -23,7 +24,7 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 16;
uint32_t n = first_nonce;
__m512i *noncev = vdata + 19;
__m512i *noncev = vdata + 19;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
const __m512i last_byte = m512_const1_32( 0x80000000 );
@@ -45,27 +46,30 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
initstate[6] = m512_const1_64( 0x1F83D9AB1F83D9AB );
initstate[7] = m512_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 bytes of data
sha256_16way_transform( midstate, vdata, initstate );
// hash first 64 byte block of data
sha256_16way_transform_le( midstate, vdata, initstate );
// Do 3 rounds on the first 12 bytes of the next block
sha256_16way_prehash_3rounds( midstate2, vdata + 16, midstate );
do
{
// 1. final 16 bytes of data, with padding
memcpy_512( block, vdata + 16, 4 );
block[ 4] = last_byte;
memset_zero_512( block + 5, 10 );
memset_zero_512( block + 5, 10 );
block[15] = m512_const1_32( 80*8 ); // bit count
sha256_16way_transform( hash32, block, midstate );
sha256_16way_final_rounds( hash32, block, midstate, midstate2 );
// 2. 32 byte hash from 1.
memcpy_512( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_512( block + 9, 6 );
block[15] = m512_const1_32( 32*8 ); // bit count
sha256_16way_transform( hash32, block, initstate );
sha256_16way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm512_block_bswap_32( hash32, hash32 );
mm512_block_bswap_32( hash32, hash32 );
for ( int lane = 0; lane < 16; lane++ )
if ( unlikely( hash32_d7[ lane ] <= targ32_d7 ) )
@@ -85,7 +89,6 @@ int scanhash_sha256d_16way( struct work *work, const uint32_t max_nonce,
return 0;
}
#endif
#if defined(SHA256D_8WAY)
@@ -128,7 +131,7 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
initstate[7] = m256_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 bytes of data
sha256_8way_transform( midstate, vdata, initstate );
sha256_8way_transform_le( midstate, vdata, initstate );
do
{
@@ -137,14 +140,14 @@ int scanhash_sha256d_8way( struct work *work, const uint32_t max_nonce,
block[ 4] = last_byte;
memset_zero_256( block + 5, 10 );
block[15] = m256_const1_32( 80*8 ); // bit count
sha256_8way_transform( hash32, block, midstate );
sha256_8way_transform_le( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy_256( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_256( block + 9, 6 );
block[15] = m256_const1_32( 32*8 ); // bit count
sha256_8way_transform( hash32, block, initstate );
sha256_8way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm256_block_bswap_32( hash32, hash32 );
@@ -209,7 +212,7 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
initstate[7] = m128_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 bytes of data
sha256_4way_transform( midstate, vdata, initstate );
sha256_4way_transform_le( midstate, vdata, initstate );
do
{
@@ -218,14 +221,14 @@ int scanhash_sha256d_4way( struct work *work, const uint32_t max_nonce,
block[ 4] = last_byte;
memset_zero_128( block + 5, 10 );
block[15] = m128_const1_32( 80*8 ); // bit count
sha256_4way_transform( hash32, block, midstate );
sha256_4way_transform_le( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy_128( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
block[15] = m128_const1_32( 32*8 ); // bit count
sha256_4way_transform( hash32, block, initstate );
sha256_4way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm128_block_bswap_32( hash32, hash32 );

8
algo/sha/sha256d.c Normal file
View File

@@ -0,0 +1,8 @@
#include "sha256d.h"
void sha256d( void *hash, const void *data, int len )
{
sha256_full( hash, data, len );
sha256_full( hash, hash, 32 );
}

7
algo/sha/sha256d.h Normal file
View File

@@ -0,0 +1,7 @@
#include "algo-gate-api.h"
#include <string.h>
#include <inttypes.h>
#include "sha256-hash.h"
void sha256d( void *hash, const void *data, int len );

View File

@@ -3,14 +3,14 @@
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
static __thread sph_sha256_context sha256q_ctx __attribute__ ((aligned (64)));
static __thread sha256_context sha256q_ctx __attribute__ ((aligned (64)));
void sha256q_midstate( const void* input )
{
sph_sha256_init( &sha256q_ctx );
sph_sha256( &sha256q_ctx, input, 64 );
sha256_ctx_init( &sha256q_ctx );
sha256_update( &sha256q_ctx, input, 64 );
}
int sha256q_hash( void* output, const void* input )
@@ -19,24 +19,16 @@ int sha256q_hash( void* output, const void* input )
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
sph_sha256_context ctx __attribute__ ((aligned (64)));
sha256_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sha256q_ctx, sizeof sha256q_ctx );
sph_sha256( &ctx, input + midlen, tail );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, output );
sha256_update( &ctx, input + midlen, tail );
sha256_final( &ctx, hash );
sha256_full( hash, hash, 32 );
sha256_full( hash, hash, 32 );
sha256_full( output, hash, 32 );
return 1;
}

View File

@@ -47,7 +47,7 @@ int scanhash_sha256t_16way( struct work *work, const uint32_t max_nonce,
initstate[7] = m512_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 byte block of data
sha256_16way_transform( midstate, vdata, initstate );
sha256_16way_transform_le( midstate, vdata, initstate );
// Do 3 rounds on the first 12 bytes of the next block
sha256_16way_prehash_3rounds( midstate2, vdata + 16, midstate );
@@ -60,18 +60,17 @@ int scanhash_sha256t_16way( struct work *work, const uint32_t max_nonce,
memset_zero_512( block + 5, 10 );
block[15] = m512_const1_32( 80*8 ); // bit count
sha256_16way_final_rounds( hash32, block, midstate, midstate2 );
// sha256_16way_transform( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy_512( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_512( block + 9, 6 );
block[15] = m512_const1_32( 32*8 ); // bit count
sha256_16way_transform( hash32, block, initstate );
sha256_16way_transform_le( hash32, block, initstate );
// 3. 32 byte hash from 2.
memcpy_512( block, hash32, 8 );
sha256_16way_transform( hash32, block, initstate );
sha256_16way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm512_block_bswap_32( hash32, hash32 );
@@ -137,7 +136,7 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
initstate[7] = m256_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 bytes of data
sha256_8way_transform( midstate, vdata, initstate );
sha256_8way_transform_le( midstate, vdata, initstate );
do
{
@@ -146,18 +145,18 @@ int scanhash_sha256t_8way( struct work *work, const uint32_t max_nonce,
block[ 4] = last_byte;
memset_zero_256( block + 5, 10 );
block[15] = m256_const1_32( 80*8 ); // bit count
sha256_8way_transform( hash32, block, midstate );
sha256_8way_transform_le( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy_256( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_256( block + 9, 6 );
block[15] = m256_const1_32( 32*8 ); // bit count
sha256_8way_transform( hash32, block, initstate );
sha256_8way_transform_le( hash32, block, initstate );
// 3. 32 byte hash from 2.
memcpy_256( block, hash32, 8 );
sha256_8way_transform( hash32, block, initstate );
sha256_8way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm256_block_bswap_32( hash32, hash32 );
@@ -222,7 +221,7 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
initstate[7] = m128_const1_64( 0x5BE0CD195BE0CD19 );
// hash first 64 bytes of data
sha256_4way_transform( midstate, vdata, initstate );
sha256_4way_transform_le( midstate, vdata, initstate );
do
{
@@ -231,18 +230,18 @@ int scanhash_sha256t_4way( struct work *work, const uint32_t max_nonce,
block[ 4] = last_byte;
memset_zero_128( block + 5, 10 );
block[15] = m128_const1_32( 80*8 ); // bit count
sha256_4way_transform( hash32, block, midstate );
sha256_4way_transform_le( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy_128( block, hash32, 8 );
block[ 8] = last_byte;
memset_zero_128( block + 9, 6 );
block[15] = m128_const1_32( 32*8 ); // bit count
sha256_4way_transform( hash32, block, initstate );
sha256_4way_transform_le( hash32, block, initstate );
// 3. 32 byte hash from 2.
memcpy_128( block, hash32, 8 );
sha256_4way_transform( hash32, block, initstate );
sha256_4way_transform_le( hash32, block, initstate );
// byte swap final hash for testing
mm128_block_bswap_32( hash32, hash32 );

