This commit is contained in:
Jay D Dee
2020-02-04 01:31:59 -05:00
parent 0681ca996d
commit 1b76cee239
106 changed files with 1695 additions and 4481 deletions

View File

@@ -1,4 +1,5 @@
#include "argon2d-gate.h"
#include "simd-utils.h"
#include "argon2d/argon2.h"
static const size_t INPUT_BYTES = 80; // Lenth of a block header in bytes. Input Length = Salt Length (salt = input)
@@ -36,7 +37,7 @@ void argon2d_crds_hash( void *output, const void *input )
int scanhash_argon2d_crds( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -45,11 +46,11 @@ int scanhash_argon2d_crds( struct work *work, uint32_t max_nonce,
const uint32_t Htarg = ptarget[7];
uint32_t nonce = first_nonce;
swab32_array( endiandata, pdata, 20 );
swab32_array( edata, pdata, 20 );
do {
be32enc(&endiandata[19], nonce);
argon2d_crds_hash( hash, endiandata );
be32enc(&edata[19], nonce);
argon2d_crds_hash( hash, edata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = nonce;
@@ -103,31 +104,32 @@ void argon2d_dyn_hash( void *output, const void *input )
int scanhash_argon2d_dyn( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) edata[20];
uint32_t _ALIGN(64) hash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
const int thr_id = mythr->id;
const uint32_t first_nonce = (const uint32_t)pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t nonce = first_nonce;
const bool bench = opt_benchmark;
swab32_array( endiandata, pdata, 20 );
mm128_bswap32_80( edata, pdata );
do
{
be32enc(&endiandata[19], nonce);
argon2d_dyn_hash( hash, endiandata );
if ( hash[7] <= Htarg && fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = nonce;
argon2d_dyn_hash( hash, edata );
if ( unlikely( valid_hash( (uint64_t*)hash, (uint64_t*)ptarget )
&& !bench ) )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );;
submit_solution( work, hash, mythr );
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
} while ( likely( nonce < last_nonce && !work_restart[thr_id].restart ) );
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce;
return 0;
}
@@ -146,36 +148,34 @@ int scanhash_argon2d4096( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) vhash[8];
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = (const uint32_t)max_nonce;
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t t_cost = 1; // 1 iteration
uint32_t m_cost = 4096; // use 4MB
uint32_t parallelism = 1; // 1 thread, 2 lanes
const bool bench = opt_benchmark;
for ( int i = 0; i < 19; i++ )
be32enc( &endiandata[i], pdata[i] );
mm128_bswap32_80( edata, pdata );
do {
be32enc( &endiandata[19], n );
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) endiandata, 80,
(char*) endiandata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
if ( vhash[7] < Htarg && fulltest( vhash, ptarget ) && !opt_benchmark )
edata[19] = n;
argon2d_hash_raw( t_cost, m_cost, parallelism, (char*) edata, 80,
(char*) edata, 80, (char*) vhash, 32, ARGON2_VERSION_13 );
if ( unlikely( valid_hash( vhash, ptarget ) && !bench ) )
{
pdata[19] = n;
be32enc( &pdata[19], n );
submit_solution( work, vhash, mythr );
}
n++;
} while ( likely( n < last_nonce && !work_restart[thr_id].restart ) );
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
*hashes_done = n - first_nonce;
pdata[19] = n;
return 0;
}

View File

@@ -33,6 +33,8 @@
#include "blake2b-hash-4way.h"
#if defined(__AVX2__)
static const uint8_t sigma[12][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
@@ -203,9 +205,9 @@ void blake2b_8way_final( blake2b_8way_ctx *ctx, void *out )
casti_m512i( out, 3 ) = ctx->h[3];
}
#endif
#endif // AVX512
#if defined(__AVX2__)
// AVX2
// G Mixing function.
@@ -369,4 +371,4 @@ void blake2b_4way_final( blake2b_4way_ctx *ctx, void *out )
casti_m256i( out, 3 ) = ctx->h[3];
}
#endif
#endif // AVX2