View File

@@ -4,120 +4,12 @@
#include <string.h>
#include <stdio.h>
//#include "algo/sha/sph_sha2.h"
#include "sha256-hash-opt.h"
#include "sha256-hash.h"
#if defined(__SHA__)
// Only used on CPUs with SHA
/*
static __thread sph_sha256_context sha256t_ctx __attribute__ ((aligned (64)));
void sha256t_midstate( const void* input )
{
sph_sha256_init( &sha256t_ctx );
sph_sha256( &sha256t_ctx, input, 64 );
}
int sha256t_hash( void* output, const void* input )
{
uint32_t _ALIGN(64) hash[16];
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
sph_sha256_context ctx __attribute__ ((aligned (64)));
memcpy( &ctx, &sha256t_ctx, sizeof sha256t_ctx );
sph_sha256( &ctx, input + midlen, tail );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, hash );
sph_sha256_init( &ctx );
sph_sha256( &ctx, hash, 32 );
sph_sha256_close( &ctx, output );
return 1;
}
*/
/*
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t block[16] __attribute__ ((aligned (64)));
uint32_t hash32[8] __attribute__ ((aligned (32)));
uint32_t initstate[8] __attribute__ ((aligned (32)));
uint32_t midstate[8] __attribute__ ((aligned (32)));
// uint32_t edata[20] __attribute__((aligned(64)));
// uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 1;
uint32_t n = first_nonce;
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
__m128i shuf_bswap32 =
_mm_set_epi64x( 0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL );
// mm128_bswap32_80( edata, pdata );
// sha256t_midstate( edata );
// initialize state
initstate[0] = 0x6A09E667;
initstate[1] = 0xBB67AE85;
initstate[2] = 0x3C6EF372;
initstate[3] = 0xA54FF53A;
initstate[4] = 0x510E527F;
initstate[5] = 0x9B05688C;
initstate[6] = 0x1F83D9AB;
initstate[7] = 0x5BE0CD19;
// hash first 64 bytes of data
sha256_opt_transform( midstate, pdata, initstate );
do
{
// 1. final 16 bytes of data, with padding
memcpy( block, pdata + 16, 16 );
block[ 4] = 0x80000000;
memset( block + 5, 0, 40 );
block[15] = 80*8; // bit count
sha256_opt_transform( hash32, block, midstate );
// 2. 32 byte hash from 1.
memcpy( block, hash32, 32 );
block[ 8] = 0x80000000;
memset( block + 9, 0, 24 );
block[15] = 32*8; // bit count
sha256_opt_transform( hash32, block, initstate );
// 3. 32 byte hash from 2.
memcpy( block, hash32, 32 );
sha256_opt_transform( hash32, block, initstate );
// byte swap final hash for testing
casti_m128i( hash32, 0 ) =
_mm_shuffle_epi8( casti_m128i( hash32, 0 ), shuf_bswap32 );
casti_m128i( hash32, 1 ) =
_mm_shuffle_epi8( casti_m128i( hash32, 1 ), shuf_bswap32 );
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
submit_solution( work, hash32, mythr );
n++;
pdata[19] = n;
} while ( (n < last_nonce) && !work_restart[thr_id].restart );
*hashes_done = n - first_nonce;
return 0;
}
*/
int scanhash_sha256t( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
@@ -149,7 +41,7 @@ int scanhash_sha256t( struct work *work, uint32_t max_nonce,
initstate[7] = 0x5BE0CD19;
// hash first 64 bytes of data
sha256_opt_transform( midstate, pdata, initstate );
sha256_opt_transform_le( midstate, pdata, initstate );
do
{
@@ -162,7 +54,7 @@ int scanhash_sha256t( struct work *work, uint32_t max_nonce,
memset( block0 + 5, 0, 40 );
memset( block1 + 5, 0, 40 );
block0[15] = block1[15] = 80*8; // bit count
sha256_ni2way_transform( hash0, hash1, block0, block1, midstate, midstate );
sha256_ni2way_transform_le( hash0, hash1, block0, block1, midstate, midstate );
// 2. 32 byte hash from 1.
memcpy( block0, hash0, 32 );
@@ -171,12 +63,12 @@ int scanhash_sha256t( struct work *work, uint32_t max_nonce,
memset( block0 + 9, 0, 24 );
memset( block1 + 9, 0, 24 );
block0[15] = block1[15] = 32*8; // bit count
sha256_ni2way_transform( hash0, hash1, block0, block1, initstate, initstate );
sha256_ni2way_transform_le( hash0, hash1, block0, block1, initstate, initstate );
// 3. 32 byte hash from 2.
memcpy( block0, hash0, 32 );
memcpy( block1, hash1, 32 );
sha256_ni2way_transform( hash0, hash1, block0, block1, initstate, initstate );
sha256_ni2way_transform_le( hash0, hash1, block0, block1, initstate, initstate );
// byte swap final hash for testing
casti_m128i( hash0, 0 ) =