View File

@@ -4,6 +4,9 @@
*/
#include "blake2b-gate.h"
#if !defined(BLAKE2B_8WAY) && !defined(BLAKE2B_4WAY)
#include <string.h>
#include <stdint.h>
#include "algo/blake/sph_blake2b.h"
@@ -58,3 +61,4 @@ int scanhash_blake2b( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,5 +1,7 @@
#include "blake2s-gate.h"
#if !defined(BLAKE2S_16WAY) && !defined(BLAKE2S_8WAY) && !defined(BLAKE2S)
#include <string.h>
#include <stdint.h>
@@ -70,3 +72,4 @@ int scanhash_blake2s( struct work *work,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "blakecoin-gate.h"
#if !defined(BLAKECOIN_8WAY) && !defined(BLAKECOIN_4WAY)
#define BLAKE32_ROUNDS 8
#include "sph_blake.h"
@@ -93,3 +96,4 @@ int scanhash_blakecoin( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "decred-gate.h"
#if !defined(DECRED_8WAY) && !defined(DECRED_4WAY)
#include "sph_blake.h"
#include <string.h>
@@ -275,3 +278,5 @@ bool register_decred_algo( algo_gate_t* gate )
return true;
}
*/
#endif

View File

@@ -1,4 +1,7 @@
#include "pentablake-gate.h"
#if !defined(PENTABLAKE_8WAY) && !defined(PENTABLAKE_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -111,3 +114,4 @@ int scanhash_pentablake( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,5 +1,7 @@
#include "algo-gate-api.h"
#if !defined(BMW512_8WAY) && !defined(BMW512_4WAY)
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
@@ -50,4 +52,4 @@ int scanhash_bmw512( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -48,6 +48,8 @@ extern "C"{
#pragma warning (disable: 4146)
#endif
#if !defined(__AVX2__)
static const sph_u32 IV224[] = {
SPH_C32(0x00010203), SPH_C32(0x04050607),
SPH_C32(0x08090A0B), SPH_C32(0x0C0D0E0F),
@@ -70,6 +72,8 @@ static const sph_u32 IV256[] = {
SPH_C32(0x78797A7B), SPH_C32(0x7C7D7E7F)
};
#endif // !AVX2
#if SPH_64
static const sph_u64 IV384[] = {
@@ -135,6 +139,8 @@ static const sph_u64 IV512[] = {
#define M16_30 14, 15, 1, 2, 5, 8, 9
#define M16_31 15, 16, 2, 3, 6, 9, 10
#if !defined(__AVX2__)
#define ss0(x) (((x) >> 1) ^ SPH_T32((x) << 3) \
^ SPH_ROTL32(x, 4) ^ SPH_ROTL32(x, 19))
#define ss1(x) (((x) >> 1) ^ SPH_T32((x) << 2) \
@@ -189,6 +195,8 @@ static const sph_u64 IV512[] = {
#define expand2s_(qf, mf, hf, i16, ix, iy) \
expand2s_inner LPAR qf, mf, hf, i16, ix, iy)
#endif // !AVX2
#if SPH_64
#define sb0(x) (((x) >> 1) ^ SPH_T64((x) << 3) \
@@ -291,6 +299,8 @@ static const sph_u64 Kb_tab[] = {
tt((M(i0) ^ H(i0)) op01 (M(i1) ^ H(i1)) op12 (M(i2) ^ H(i2)) \
op23 (M(i3) ^ H(i3)) op34 (M(i4) ^ H(i4)))
#if !defined(__AVX2__)
#define Ws0 MAKE_W(SPH_T32, 5, -, 7, +, 10, +, 13, +, 14)
#define Ws1 MAKE_W(SPH_T32, 6, -, 8, +, 11, +, 14, -, 15)
#define Ws2 MAKE_W(SPH_T32, 0, +, 7, +, 9, -, 12, +, 15)
@@ -407,6 +417,8 @@ static const sph_u64 Kb_tab[] = {
#define Qs(j) (qt[j])
#endif // !AVX2
#if SPH_64
#define Wb0 MAKE_W(SPH_T64, 5, -, 7, +, 10, +, 13, +, 14)
@@ -557,7 +569,6 @@ static const sph_u64 Kb_tab[] = {
+ ((xl >> 2) ^ qf(22) ^ qf(15))); \
} while (0)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
#if SPH_64
@@ -565,6 +576,10 @@ static const sph_u64 Kb_tab[] = {
#endif
#if !defined(__AVX2__)
#define FOLDs FOLD(sph_u32, MAKE_Qs, SPH_T32, SPH_ROTL32, M, Qs, dH)
static void
compress_small(const unsigned char *data, const sph_u32 h[16], sph_u32 dh[16])
{
@@ -711,6 +726,8 @@ bmw32_close(sph_bmw_small_context *sc, unsigned ub, unsigned n,
sph_enc32le(out + 4 * u, h1[v]);
}
#endif // !AVX2
#if SPH_64
static void
@@ -840,6 +857,8 @@ bmw64_close(sph_bmw_big_context *sc, unsigned ub, unsigned n,
#endif
#if !defined(__AVX2__)
/* see sph_bmw.h */
void
sph_bmw224_init(void *cc)
@@ -898,6 +917,8 @@ sph_bmw256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
// sph_bmw256_init(cc);
}
#endif // !AVX2
#if SPH_64
/* see sph_bmw.h */

View File

@@ -77,6 +77,9 @@ extern "C"{
* computation can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
#if !defined(__AVX2__)
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
@@ -102,6 +105,8 @@ typedef sph_bmw_small_context sph_bmw224_context;
*/
typedef sph_bmw_small_context sph_bmw256_context;
#endif // !AVX2
#if SPH_64
/**
@@ -137,6 +142,8 @@ typedef sph_bmw_big_context sph_bmw512_context;
#endif
#if !defined(__AVX2__)
/**
* Initialize a BMW-224 context. This process performs no memory allocation.
*
@@ -227,6 +234,8 @@ void sph_bmw256_close(void *cc, void *dst);
void sph_bmw256_addbits_and_close(
void *cc, unsigned ub, unsigned n, void *dst);
#endif // !AVX2
#if SPH_64
/**

View File

@@ -358,6 +358,9 @@ int scanhash_cryptolight( struct work *work,
bool register_cryptolight_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_cryptolight;

View File

@@ -105,6 +105,9 @@ int scanhash_cryptonight( struct work *work, uint32_t max_nonce,
bool register_cryptonight_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
cryptonightV7 = false;
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;
@@ -116,6 +119,9 @@ bool register_cryptonight_algo( algo_gate_t* gate )
bool register_cryptonightv7_algo( algo_gate_t* gate )
{
applog(LOG_WARNING,"Cryptonight algorithm and variants are no longer");
applog(LOG_WARNING,"supported by cpuminer-opt. Shares submitted will");
applog(LOG_WARNING,"likely be rejected. Proceed at your own risk.\n");
cryptonightV7 = true;
register_json_rpc2( gate );
gate->optimizations = SSE2_OPT | AES_OPT;

View File

@@ -36,6 +36,8 @@
#include "sph_echo.h"
#if !defined(__AES__)
#ifdef __cplusplus
extern "C"{
#endif
@@ -1028,4 +1030,5 @@ sph_echo512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
}
#ifdef __cplusplus
}
#endif
#endif
#endif // !AES

View File

@@ -36,6 +36,8 @@
#ifndef SPH_ECHO_H__
#define SPH_ECHO_H__
#if !defined(__AES__)
#ifdef __cplusplus
extern "C"{
#endif
@@ -316,5 +318,5 @@ void sph_echo512_addbits_and_close(
#ifdef __cplusplus
}
#endif
#endif // !AES
#endif