View File

@@ -95,32 +95,36 @@ static const uint64_t K512[80] =
// SHA-512 8 way 64 bit
#define CH8W(X, Y, Z) \
_mm512_ternarylogic_epi64( X, Y, Z, 0xca )
#define CH8W( X, Y, Z ) _mm512_ternarylogic_epi64( X, Y, Z, 0xca )
#define MAJ8W(X, Y, Z) \
_mm512_ternarylogic_epi64( X, Y, Z, 0xe8 )
#define MAJ8W( X, Y, Z ) _mm512_ternarylogic_epi64( X, Y, Z, 0xe8 )
#define BSG8W_5_0(x) \
mm512_xor3( mm512_ror_64(x, 28), mm512_ror_64(x, 34), mm512_ror_64(x, 39) )
#define BSG8W_5_0( x ) mm512_xor3( _mm512_ror_epi64( x, 28 ), \
_mm512_ror_epi64( x, 34 ), \
_mm512_ror_epi64( x, 39 ) )
#define BSG8W_5_1(x) \
mm512_xor3( mm512_ror_64(x, 14), mm512_ror_64(x, 18), mm512_ror_64(x, 41) )
#define BSG8W_5_1( x ) mm512_xor3( _mm512_ror_epi64( x, 14 ), \
_mm512_ror_epi64( x, 18 ), \
_mm512_ror_epi64( x, 41 ) )
#define SSG8W_5_0(x) \
mm512_xor3( mm512_ror_64(x, 1), mm512_ror_64(x, 8), _mm512_srli_epi64(x, 7) )
#define SSG8W_5_0( x ) mm512_xor3( _mm512_ror_epi64( x, 1 ), \
_mm512_ror_epi64( x, 8 ), \
_mm512_srli_epi64( x, 7 ) )
#define SSG8W_5_1(x) \
mm512_xor3( mm512_ror_64(x, 19), mm512_ror_64(x, 61), _mm512_srli_epi64(x, 6) )
#define SSG8W_5_1( x ) mm512_xor3( _mm512_ror_epi64( x, 19 ), \
_mm512_ror_epi64( x, 61 ), \
_mm512_srli_epi64( x, 6 ) )
#define SHA3_8WAY_STEP(A, B, C, D, E, F, G, H, i) \
#define SHA3_8WAY_STEP( A, B, C, D, E, F, G, H, i ) \
do { \
__m512i T1, T2; \
__m512i K = _mm512_set1_epi64( K512[ i ] ); \
T1 = _mm512_add_epi64( H, mm512_add4_64( BSG8W_5_1(E), CH8W(E, F, G), \
K, W[i] ) ); \
T2 = _mm512_add_epi64( BSG8W_5_0(A), MAJ8W(A, B, C) ); \
D = _mm512_add_epi64( D, T1 ); \
__m512i T0 = _mm512_add_epi64( _mm512_set1_epi64( K512[i] ), W[ i ] ); \
__m512i T1 = BSG8W_5_1( E ); \
__m512i T2 = BSG8W_5_0( A ); \
T0 = _mm512_add_epi64( T0, CH8W( E, F, G ) ); \
T1 = _mm512_add_epi64( T1, H ); \
T2 = _mm512_add_epi64( T2, MAJ8W( A, B, C ) ); \
T1 = _mm512_add_epi64( T1, T0 ); \
D = _mm512_add_epi64( D, T1 ); \
H = _mm512_add_epi64( T1, T2 ); \
} while (0)
@@ -267,16 +271,9 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
// SHA-512 4 way 64 bit
#define CH(X, Y, Z) \
_mm256_xor_si256( _mm256_and_si256( _mm256_xor_si256( Y, Z ), X ), Z )
/*
#define MAJ(X, Y, Z) \
_mm256_or_si256( _mm256_and_si256( X, Y ), \
_mm256_and_si256( _mm256_or_si256( X, Y ), Z ) )
*/
#define MAJ(X, Y, Z) \
_mm256_xor_si256( Y, _mm256_and_si256( X_xor_Y = _mm256_xor_si256( X, Y ), \
Y_xor_Z ) )
@@ -289,15 +286,6 @@ void sha512_8way_close( sha512_8way_context *sc, void *dst )
mm256_ror_64( _mm256_xor_si256( mm256_ror_64( \
_mm256_xor_si256( mm256_ror_64( x, 23 ), x ), 4 ), x ), 14 )
/*
#define BSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 28), mm256_ror_64(x, 34) ), mm256_ror_64(x, 39) )
#define BSG5_1(x) \
_mm256_xor_si256( _mm256_xor_si256( \
mm256_ror_64(x, 14), mm256_ror_64(x, 18) ), mm256_ror_64(x, 41) )
*/
/*
#define SSG5_0(x) \
_mm256_xor_si256( _mm256_xor_si256( \
@@ -325,94 +313,20 @@ static inline __m256i ssg512_add( __m256i w0, __m256i w1 )
return _mm256_add_epi64( w0a, w1a );
}
/*
#define SSG512x2_0( w0, w1, i ) do \
{ \
__m256i X0a, X1a, X0b, X1b; \
X0a = mm256_ror_64( W[i-15], 1 ); \
X1a = mm256_ror_64( W[i-14], 1 ); \
X0b = mm256_ror_64( W[i-15], 8 ); \
X1b = mm256_ror_64( W[i-14], 8 ); \
X0a = _mm256_xor_si256( X0a, X0b ); \
X1a = _mm256_xor_si256( X1a, X1b ); \
X0b = _mm256_srli_epi64( W[i-15], 7 ); \
X1b = _mm256_srli_epi64( W[i-14], 7 ); \
w0 = _mm256_xor_si256( X0a, X0b ); \
w1 = _mm256_xor_si256( X1a, X1b ); \
} while(0)
#define SSG512x2_1( w0, w1, i ) do \
{ \
__m256i X0a, X1a, X0b, X1b; \
X0a = mm256_ror_64( W[i-2],19 ); \
X1a = mm256_ror_64( W[i-1],19 ); \
X0b = mm256_ror_64( W[i-2],61 ); \
X1b = mm256_ror_64( W[i-1],61 ); \
X0a = _mm256_xor_si256( X0a, X0b ); \
X1a = _mm256_xor_si256( X1a, X1b ); \
X0b = _mm256_srli_epi64( W[i-2], 6 ); \
X1b = _mm256_srli_epi64( W[i-1], 6 ); \
w0 = _mm256_xor_si256( X0a, X0b ); \
w1 = _mm256_xor_si256( X1a, X1b ); \
} while(0)
*/
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
#define SHA3_4WAY_STEP( A, B, C, D, E, F, G, H, i ) \
do { \
__m256i K = _mm256_set1_epi64x( K512[ i ] ); \
__m256i T1 = mm256_ror_64( E, 23 ); \
__m256i T2 = mm256_ror_64( A, 5 ); \
__m256i T3 = _mm256_xor_si256( F, G ); \
__m256i T4 = _mm256_or_si256( A, B ); \
__m256i T5 = _mm256_and_si256( A, B ); \
K = _mm256_add_epi64( K, W[i] ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T3 = _mm256_and_si256( T3, E ); \
T4 = _mm256_and_si256( T4, C ); \
K = _mm256_add_epi64( H, K ); \
T1 = mm256_ror_64( T1, 4 ); \
T2 = mm256_ror_64( T2, 6 ); \
T3 = _mm256_xor_si256( T3, G ); \
T4 = _mm256_or_si256( T4, T5 ); \
T1 = _mm256_xor_si256( T1, E ); \
T2 = _mm256_xor_si256( T2, A ); \
T1 = mm256_ror_64( T1, 14 ); \
T2 = mm256_ror_64( T2, 28 ); \
T1 = _mm256_add_epi64( T1, T3 ); \
T2 = _mm256_add_epi64( T2, T4 ); \
T1 = _mm256_add_epi64( T1, K ); \
H = _mm256_add_epi64( T1, T2 ); \
D = _mm256_add_epi64( D, T1 ); \
} while (0)
*/
/*
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i K = _mm256_add_epi64( W[i], _mm256_set1_epi64x( K512[ i ] ) ); \
__m256i T1 = BSG5_1(E); \
__m256i T2 = BSG5_0(A); \
T1 = mm256_add4_64( T1, H, CH(E, F, G), K ); \
T2 = _mm256_add_epi64( T2, MAJ(A, B, C) ); \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
*/
#define SHA3_4WAY_STEP(A, B, C, D, E, F, G, H, i) \
do { \
__m256i T1, T2; \
__m256i K = _mm256_set1_epi64x( K512[ i ] ); \
T1 = _mm256_add_epi64( H, mm256_add4_64( BSG5_1(E), CH(E, F, G), \
K, W[i] ) ); \
T2 = _mm256_add_epi64( BSG5_0(A), MAJ(A, B, C) ); \
__m256i T0 = _mm256_add_epi64( _mm256_set1_epi64x( K512[i] ), W[ i ] ); \
__m256i T1 = BSG5_1( E ); \
__m256i T2 = BSG5_0( A ); \
T0 = _mm256_add_epi64( T0, CH( E, F, G ) ); \
T1 = _mm256_add_epi64( T1, H ); \
T2 = _mm256_add_epi64( T2, MAJ( A, B, C ) ); \
T1 = _mm256_add_epi64( T1, T0 ); \
Y_xor_Z = X_xor_Y; \
D = _mm256_add_epi64( D, T1 ); \
D = _mm256_add_epi64( D, T1 ); \
H = _mm256_add_epi64( T1, T2 ); \
} while (0)
static void
sha512_4way_round( sha512_4way_context *ctx, __m256i *in, __m256i r[8] )
{

View File

@@ -71,198 +71,6 @@ static const sph_u32 H256[8] = {
* of the compression function.
*/
#if defined(__SHA__)
#include "simd-utils.h"
static void sha2_round( const uint8_t input[], uint32_t state[8] )
{
__m128i STATE0, STATE1;
__m128i MSG, TMP, MASK;
__m128i TMSG0, TMSG1, TMSG2, TMSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
// Load initial values
TMP = _mm_load_si128((__m128i*) &state[0]);
STATE1 = _mm_load_si128((__m128i*) &state[4]);
MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Rounds 0-3
MSG = _mm_load_si128((const __m128i*) (input+0));
TMSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 4-7
TMSG1 = _mm_load_si128((const __m128i*) (input+16));
TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
TMSG2 = _mm_load_si128((const __m128i*) (input+32));
TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
TMSG3 = _mm_load_si128((const __m128i*) (input+48));
TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x1429296706CA6351ULL, 0xD5A79147C6E00BF3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state
_mm_store_si128((__m128i*) &state[0], STATE0);
_mm_store_si128((__m128i*) &state[4], STATE1);
}
#else // no SHA
/*
static const sph_u32 K[64] = {
@@ -875,8 +683,24 @@ sha2_round(const unsigned char *data, sph_u32 r[8])
#undef SHA2_IN
}
#endif // SHA else
void sph_sha256_transform_le( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in )
{
memcpy( state_out, state_in, 32 );
#define SHA2_IN(x) (data[x])
SHA2_ROUND_BODY( SHA2_IN, state_out );
#undef SHA2_IN
}
void sph_sha256_transform_be( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in )
{
memcpy( state_out, state_in, 32 );
#define SHA2_IN(x) sph_dec32be_aligned( data+(x) )
SHA2_ROUND_BODY( SHA2_IN, state_out );
#undef SHA2_IN
}
/* see sph_sha2.h */
void

View File

@@ -207,6 +207,13 @@ void sph_sha256_comp(const sph_u32 msg[16], sph_u32 val[8]);
void sph_sha256_full( void *dst, const void *data, size_t len );
// These shouldn't be called directly, use sha256-hash.h generic functions
// sha256_transform_le & sha256_transform_be instead.
void sph_sha256_transform_le( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in );
void sph_sha256_transform_be( uint32_t *state_out, const uint32_t *data,
const uint32_t *state_in );
#if SPH_64

View File

@@ -20,8 +20,8 @@ static const uint32_t IV512[] =
#define mm256_ror2x256hi_1x32( a, b ) \
_mm256_blend_epi32( mm256_ror128_32( a ), \
mm256_ror128_32( b ), 0x88 )
_mm256_blend_epi32( mm256_shuflr128_32( a ), \
mm256_shuflr128_32( b ), 0x88 )
#if defined(__VAES__)
@@ -78,7 +78,7 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
{
// round 1, 5, 9
k00 = _mm256_xor_si256( k13, mm256_ror128_32(
k00 = _mm256_xor_si256( k13, mm256_shuflr128_32(
mm256_aesenc_2x128( k00, zero ) ) );
if ( r == 0 )
@@ -88,7 +88,7 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
k01 = _mm256_xor_si256( k00,
mm256_ror128_32( mm256_aesenc_2x128( k01, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k01, zero ) ) );
if ( r == 1 )
k01 = _mm256_xor_si256( k01, _mm256_set_epi32(
@@ -97,25 +97,25 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( k01,
mm256_ror128_32( mm256_aesenc_2x128( k02, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k02, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( k02,
mm256_ror128_32( mm256_aesenc_2x128( k03, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k03, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p3 = _mm256_xor_si256( p3, x );
k10 = _mm256_xor_si256( k03,
mm256_ror128_32( mm256_aesenc_2x128( k10, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k10, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
k11 = _mm256_xor_si256( k10,
mm256_ror128_32( mm256_aesenc_2x128( k11, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k11, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = _mm256_xor_si256( k11,
mm256_ror128_32( mm256_aesenc_2x128( k12, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k12, zero ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( k12,
mm256_ror128_32( mm256_aesenc_2x128( k13, zero ) ) );
mm256_shuflr128_32( mm256_aesenc_2x128( k13, zero ) ) );
if ( r == 2 )
k13 = _mm256_xor_si256( k13, _mm256_set_epi32(
@@ -151,31 +151,31 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
// round 3, 7, 11
k00 = _mm256_xor_si256( mm256_ror128_32(
k00 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k00, zero ) ), k13 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k00 ), zero );
k01 = _mm256_xor_si256( mm256_ror128_32(
k01 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k01, zero ) ), k00 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( mm256_ror128_32(
k02 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k02, zero ) ), k01 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( mm256_ror128_32(
k03 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k03, zero ) ), k02 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p1 = _mm256_xor_si256( p1, x );
k10 = _mm256_xor_si256( mm256_ror128_32(
k10 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k10, zero ) ), k03 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k10 ), zero );
k11 = _mm256_xor_si256( mm256_ror128_32(
k11 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k11, zero ) ), k10 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = _mm256_xor_si256( mm256_ror128_32(
k12 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k12, zero ) ), k11 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( mm256_ror128_32(
k13 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k13, zero ) ), k12 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );
@@ -209,35 +209,35 @@ c512_2way( shavite512_2way_context *ctx, const void *msg )
// round 13
k00 = _mm256_xor_si256( mm256_ror128_32(
k00 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k00, zero ) ), k13 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p0, k00 ), zero );
k01 = _mm256_xor_si256( mm256_ror128_32(
k01 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k01, zero ) ), k00 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k01 ), zero );
k02 = _mm256_xor_si256( mm256_ror128_32(
k02 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k02, zero ) ), k01 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k02 ), zero );
k03 = _mm256_xor_si256( mm256_ror128_32(
k03 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k03, zero ) ), k02 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k03 ), zero );
p3 = _mm256_xor_si256( p3, x );
k10 = _mm256_xor_si256( mm256_ror128_32(
k10 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k10, zero ) ), k03 );
x = mm256_aesenc_2x128( _mm256_xor_si256( p2, k10 ), zero );
k11 = _mm256_xor_si256( mm256_ror128_32(
k11 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k11, zero ) ), k10 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k11 ), zero );
k12 = mm256_ror128_32( mm256_aesenc_2x128( k12, zero ) );
k12 = mm256_shuflr128_32( mm256_aesenc_2x128( k12, zero ) );
k12 = _mm256_xor_si256( k12, _mm256_xor_si256( k11, _mm256_set_epi32(
~ctx->count2, ctx->count3, ctx->count0, ctx->count1,
~ctx->count2, ctx->count3, ctx->count0, ctx->count1 ) ) );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k12 ), zero );
k13 = _mm256_xor_si256( mm256_ror128_32(
k13 = _mm256_xor_si256( mm256_shuflr128_32(
mm256_aesenc_2x128( k13, zero ) ), k12 );
x = mm256_aesenc_2x128( _mm256_xor_si256( x, k13 ), zero );

View File

@@ -12,8 +12,8 @@ static const uint32_t IV512[] =
};
#define mm512_ror2x512hi_1x32( a, b ) \
_mm512_mask_blend_epi32( 0x8888, mm512_ror128_32( a ), \
mm512_ror128_32( b ) )
_mm512_mask_blend_epi32( 0x8888, mm512_shuflr128_32( a ), \
mm512_shuflr128_32( b ) )
static void
c512_4way( shavite512_4way_context *ctx, const void *msg )
@@ -60,7 +60,7 @@ c512_4way( shavite512_4way_context *ctx, const void *msg )
{
// round 1, 5, 9
K0 = _mm512_xor_si512( K7, mm512_ror128_32(
K0 = _mm512_xor_si512( K7, mm512_shuflr128_32(
_mm512_aesenc_epi128( K0, m512_zero ) ) );
if ( r == 0 )
@@ -69,33 +69,33 @@ c512_4way( shavite512_4way_context *ctx, const void *msg )
X = _mm512_aesenc_epi128( _mm512_xor_si512( P0, K0 ), m512_zero );
K1 = _mm512_xor_si512( K0,
mm512_ror128_32( _mm512_aesenc_epi128( K1, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K1, m512_zero ) ) );
if ( r == 1 )
K1 = _mm512_xor_si512( K1, mm512_ror128_32(
K1 = _mm512_xor_si512( K1, mm512_shuflr128_32(
_mm512_mask_xor_epi32( count, 0x1111, count, m512_neg1 ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K1 ), m512_zero );
K2 = _mm512_xor_si512( K1,
mm512_ror128_32( _mm512_aesenc_epi128( K2, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K2, m512_zero ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K2 ), m512_zero );
K3 = _mm512_xor_si512( K2,
mm512_ror128_32( _mm512_aesenc_epi128( K3, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K3, m512_zero ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K3 ), m512_zero );
P3 = _mm512_xor_si512( P3, X );
K4 = _mm512_xor_si512( K3,
mm512_ror128_32( _mm512_aesenc_epi128( K4, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K4, m512_zero ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( P2, K4 ), m512_zero );
K5 = _mm512_xor_si512( K4,
mm512_ror128_32( _mm512_aesenc_epi128( K5, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K5, m512_zero ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K5 ), m512_zero );
K6 = _mm512_xor_si512( K5,
mm512_ror128_32( _mm512_aesenc_epi128( K6, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K6, m512_zero ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K6 ), m512_zero );
K7 = _mm512_xor_si512( K6,
mm512_ror128_32( _mm512_aesenc_epi128( K7, m512_zero ) ) );
mm512_shuflr128_32( _mm512_aesenc_epi128( K7, m512_zero ) ) );
if ( r == 2 )
K7 = _mm512_xor_si512( K7, mm512_swap128_64(
@@ -130,31 +130,31 @@ c512_4way( shavite512_4way_context *ctx, const void *msg )
// round 3, 7, 11
K0 = _mm512_xor_si512( mm512_ror128_32(
K0 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K0, m512_zero ) ), K7 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( P2, K0 ), m512_zero );
K1 = _mm512_xor_si512( mm512_ror128_32(
K1 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K1, m512_zero ) ), K0 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K1 ), m512_zero );
K2 = _mm512_xor_si512( mm512_ror128_32(
K2 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K2, m512_zero ) ), K1 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K2 ), m512_zero );
K3 = _mm512_xor_si512( mm512_ror128_32(
K3 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K3, m512_zero ) ), K2 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K3 ), m512_zero );
P1 = _mm512_xor_si512( P1, X );
K4 = _mm512_xor_si512( mm512_ror128_32(
K4 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K4, m512_zero ) ), K3 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( P0, K4 ), m512_zero );
K5 = _mm512_xor_si512( mm512_ror128_32(
K5 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K5, m512_zero ) ), K4 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K5 ), m512_zero );
K6 = _mm512_xor_si512( mm512_ror128_32(
K6 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K6, m512_zero ) ), K5 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K6 ), m512_zero );
K7 = _mm512_xor_si512( mm512_ror128_32(
K7 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K7, m512_zero ) ), K6 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K7 ), m512_zero );
@@ -187,34 +187,34 @@ c512_4way( shavite512_4way_context *ctx, const void *msg )
// round 13
K0 = _mm512_xor_si512( mm512_ror128_32(
K0 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K0, m512_zero ) ), K7 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( P0, K0 ), m512_zero );
K1 = _mm512_xor_si512( mm512_ror128_32(
K1 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K1, m512_zero ) ), K0 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K1 ), m512_zero );
K2 = _mm512_xor_si512( mm512_ror128_32(
K2 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K2, m512_zero ) ), K1 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K2 ), m512_zero );
K3 = _mm512_xor_si512( mm512_ror128_32(
K3 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K3, m512_zero ) ), K2 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K3 ), m512_zero );
P3 = _mm512_xor_si512( P3, X );
K4 = _mm512_xor_si512( mm512_ror128_32(
K4 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K4, m512_zero ) ), K3 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( P2, K4 ), m512_zero );
K5 = _mm512_xor_si512( mm512_ror128_32(
K5 = _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K5, m512_zero ) ), K4 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K5 ), m512_zero );
K6 = mm512_ror128_32( _mm512_aesenc_epi128( K6, m512_zero ) );
K6 = mm512_shuflr128_32( _mm512_aesenc_epi128( K6, m512_zero ) );
K6 = _mm512_xor_si512( K6, _mm512_xor_si512( K5, _mm512_set4_epi32(
~ctx->count2, ctx->count3, ctx->count0, ctx->count1 ) ) );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K6 ), m512_zero );
K7= _mm512_xor_si512( mm512_ror128_32(
K7= _mm512_xor_si512( mm512_shuflr128_32(
_mm512_aesenc_epi128( K7, m512_zero ) ), K6 );
X = _mm512_aesenc_epi128( _mm512_xor_si512( X, K7 ), m512_zero );