View File

@@ -1,3 +1,6 @@
#if !defined GROESTL_INTR_AES_H__
#define GROESTL_INTR_AES_H__
/* groestl-intr-aes.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3, sse4.1, and aes
@@ -11,6 +14,52 @@
#include <wmmintrin.h>
#include "hash-groestl.h"
static const __m128i round_const_p[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xf0e0d0c0b0a09080 },
{ 0x7161514131211101, 0xf1e1d1c1b1a19181 },
{ 0x7262524232221202, 0xf2e2d2c2b2a29282 },
{ 0x7363534333231303, 0xf3e3d3c3b3a39383 },
{ 0x7464544434241404, 0xf4e4d4c4b4a49484 },
{ 0x7565554535251505, 0xf5e5d5c5b5a59585 },
{ 0x7666564636261606, 0xf6e6d6c6b6a69686 },
{ 0x7767574737271707, 0xf7e7d7c7b7a79787 },
{ 0x7868584838281808, 0xf8e8d8c8b8a89888 },
{ 0x7969594939291909, 0xf9e9d9c9b9a99989 },
{ 0x7a6a5a4a3a2a1a0a, 0xfaeadacabaaa9a8a },
{ 0x7b6b5b4b3b2b1b0b, 0xfbebdbcbbbab9b8b },
{ 0x7c6c5c4c3c2c1c0c, 0xfcecdcccbcac9c8c },
{ 0x7d6d5d4d3d2d1d0d, 0xfdedddcdbdad9d8d }
};
static const __m128i round_const_q[] __attribute__ ((aligned (64))) =
{
{ 0x8f9fafbfcfdfefff, 0x0f1f2f3f4f5f6f7f },
{ 0x8e9eaebecedeeefe, 0x0e1e2e3e4e5e6e7e },
{ 0x8d9dadbdcdddedfd, 0x0d1d2d3d4d5d6d7d },
{ 0x8c9cacbcccdcecfc, 0x0c1c2c3c4c5c6c7c },
{ 0x8b9babbbcbdbebfb, 0x0b1b2b3b4b5b6b7b },
{ 0x8a9aaabacadaeafa, 0x0a1a2a3a4a5a6a7a },
{ 0x8999a9b9c9d9e9f9, 0x0919293949596979 },
{ 0x8898a8b8c8d8e8f8, 0x0818283848586878 },
{ 0x8797a7b7c7d7e7f7, 0x0717273747576777 },
{ 0x8696a6b6c6d6e6f6, 0x0616263646566676 },
{ 0x8595a5b5c5d5e5f5, 0x0515253545556575 },
{ 0x8494a4b4c4d4e4f4, 0x0414243444546474 },
{ 0x8393a3b3c3d3e3f3, 0x0313233343536373 },
{ 0x8292a2b2c2d2e2f2, 0x0212223242526272 }
};
static const __m128i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02 };
static const __m128i SUBSH_MASK0 = { 0x0b0e0104070a0d00, 0x0306090c0f020508 };
static const __m128i SUBSH_MASK1 = { 0x0c0f0205080b0e01, 0x04070a0d00030609 };
static const __m128i SUBSH_MASK2 = { 0x0d000306090c0f02, 0x05080b0e0104070a };
static const __m128i SUBSH_MASK3 = { 0x0e0104070a0d0003, 0x06090c0f0205080b };
static const __m128i SUBSH_MASK4 = { 0x0f0205080b0e0104, 0x070a0d000306090c };
static const __m128i SUBSH_MASK5 = { 0x000306090c0f0205, 0x080b0e0104070a0d };
static const __m128i SUBSH_MASK6 = { 0x0104070a0d000306, 0x090c0f0205080b0e };
static const __m128i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003 };
#define tos(a) #a
#define tostr(a) tos(a)
@@ -141,42 +190,6 @@
}/*MixBytes*/
static const uint64_t round_const_p[] __attribute__ ((aligned (64))) =
{
0x7060504030201000, 0xf0e0d0c0b0a09080,
0x7161514131211101, 0xf1e1d1c1b1a19181,
0x7262524232221202, 0xf2e2d2c2b2a29282,
0x7363534333231303, 0xf3e3d3c3b3a39383,
0x7464544434241404, 0xf4e4d4c4b4a49484,
0x7565554535251505, 0xf5e5d5c5b5a59585,
0x7666564636261606, 0xf6e6d6c6b6a69686,
0x7767574737271707, 0xf7e7d7c7b7a79787,
0x7868584838281808, 0xf8e8d8c8b8a89888,
0x7969594939291909, 0xf9e9d9c9b9a99989,
0x7a6a5a4a3a2a1a0a, 0xfaeadacabaaa9a8a,
0x7b6b5b4b3b2b1b0b, 0xfbebdbcbbbab9b8b,
0x7c6c5c4c3c2c1c0c, 0xfcecdcccbcac9c8c,
0x7d6d5d4d3d2d1d0d, 0xfdedddcdbdad9d8d
};
static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
{
0x8f9fafbfcfdfefff, 0x0f1f2f3f4f5f6f7f,
0x8e9eaebecedeeefe, 0x0e1e2e3e4e5e6e7e,
0x8d9dadbdcdddedfd, 0x0d1d2d3d4d5d6d7d,
0x8c9cacbcccdcecfc, 0x0c1c2c3c4c5c6c7c,
0x8b9babbbcbdbebfb, 0x0b1b2b3b4b5b6b7b,
0x8a9aaabacadaeafa, 0x0a1a2a3a4a5a6a7a,
0x8999a9b9c9d9e9f9, 0x0919293949596979,
0x8898a8b8c8d8e8f8, 0x0818283848586878,
0x8797a7b7c7d7e7f7, 0x0717273747576777,
0x8696a6b6c6d6e6f6, 0x0616263646566676,
0x8595a5b5c5d5e5f5, 0x0515253545556575,
0x8494a4b4c4d4e4f4, 0x0414243444546474,
0x8393a3b3c3d3e3f3, 0x0313233343536373,
0x8292a2b2c2d2e2f2, 0x0212223242526272
};
/* one round
* a0-a7 = input rows
* b0-b7 = output rows
@@ -203,22 +216,14 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
xmm8 = _mm_xor_si128( xmm8, \
casti_m128i( round_const_p, round_counter ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8( xmm8, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm9 = _mm_shuffle_epi8( xmm9, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm10 = _mm_shuffle_epi8( xmm10, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm11 = _mm_shuffle_epi8( xmm11, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm12 = _mm_shuffle_epi8( xmm12, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm13 = _mm_shuffle_epi8( xmm13, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm14 = _mm_shuffle_epi8( xmm14, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm15 = _mm_shuffle_epi8( xmm15, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm8 = _mm_shuffle_epi8( xmm8, SUBSH_MASK0 ); \
xmm9 = _mm_shuffle_epi8( xmm9, SUBSH_MASK1 ); \
xmm10 = _mm_shuffle_epi8( xmm10, SUBSH_MASK2 ); \
xmm11 = _mm_shuffle_epi8( xmm11, SUBSH_MASK3 ); \
xmm12 = _mm_shuffle_epi8( xmm12, SUBSH_MASK4 ); \
xmm13 = _mm_shuffle_epi8( xmm13, SUBSH_MASK5 ); \
xmm14 = _mm_shuffle_epi8( xmm14, SUBSH_MASK6 ); \
xmm15 = _mm_shuffle_epi8( xmm15, SUBSH_MASK7 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 ); \
@@ -226,22 +231,14 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
/* AddRoundConstant P1024 */\
xmm0 = _mm_xor_si128( xmm0, \
casti_m128i( round_const_p, round_counter+1 ) ); \
xmm0 = _mm_shuffle_epi8( xmm0, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm1 = _mm_shuffle_epi8( xmm1, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm2 = _mm_shuffle_epi8( xmm2, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm3 = _mm_shuffle_epi8( xmm3, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm4 = _mm_shuffle_epi8( xmm4, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm5 = _mm_shuffle_epi8( xmm5, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm6 = _mm_shuffle_epi8( xmm6, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm7 = _mm_shuffle_epi8( xmm7, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm0 = _mm_shuffle_epi8( xmm0, SUBSH_MASK0 ); \
xmm1 = _mm_shuffle_epi8( xmm1, SUBSH_MASK1 ); \
xmm2 = _mm_shuffle_epi8( xmm2, SUBSH_MASK2 ); \
xmm3 = _mm_shuffle_epi8( xmm3, SUBSH_MASK3 ); \
xmm4 = _mm_shuffle_epi8( xmm4, SUBSH_MASK4 ); \
xmm5 = _mm_shuffle_epi8( xmm5, SUBSH_MASK5 ); \
xmm6 = _mm_shuffle_epi8( xmm6, SUBSH_MASK6 ); \
xmm7 = _mm_shuffle_epi8( xmm7, SUBSH_MASK7 ); \
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
}\
@@ -262,22 +259,14 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
xmm15 = _mm_xor_si128( xmm15, \