View File

@@ -74,15 +74,15 @@ static const sph_u32 IV512[] = {
#endif
/*
#if defined(__AVX2__)
// 2 way version of above
// a[7:0] = { b[4], a[7], a[6], a[5], b[0], a[3], a[2], a[1] }
#define mm256_ror2x256hi_1x32( a, b ) \
_mm256_blend_epi32( mm256_ror256_1x32( a ), \
mm256_rol256_3x32( b ), 0x88 )
#endif
*/
static void
c512( sph_shavite_big_context *sc, const void *msg )
@@ -135,7 +135,7 @@ c512( sph_shavite_big_context *sc, const void *msg )
for ( r = 0; r < 3; r ++ )
{
// round 1, 5, 9
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
k00 = mm128_shuflr_32( _mm_aesenc_si128( k00, zero ) );
k00 = _mm_xor_si128( k00, k13 );
if ( r == 0 )
@@ -144,7 +144,7 @@ c512( sph_shavite_big_context *sc, const void *msg )
x = _mm_xor_si128( p0, k00 );
x = _mm_aesenc_si128( x, zero );
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
k01 = mm128_shuflr_32( _mm_aesenc_si128( k01, zero ) );
k01 = _mm_xor_si128( k01, k00 );
if ( r == 1 )
@@ -153,31 +153,31 @@ c512( sph_shavite_big_context *sc, const void *msg )
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, zero );
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
k02 = mm128_shuflr_32( _mm_aesenc_si128( k02, zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, zero );
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
k03 = mm128_shuflr_32( _mm_aesenc_si128( k03, zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, zero );
p3 = _mm_xor_si128( p3, x );
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
k10 = mm128_shuflr_32( _mm_aesenc_si128( k10, zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p2, k10 );
x = _mm_aesenc_si128( x, zero );
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
k11 = mm128_shuflr_32( _mm_aesenc_si128( k11, zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, zero );
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
k12 = mm128_shuflr_32( _mm_aesenc_si128( k12, zero ) );
k12 = _mm_xor_si128( k12, k11 );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, zero );
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
k13 = mm128_shuflr_32( _mm_aesenc_si128( k13, zero ) );
k13 = _mm_xor_si128( k13, k12 );
if ( r == 2 )
@@ -222,38 +222,38 @@ c512( sph_shavite_big_context *sc, const void *msg )
// round 3, 7, 11
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
k00 = mm128_shuflr_32( _mm_aesenc_si128( k00, zero ) );
k00 = _mm_xor_si128( k00, k13 );
x = _mm_xor_si128( p2, k00 );
x = _mm_aesenc_si128( x, zero );
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
k01 = mm128_shuflr_32( _mm_aesenc_si128( k01, zero ) );
k01 = _mm_xor_si128( k01, k00 );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, zero );
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
k02 = mm128_shuflr_32( _mm_aesenc_si128( k02, zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, zero );
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
k03 = mm128_shuflr_32( _mm_aesenc_si128( k03, zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, zero );
p1 = _mm_xor_si128( p1, x );
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
k10 = mm128_shuflr_32( _mm_aesenc_si128( k10, zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p0, k10 );
x = _mm_aesenc_si128( x, zero );
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
k11 = mm128_shuflr_32( _mm_aesenc_si128( k11, zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, zero );
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
k12 = mm128_shuflr_32( _mm_aesenc_si128( k12, zero ) );
k12 = _mm_xor_si128( k12, k11 );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, zero );
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
k13 = mm128_shuflr_32( _mm_aesenc_si128( k13, zero ) );
k13 = _mm_xor_si128( k13, k12 );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, zero );
@@ -295,39 +295,39 @@ c512( sph_shavite_big_context *sc, const void *msg )
// round 13
k00 = mm128_ror_1x32( _mm_aesenc_si128( k00, zero ) );
k00 = mm128_shuflr_32( _mm_aesenc_si128( k00, zero ) );
k00 = _mm_xor_si128( k00, k13 );
x = _mm_xor_si128( p0, k00 );
x = _mm_aesenc_si128( x, zero );
k01 = mm128_ror_1x32( _mm_aesenc_si128( k01, zero ) );
k01 = mm128_shuflr_32( _mm_aesenc_si128( k01, zero ) );
k01 = _mm_xor_si128( k01, k00 );
x = _mm_xor_si128( x, k01 );
x = _mm_aesenc_si128( x, zero );
k02 = mm128_ror_1x32( _mm_aesenc_si128( k02, zero ) );
k02 = mm128_shuflr_32( _mm_aesenc_si128( k02, zero ) );
k02 = _mm_xor_si128( k02, k01 );
x = _mm_xor_si128( x, k02 );
x = _mm_aesenc_si128( x, zero );
k03 = mm128_ror_1x32( _mm_aesenc_si128( k03, zero ) );
k03 = mm128_shuflr_32( _mm_aesenc_si128( k03, zero ) );
k03 = _mm_xor_si128( k03, k02 );
x = _mm_xor_si128( x, k03 );
x = _mm_aesenc_si128( x, zero );
p3 = _mm_xor_si128( p3, x );
k10 = mm128_ror_1x32( _mm_aesenc_si128( k10, zero ) );
k10 = mm128_shuflr_32( _mm_aesenc_si128( k10, zero ) );
k10 = _mm_xor_si128( k10, k03 );
x = _mm_xor_si128( p2, k10 );
x = _mm_aesenc_si128( x, zero );
k11 = mm128_ror_1x32( _mm_aesenc_si128( k11, zero ) );
k11 = mm128_shuflr_32( _mm_aesenc_si128( k11, zero ) );
k11 = _mm_xor_si128( k11, k10 );
x = _mm_xor_si128( x, k11 );
x = _mm_aesenc_si128( x, zero );
k12 = mm128_ror_1x32( _mm_aesenc_si128( k12, zero ) );
k12 = mm128_shuflr_32( _mm_aesenc_si128( k12, zero ) );
k12 = _mm_xor_si128( k12, _mm_xor_si128( k11, _mm_set_epi32(
~sc->count2, sc->count3, sc->count0, sc->count1 ) ) );
x = _mm_xor_si128( x, k12 );
x = _mm_aesenc_si128( x, zero );
k13 = mm128_ror_1x32( _mm_aesenc_si128( k13, zero ) );
k13 = mm128_shuflr_32( _mm_aesenc_si128( k13, zero ) );
k13 = _mm_xor_si128( k13, k12 );
x = _mm_xor_si128( x, k13 );
x = _mm_aesenc_si128( x, zero );