casti_m128i( round_const_q, round_counter ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8( xmm8, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm9 = _mm_shuffle_epi8( xmm9, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm10 = _mm_shuffle_epi8( xmm10, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm11 = _mm_shuffle_epi8( xmm11, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm12 = _mm_shuffle_epi8( xmm12, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm13 = _mm_shuffle_epi8( xmm13, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm14 = _mm_shuffle_epi8( xmm14, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm15 = _mm_shuffle_epi8( xmm15, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm8 = _mm_shuffle_epi8( xmm8, SUBSH_MASK1 ); \
xmm9 = _mm_shuffle_epi8( xmm9, SUBSH_MASK3 ); \
xmm10 = _mm_shuffle_epi8( xmm10, SUBSH_MASK5 ); \
xmm11 = _mm_shuffle_epi8( xmm11, SUBSH_MASK7 ); \
xmm12 = _mm_shuffle_epi8( xmm12, SUBSH_MASK0 ); \
xmm13 = _mm_shuffle_epi8( xmm13, SUBSH_MASK2 ); \
xmm14 = _mm_shuffle_epi8( xmm14, SUBSH_MASK4 ); \
xmm15 = _mm_shuffle_epi8( xmm15, SUBSH_MASK6 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6 , xmm7 ); \
@@ -294,22 +283,14 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
xmm7 = _mm_xor_si128( xmm7, \
casti_m128i( round_const_q, round_counter+1 ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm_shuffle_epi8( xmm0, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm1 = _mm_shuffle_epi8( xmm1, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm2 = _mm_shuffle_epi8( xmm2, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm3 = _mm_shuffle_epi8( xmm3, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm4 = _mm_shuffle_epi8( xmm4, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm5 = _mm_shuffle_epi8( xmm5, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm6 = _mm_shuffle_epi8( xmm6, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm7 = _mm_shuffle_epi8( xmm7, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm0 = _mm_shuffle_epi8( xmm0, SUBSH_MASK1 ); \
xmm1 = _mm_shuffle_epi8( xmm1, SUBSH_MASK3 ); \
xmm2 = _mm_shuffle_epi8( xmm2, SUBSH_MASK5 ); \
xmm3 = _mm_shuffle_epi8( xmm3, SUBSH_MASK7 ); \
xmm4 = _mm_shuffle_epi8( xmm4, SUBSH_MASK0 ); \
xmm5 = _mm_shuffle_epi8( xmm5, SUBSH_MASK2 ); \
xmm6 = _mm_shuffle_epi8( xmm6, SUBSH_MASK4 ); \
xmm7 = _mm_shuffle_epi8( xmm7, SUBSH_MASK6 ); \
/* SubBytes + MixBytes */\
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
@@ -324,7 +305,7 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
* clobbers: t0-t7
*/
#define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\
t0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 );\
t0 = TRANSP_MASK; \
\
i6 = _mm_shuffle_epi8(i6, t0);\
i0 = _mm_shuffle_epi8(i0, t0);\
@@ -412,7 +393,7 @@ static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
i4 = _mm_unpacklo_epi64(i4, i5);\
t1 = _mm_unpackhi_epi64(t1, i5);\
t2 = i6;\
o0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 ); \
o0 = TRANSP_MASK; \
i6 = _mm_unpacklo_epi64(i6, i7);\
t2 = _mm_unpackhi_epi64(t2, i7);\
/* load transpose mask into a register, because it will be used 8 times */\
@@ -653,3 +634,4 @@ void OF1024( __m128i* chaining )
return;
}
#endif