View File

@@ -3,7 +3,7 @@
#include <stdint.h>
#include "skein-hash-4way.h"
#include "algo/sha/sha-hash-4way.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#if defined (SKEIN_8WAY)
@@ -87,7 +87,6 @@ void skeinhash_4way( void *state, const void *input )
uint32_t hash1[16] __attribute__ ((aligned (64)));
uint32_t hash2[16] __attribute__ ((aligned (64)));
uint32_t hash3[16] __attribute__ ((aligned (64)));
sph_sha256_context ctx_sha256;
#else
uint32_t vhash32[16*4] __attribute__ ((aligned (64)));
sha256_4way_context ctx_sha256;
@@ -98,18 +97,12 @@ void skeinhash_4way( void *state, const void *input )
#if defined(__SHA__)
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash64, 512 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hash0, 64 );
sph_sha256_close( &ctx_sha256, hash0 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hash1, 64 );
sph_sha256_close( &ctx_sha256, hash1 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hash2, 64 );
sph_sha256_close( &ctx_sha256, hash2 );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hash3, 64 );
sph_sha256_close( &ctx_sha256, hash3 );
sha256_full( hash0, hash0, 64 );
sha256_full( hash1, hash1, 64 );
sha256_full( hash2, hash2, 64 );
sha256_full( hash3, hash3, 64 );
intrlv_4x32( state, hash0, hash1, hash2, hash3, 256 );
#else

View File

@@ -5,21 +5,18 @@
#include <string.h>
#include <stdint.h>
#include "sph_skein.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
void skeinhash(void *state, const void *input)
{
uint32_t hash[16] __attribute__ ((aligned (64)));
sph_skein512_context ctx_skein;
sph_sha256_context ctx_sha256;
sph_skein512_init( &ctx_skein );
sph_skein512( &ctx_skein, input, 80 );
sph_skein512_close( &ctx_skein, hash );
sph_sha256_init( &ctx_sha256 );
sph_sha256( &ctx_sha256, hash, 64 );
sph_sha256_close( &ctx_sha256, hash );
sha256_full( hash, hash, 64 );
memcpy(state, hash, 32);
}
@@ -27,8 +24,8 @@ void skeinhash(void *state, const void *input)
int scanhash_skein( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t hash64[8] __attribute__ ((aligned (64)));
uint32_t endiandata[20] __attribute__ ((aligned (64)));
const uint32_t Htarg = ptarget[7];
@@ -36,7 +33,7 @@ int scanhash_skein( struct work *work, uint32_t max_nonce,
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
swab32_array( endiandata, pdata, 20 );
swab32_array( endiandata, pdata, 20 );
do {
be32enc(&endiandata[19], n);

View File

@@ -176,12 +176,6 @@ static void rotate_indexes( uint32_t *p )
*/
}
#endif
static inline uint32_t rotl32( uint32_t a, size_t r )
{
return ( a << r ) | ( a >> (32-r) );
}
// Vectorized and targetted version of fnv1a
#if defined (__AVX2__)
@@ -232,7 +226,7 @@ for ( size_t i = 0; i < VH_N_SUBSET / sizeof(uint32_t); i++ ) \
for ( size_t i = 0; i < VH_N_SUBSET / sizeof(uint32_t); i++ ) \
{ \
const uint32_t *blob_off = blob + \
( ( fnv1a( rotl32( subset[i], r ), accumulator ) % mdiv ) \
( ( fnv1a( rol32( subset[i], r ), accumulator ) % mdiv ) \
* ( VH_BYTE_ALIGNMENT / sizeof(uint32_t) ) ); \
UPDATE_ACCUMULATOR; \
MULXOR; \

View File

@@ -1,5 +1,5 @@
#include "algo-gate-api.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#include "Verthash.h"
#include "tiny_sha3/sha3-4way.h"
@@ -140,7 +140,7 @@ bool register_verthash_algo( algo_gate_t* gate )
uint8_t vhDataFileHash[32] = { 0 };
applog( LOG_NOTICE, "Verifying Verthash data" );
sph_sha256_full( vhDataFileHash, verthashInfo.data,
sha256_full( vhDataFileHash, verthashInfo.data,
verthashInfo.dataSize );
if ( memcmp( vhDataFileHash, verthashDatFileHash_bytes,
sizeof(verthashDatFileHash_bytes) ) == 0 )

View File

@@ -82,7 +82,7 @@ int scanhash_whirlpool( struct work* work, uint32_t max_nonce,
be32enc(&endiandata[19], n );
whirlpool_hash(vhash, endiandata);
if (vhash[7] <= Htarg && fulltest(vhash, ptarget))
if (vhash[7] <= Htarg && fulltest(vhash, ptarget) & ! opt_benchmark )
submit_solution( work, vhash, mythr );
} while ( n < max_nonce && !work_restart[thr_id].restart);

View File

@@ -52,10 +52,10 @@ void x16r_8way_prehash( void *vdata, void *pdata )
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
intrlv_4x128( vdata2, edata, edata, edata, edata, 640 );
cube_4way_init( &x16r_ctx.cube, 512, 16, 32 );
cube_4way_update( &x16r_ctx.cube, vdata2, 64 );
rintrlv_4x128_8x64( vdata, vdata2, vdata2, 640 );
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
@@ -207,15 +207,15 @@ int x16r_8way_hash_generic( void* output, const void* input, int thrid )
case LUFFA:
if ( i == 0 )
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
@@ -230,56 +230,24 @@ int x16r_8way_hash_generic( void* output, const void* input, int thrid )
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
cube_4way_update_close( &ctx.cube, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)in3 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4,
(const byte*)in4 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5,
(const byte*)in5 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6,
(const byte*)in6 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7,
(const byte*)in7 + 64, 16 );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
cube_4way_update_close( &ctx.cube, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash4,
(const byte*)in4, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash5,
(const byte*)in5, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash6,
(const byte*)in6, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash7,
(const byte*)in7, size );
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
cube_4way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
cube_4way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
break;
case SHAVITE:
@@ -556,9 +524,10 @@ void x16r_4way_prehash( void *vdata, void *pdata )
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
intrlv_2x128( vdata2, edata, edata, 640 );
cube_2way_init( &x16r_ctx.cube, 512, 16, 32 );
cube_2way_update( &x16r_ctx.cube, vdata2, 64 );
rintrlv_2x128_4x64( vdata, vdata2, vdata2, 640 );
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
@@ -680,13 +649,13 @@ int x16r_4way_hash_generic( void* output, const void* input, int thrid )
case LUFFA:
if ( i == 0 )
{
intrlv_2x128( vhash, hash0, hash1, 640 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, hash2, hash3, 640 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
intrlv_2x128( vhash, hash0, hash1, 640 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, hash2, hash3, 640 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
}
else
{
@@ -701,32 +670,24 @@ int x16r_4way_hash_generic( void* output, const void* input, int thrid )
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
intrlv_2x128( vhash, in0, in1, size<<3 );
cube_2way_update_close( &ctx.cube, vhash,
vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3 + 64, 16 );
intrlv_2x128( vhash, in2, in3, size<<3 );
cube_2way_update_close( &ctx.cube, vhash,
vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3, size );
intrlv_2x128( vhash, in0, in1, size<<3 );
cube_2way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
cube_2way_full( &ctx.cube, vhash, 512, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
}
break;
case SHAVITE:

View File

@@ -1,4 +1,5 @@
#include "x16r-gate.h"
#include "algo/sha/sha256d.h"
__thread char x16r_hash_order[ X16R_HASH_FUNC_COUNT + 1 ] = { 0 };

View File

@@ -37,6 +37,7 @@
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
@@ -115,7 +116,7 @@ union _x16r_8way_context_overlay
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cubehashParam cube;
cube_4way_context cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
hashState_fugue fugue;
@@ -164,8 +165,8 @@ union _x16r_4way_context_overlay
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
cube_2way_context cube;
hashState_luffa luffa1;
cubehashParam cube;
simd_2way_context simd;
hamsi512_4way_context hamsi;
hashState_fugue fugue;

View File

@@ -13,7 +13,7 @@
#include "algo/gost/sph_gost.h"
#include "algo/lyra2/lyra2.h"
#if defined(__SHA__)
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#endif
#if defined (X21S_8WAY)
@@ -208,9 +208,7 @@ union _x21s_4way_context_overlay
haval256_5_4way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
#if defined(__SHA__)
sph_sha256_context sha256;
#else
#if !defined(__SHA__)
sha256_4way_context sha256;
#endif
} __attribute__ ((aligned (64)));
@@ -275,18 +273,10 @@ int x21s_4way_hash( void* output, const void* input, int thrid )
#if defined(__SHA__)
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash0, 64 );
sph_sha256_close( &ctx.sha256, output );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash1, 64 );
sph_sha256_close( &ctx.sha256, output+32 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash2, 64 );
sph_sha256_close( &ctx.sha256, output+64 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash3, 64 );
sph_sha256_close( &ctx.sha256, output+96 );
sha256_full( output, hash0, 64 );
sha256_full( output+32, hash1, 64 );
sha256_full( output+64, hash2, 64 );
sha256_full( output+96, hash3, 64 );
#else

View File

@@ -8,7 +8,7 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/gost/sph_gost.h"
@@ -23,7 +23,7 @@ union _x21s_context_overlay
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sph_sha256_context sha256;
sha256_context sha256;
};
typedef union _x21s_context_overlay x21s_context_overlay;
@@ -50,9 +50,7 @@ int x21s_hash( void* output, const void* input, int thrid )
sph_gost512 ( &ctx.gost, (const void*) hash, 64 );
sph_gost512_close( &ctx.gost, (void*) hash );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash, 64 );
sph_sha256_close( &ctx.sha256, hash );
sha256_full( hash, hash, 64 );
memcpy( output, hash, 32 );

View File

@@ -37,7 +37,8 @@ union _x17_8way_context_overlay
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cube_4way_context cube;
// cube_4way_context cube;
cube_4way_2buf_context cube;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
@@ -119,8 +120,10 @@ int x17_8way_hash( void *state, const void *input, int thr_id )
luffa512_4way_full( &ctx.luffa, vhashA, vhashA, 64 );
luffa512_4way_full( &ctx.luffa, vhashB, vhashB, 64 );
cube_4way_full( &ctx.cube, vhashA, 512, vhashA, 64 );
cube_4way_full( &ctx.cube, vhashB, 512, vhashB, 64 );
cube_4way_2buf_full( &ctx.cube, vhashA, vhashB, 512, vhashA, vhashB, 64 );
// cube_4way_full( &ctx.cube, vhashA, 512, vhashA, 64 );
// cube_4way_full( &ctx.cube, vhashB, 512, vhashB, 64 );
#if defined(__VAES__)

View File

@@ -28,7 +28,7 @@
#include "algo/echo/echo-hash-4way.h"
#endif
#if defined(__SHA__)
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#endif
#if defined(X22I_8WAY)
@@ -51,9 +51,7 @@ union _x22i_8way_ctx_overlay
haval256_5_8way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
#if defined(X22I_8WAY_SHA)
sph_sha256_context sha256;
#else
#if !defined(X22I_8WAY_SHA)
sha256_8way_context sha256;
#endif
#if defined(__VAES__)
@@ -391,30 +389,14 @@ int x22i_8way_hash( void *output, const void *input, int thrid )
#if defined(X22I_8WAY_SHA)
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash0, 64 );
sph_sha256_close( &ctx.sha256, output );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash1, 64 );
sph_sha256_close( &ctx.sha256, output+32 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash2, 64 );
sph_sha256_close( &ctx.sha256, output+64 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash3, 64 );
sph_sha256_close( &ctx.sha256, output+96 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash4, 64 );
sph_sha256_close( &ctx.sha256, output+128 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash5, 64 );
sph_sha256_close( &ctx.sha256, output+160 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash6, 64 );
sph_sha256_close( &ctx.sha256, output+192 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash7, 64 );
sph_sha256_close( &ctx.sha256, output+224 );
sha256_full( hash0, hash0, 64 );
sha256_full( hash1, hash1, 64 );
sha256_full( hash2, hash2, 64 );
sha256_full( hash3, hash3, 64 );
sha256_full( hash4, hash4, 64 );
sha256_full( hash5, hash5, 64 );
sha256_full( hash6, hash6, 64 );
sha256_full( hash7, hash7, 64 );
#else
@@ -551,9 +533,7 @@ union _x22i_4way_ctx_overlay
haval256_5_4way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
#if defined(X22I_4WAY_SHA)
sph_sha256_context sha256;
#else
#if !defined(X22I_4WAY_SHA)
sha256_4way_context sha256;
#endif
};
@@ -757,18 +737,10 @@ int x22i_4way_hash( void *output, const void *input, int thrid )
#if defined(X22I_4WAY_SHA)
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash0, 64 );
sph_sha256_close( &ctx.sha256, output );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash1, 64 );
sph_sha256_close( &ctx.sha256, output+32 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash2, 64 );
sph_sha256_close( &ctx.sha256, output+64 );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash3, 64 );
sph_sha256_close( &ctx.sha256, output+96 );
sha256_full( hash0, hash0, 64 );
sha256_full( hash1, hash1, 64 );
sha256_full( hash2, hash2, 64 );
sha256_full( hash3, hash3, 64 );
#else

View File

@@ -24,6 +24,7 @@
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
@@ -57,7 +58,6 @@ union _x22i_context_overlay
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sph_sha256_context sha256;
};
typedef union _x22i_context_overlay x22i_context_overlay;
@@ -172,9 +172,7 @@ int x22i_hash( void *output, const void *input, int thrid )
sph_gost512 (&ctx.gost, (const void*) hash, 64);
sph_gost512_close(&ctx.gost, (void*) hash);
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash, 64 );
sph_sha256_close( &ctx.sha256, hash );
sha256_full( hash, hash, 64 );
memcpy(output, hash, 32);

View File

@@ -33,7 +33,7 @@
#include "algo/echo/echo-hash-4way.h"
#endif
#if defined(__SHA__)
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#endif
void x25x_shuffle( void *hash )
@@ -84,7 +84,7 @@ union _x25x_8way_ctx_overlay
sph_tiger_context tiger;
sph_gost512_context gost;
#if defined(X25X_8WAY_SHA)
sph_sha256_context sha256;
sha256_context sha256;
#else
sha256_8way_context sha256;
#endif
@@ -447,31 +447,15 @@ int x25x_8way_hash( void *output, const void *input, int thrid )
#if defined(X25X_8WAY_SHA)
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash0[20], 64 );
sph_sha256_close( &ctx.sha256, hash0[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash1[20], 64 );
sph_sha256_close( &ctx.sha256, hash1[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash2[20], 64 );
sph_sha256_close( &ctx.sha256, hash2[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash3[20], 64 );
sph_sha256_close( &ctx.sha256, hash3[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash4[20], 64 );
sph_sha256_close( &ctx.sha256, hash4[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash5[20], 64 );
sph_sha256_close( &ctx.sha256, hash5[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash6[20], 64 );
sph_sha256_close( &ctx.sha256, hash6[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash7[20], 64 );
sph_sha256_close( &ctx.sha256, hash7[21] );
sha256_full( hash0[21], hash0[20], 64 );
sha256_full( hash1[21], hash1[20], 64 );
sha256_full( hash2[21], hash2[20], 64 );
sha256_full( hash3[21], hash3[20], 64 );
sha256_full( hash4[21], hash4[20], 64 );
sha256_full( hash5[21], hash5[20], 64 );
sha256_full( hash6[21], hash6[20], 64 );
sha256_full( hash7[21], hash7[20], 64 );
intrlv_8x32_512( vhash, hash0[21], hash1[21], hash2[21], hash3[21],
hash4[21], hash5[21], hash6[21], hash7[21] );
@@ -646,7 +630,7 @@ union _x25x_4way_ctx_overlay
sph_tiger_context tiger;
sph_gost512_context gost;
#if defined(X25X_4WAY_SHA)
sph_sha256_context sha256;
sha256_context sha256;
#else
sha256_4way_context sha256;
#endif
@@ -848,18 +832,10 @@ int x25x_4way_hash( void *output, const void *input, int thrid )
#if defined(X25X_4WAY_SHA)
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash0[20], 64 );
sph_sha256_close( &ctx.sha256, hash0[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash1[20], 64 );
sph_sha256_close( &ctx.sha256, hash1[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash2[20], 64 );
sph_sha256_close( &ctx.sha256, hash2[21] );
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, hash3[20], 64 );
sph_sha256_close( &ctx.sha256, hash3[21] );
sha256_full( hash0[21], hash0[20], 64 );
sha256_full( hash1[21], hash1[20], 64 );
sha256_full( hash2[21], hash2[20], 64 );
sha256_full( hash3[21], hash3[20], 64 );
intrlv_4x32_512( vhash, hash0[21], hash1[21], hash2[21], hash3[21] );

View File

@@ -23,7 +23,7 @@
#include "algo/hamsi/sph_hamsi.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/lyra2/lyra2.h"
@@ -60,7 +60,7 @@ union _x25x_context_overlay
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sph_sha256_context sha256;
sha256_context sha256;
sph_panama_context panama;
blake2s_state blake2s;
};
@@ -174,9 +174,7 @@ int x25x_hash( void *output, const void *input, int thrid )
sph_gost512 (&ctx.gost, (const void*) &hash[19], 64);
sph_gost512_close(&ctx.gost, (void*) &hash[20]);
sph_sha256_init( &ctx.sha256 );
sph_sha256( &ctx.sha256, &hash[20], 64 );
sph_sha256_close( &ctx.sha256, &hash[21] );
sha256_full( &hash[21], &hash[20], 64 );
sph_panama_init(&ctx.panama);
sph_panama (&ctx.panama, (const void*) &hash[21], 64 );

View File

@@ -35,9 +35,11 @@
#include "blake2b-yp.h"
// Cyclic right rotation.
#ifndef ROTR64
#define ROTR64(x, y) (((x) >> (y)) ^ ((x) << (64 - (y))))
#endif
//#ifndef ROTR64
//#define ROTR64(x, y) (((x) >> (y)) ^ ((x) << (64 - (y))))
//#endif
#define ROTR64(x, y) ror64( x, y )
// Little-endian byte access.
#define B2B_GET64(p) \

View File

@@ -52,8 +52,8 @@ int scanhash_yespower_r8g( struct work *work, uint32_t max_nonce,
endiandata[19] = n;
// do sha256 prehash
sph_sha256_init( &sha256_prehash_ctx );
sph_sha256( &sha256_prehash_ctx, endiandata, 64 );
sha256_ctx_init( &sha256_prehash_ctx );
sha256_update( &sha256_prehash_ctx, endiandata, 64 );
do {
yespower_tls( (unsigned char *)endiandata, params.perslen,

View File

@@ -27,14 +27,11 @@
* coin.
*/
#include "yespower.h"
#include "algo-gate-api.h"
yespower_params_t yespower_params;
//SHA256_CTX sha256_prehash_ctx;
__thread sph_sha256_context sha256_prehash_ctx;
//__thread SHA256_CTX sha256_prehash_ctx;
__thread sha256_context sha256_prehash_ctx;
// YESPOWER
@@ -61,8 +58,8 @@ int scanhash_yespower( struct work *work, uint32_t max_nonce,
endiandata[19] = n;
// do sha256 prehash
sph_sha256_init( &sha256_prehash_ctx );
sph_sha256( &sha256_prehash_ctx, endiandata, 64 );
sha256_ctx_init( &sha256_prehash_ctx );
sha256_update( &sha256_prehash_ctx, endiandata, 64 );
do {
if ( yespower_hash( (char*)endiandata, (char*)vhash, 80, thr_id ) )
@@ -101,10 +98,6 @@ int scanhash_yespower_b2b( struct work *work, uint32_t max_nonce,
be32enc( &endiandata[k], pdata[k] );
endiandata[19] = n;
// do sha256 prehash
sph_sha256_init( &sha256_prehash_ctx );
sph_sha256( &sha256_prehash_ctx, endiandata, 64 );
do {
if (yespower_b2b_hash( (char*) endiandata, (char*) vhash, 80, thr_id ) )
if unlikely( valid_hash( vhash, ptarget ) && !opt_benchmark )

View File

@@ -203,17 +203,17 @@ static inline void salsa20_simd_unshuffle(const salsa20_blk_t *Bin,
ARX(X0, X3, X2, 18) \
/* Rearrange data */ \
X1 = _mm_shuffle_epi32(X1, 0x93); \
X3 = _mm_shuffle_epi32(X3, 0x39); \
X2 = _mm_shuffle_epi32(X2, 0x4E); \
X3 = _mm_shuffle_epi32(X3, 0x39); \
/* Operate on "rows" */ \
ARX(X3, X0, X1, 7) \
ARX(X2, X3, X0, 9) \
ARX(X1, X2, X3, 13) \
ARX(X0, X1, X2, 18) \
/* Rearrange data */ \
X3 = _mm_shuffle_epi32(X3, 0x93); \
X1 = _mm_shuffle_epi32(X1, 0x39); \
X2 = _mm_shuffle_epi32(X2, 0x4E); \
X3 = _mm_shuffle_epi32(X3, 0x93);
X2 = _mm_shuffle_epi32(X2, 0x4E);
/**
* Apply the Salsa20 core to the block provided in (X0 ... X3).
@@ -1095,7 +1095,7 @@ int yespower(yespower_local_t *local,
salsa20_blk_t *V, *XY;
pwxform_ctx_t ctx;
uint8_t sha256[32];
sph_sha256_context sha256_ctx;
sha256_context sha256_ctx;
/* Sanity-check parameters */
if ( (version != YESPOWER_0_5 && version != YESPOWER_1_0)
@@ -1138,10 +1138,9 @@ int yespower(yespower_local_t *local,
// copy prehash, do tail
memcpy( &sha256_ctx, &sha256_prehash_ctx, sizeof sha256_ctx );
sph_sha256( &sha256_ctx, src+64, srclen-64 );
sph_sha256_close( &sha256_ctx, sha256 );
sha256_update( &sha256_ctx, src+64, srclen-64 );
sha256_final( &sha256_ctx, sha256 );
if ( version == YESPOWER_0_5 )
{
PBKDF2_SHA256( sha256, sizeof(sha256), src, srclen, 1, B, B_size );
@@ -1186,7 +1185,9 @@ int yespower(yespower_local_t *local,
if ( work_restart[thrid].restart ) return 0;
smix_1_0( B, r, N, V, XY, &ctx );
if ( work_restart[thrid].restart ) return 0;
HMAC_SHA256_Buf( B + B_size - 64, 64, sha256, sizeof(sha256),
(uint8_t *)dst );
}

View File

@@ -34,7 +34,7 @@
#include <stdlib.h> /* for size_t */
#include "miner.h"
#include "simd-utils.h"
#include "algo/sha/sph_sha2.h"
#include "algo/sha/sha256-hash.h"
#ifdef __cplusplus
extern "C" {
@@ -78,9 +78,7 @@ typedef struct {
extern yespower_params_t yespower_params;
//SHA256_CTX sha256_prehash_ctx;
extern __thread sph_sha256_context sha256_prehash_ctx;
//extern __thread SHA256_CTX sha256_prehash_ctx;
extern __thread sha256_context sha256_prehash_ctx;
/**
* yespower_init_local(local):