View File

@@ -11,6 +11,45 @@
#include <wmmintrin.h>
#include "hash-groestl256.h"
static const __m128i round_const_l0[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xffffffffffffffff },
{ 0x7161514131211101, 0xffffffffffffffff },
{ 0x7262524232221202, 0xffffffffffffffff },
{ 0x7363534333231303, 0xffffffffffffffff },
{ 0x7464544434241404, 0xffffffffffffffff },
{ 0x7565554535251505, 0xffffffffffffffff },
{ 0x7666564636261606, 0xffffffffffffffff },
{ 0x7767574737271707, 0xffffffffffffffff },
{ 0x7868584838281808, 0xffffffffffffffff },
{ 0x7969594939291909, 0xffffffffffffffff }
};
static const __m128i round_const_l7[] __attribute__ ((aligned (64))) =
{
{ 0x0000000000000000, 0x8f9fafbfcfdfefff },
{ 0x0000000000000000, 0x8e9eaebecedeeefe },
{ 0x0000000000000000, 0x8d9dadbdcdddedfd },
{ 0x0000000000000000, 0x8c9cacbcccdcecfc },
{ 0x0000000000000000, 0x8b9babbbcbdbebfb },
{ 0x0000000000000000, 0x8a9aaabacadaeafa },
{ 0x0000000000000000, 0x8999a9b9c9d9e9f9 },
{ 0x0000000000000000, 0x8898a8b8c8d8e8f8 },
{ 0x0000000000000000, 0x8797a7b7c7d7e7f7 },
{ 0x0000000000000000, 0x8696a6b6c6d6e6f6 }
};
static const __m128i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02 };
static const __m128i SUBSH_MASK0 = { 0x0c0f0104070b0e00, 0x03060a0d08020509 };
static const __m128i SUBSH_MASK1 = { 0x0e090205000d0801, 0x04070c0f0a03060b };
static const __m128i SUBSH_MASK2 = { 0x080b0306010f0a02, 0x05000e090c04070d };
static const __m128i SUBSH_MASK3 = { 0x0a0d040702090c03, 0x0601080b0e05000f };
static const __m128i SUBSH_MASK4 = { 0x0b0e0500030a0d04, 0x0702090c0f060108 };
static const __m128i SUBSH_MASK5 = { 0x0d080601040c0f05, 0x00030b0e0907020a };
static const __m128i SUBSH_MASK6 = { 0x0f0a0702050e0906, 0x01040d080b00030c };
static const __m128i SUBSH_MASK7 = { 0x090c000306080b07, 0x02050f0a0d01040e };
#define tos(a) #a
#define tostr(a) tos(a)
@@ -26,8 +65,6 @@
i = _mm_xor_si128(i, j);\
}
/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
@@ -141,36 +178,6 @@
b1 = _mm_xor_si128(b1, a4);\
}/*MixBytes*/
static const uint64_t round_const_l0[] __attribute__ ((aligned (64))) =
{
0x7060504030201000, 0xffffffffffffffff,
0x7161514131211101, 0xffffffffffffffff,
0x7262524232221202, 0xffffffffffffffff,
0x7363534333231303, 0xffffffffffffffff,
0x7464544434241404, 0xffffffffffffffff,
0x7565554535251505, 0xffffffffffffffff,
0x7666564636261606, 0xffffffffffffffff,
0x7767574737271707, 0xffffffffffffffff,
0x7868584838281808, 0xffffffffffffffff,
0x7969594939291909, 0xffffffffffffffff
};
static const uint64_t round_const_l7[] __attribute__ ((aligned (64))) =
{
0x0000000000000000, 0x8f9fafbfcfdfefff,
0x0000000000000000, 0x8e9eaebecedeeefe,
0x0000000000000000, 0x8d9dadbdcdddedfd,
0x0000000000000000, 0x8c9cacbcccdcecfc,
0x0000000000000000, 0x8b9babbbcbdbebfb,
0x0000000000000000, 0x8a9aaabacadaeafa,
0x0000000000000000, 0x8999a9b9c9d9e9f9,
0x0000000000000000, 0x8898a8b8c8d8e8f8,
0x0000000000000000, 0x8797a7b7c7d7e7f7,
0x0000000000000000, 0x8696a6b6c6d6e6f6
};
/* one round
* i = round number
* a0-a7 = input rows
@@ -190,29 +197,21 @@ static const uint64_t round_const_l7[] __attribute__ ((aligned (64))) =
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm_xor_si128(b0, b0);\
a0 = _mm_shuffle_epi8( a0, m128_const_64( 0x03060a0d08020509, \
0x0c0f0104070b0e00 ) ); \
a0 = _mm_shuffle_epi8( a0, SUBSH_MASK0 ); \
a0 = _mm_aesenclast_si128( a0, b0 );\
a1 = _mm_shuffle_epi8( a1, m128_const_64( 0x04070c0f0a03060b, \
0x0e090205000d0801 ) ); \
a1 = _mm_shuffle_epi8( a1, SUBSH_MASK1 ); \
a1 = _mm_aesenclast_si128( a1, b0 );\
a2 = _mm_shuffle_epi8( a2, m128_const_64( 0x05000e090c04070d, \
0x080b0306010f0a02 ) ); \
a2 = _mm_shuffle_epi8( a2, SUBSH_MASK2 ); \
a2 = _mm_aesenclast_si128( a2, b0 );\
a3 = _mm_shuffle_epi8( a3, m128_const_64( 0x0601080b0e05000f, \
0x0a0d040702090c03 ) ); \
a3 = _mm_shuffle_epi8( a3, SUBSH_MASK3 ); \
a3 = _mm_aesenclast_si128( a3, b0 );\
a4 = _mm_shuffle_epi8( a4, m128_const_64( 0x0702090c0f060108, \
0x0b0e0500030a0d04 ) ); \
a4 = _mm_shuffle_epi8( a4, SUBSH_MASK4 ); \
a4 = _mm_aesenclast_si128( a4, b0 );\
a5 = _mm_shuffle_epi8( a5, m128_const_64( 0x00030b0e0907020a, \
0x0d080601040c0f05 ) ); \
a5 = _mm_shuffle_epi8( a5, SUBSH_MASK5 ); \
a5 = _mm_aesenclast_si128( a5, b0 );\
a6 = _mm_shuffle_epi8( a6, m128_const_64( 0x01040d080b00030c, \
0x0f0a0702050e0906 ) ); \
a6 = _mm_shuffle_epi8( a6, SUBSH_MASK6 ); \
a6 = _mm_aesenclast_si128( a6, b0 );\
a7 = _mm_shuffle_epi8( a7, m128_const_64( 0x02050f0a0d01040e, \
0x090c000306080b07 ) ); \
a7 = _mm_shuffle_epi8( a7, SUBSH_MASK7 ); \
a7 = _mm_aesenclast_si128( a7, b0 );\
\
/* MixBytes */\
@@ -241,8 +240,9 @@ static const uint64_t round_const_l7[] __attribute__ ((aligned (64))) =
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 ); \
t0 = TRANSP_MASK; \
\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\

View File

@@ -214,6 +214,98 @@ HashReturn_gr update_and_final_groestl256( hashState_groestl256* ctx,
return SUCCESS_GR;
}
int groestl256_full( hashState_groestl256* ctx,
void* output, const void* input, DataLength_gr databitlen )
{
int i;
ctx->hashlen = 32;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
INIT256( ctx->chaining );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
__m128i* in = (__m128i*)input;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// cryptonight has 200 byte input, an odd number of __m128i
// remainder is only 8 bytes, ie u64.
if ( databitlen % 128 !=0 )
{
// must be cryptonight, copy 64 bits of data
*(uint64_t*)(ctx->buffer) = *(uint64_t*)(&in[ ctx->buf_ptr ] );
i = -1; // signal for odd length
}
else
{
// Copy any remaining data to buffer for final transform
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
}
//--- final ---
// adjust for final block
blocks++;
if ( i == len - 1 )
{
// all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
0, 0,0,0, 0,0,0,0x80 );
}
else
{
if ( i == -1 )
{
// cryptonight odd length
((uint64_t*)ctx->buffer)[ 1 ] = 0x80ull;
// finish the block with zero and length padding as normal
i = 0;
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
}
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding
// cheat since we know the block count is trivial, good if block < 256
ctx->buffer[i] = _mm_set_epi8( blocks,blocks>>8,0,0, 0,0,0,0,
0, 0,0,0, 0,0,0,0 );
}
// digest final padding block and do output transform
TF512( ctx->chaining, ctx->buffer );
OF512( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m128i( output, i ) = ctx->chaining[ hash_offset + i ];
return SUCCESS_GR;
}
/* hash bit sequence */
HashReturn_gr hash_groestl256(int hashbitlen,
const BitSequence_gr* data,

View File

@@ -115,4 +115,7 @@ HashReturn_gr hash_groestli256( int, const BitSequence_gr*, DataLength_gr,
HashReturn_gr update_and_final_groestl256( hashState_groestl256*, void*,
const void*, DataLength_gr );
int groestl256_full( hashState_groestl256* ctx,
void* output, const void* input, DataLength_gr databitlen );
#endif /* __hash_h */

View File

@@ -1,4 +1,7 @@
#include "groestl-gate.h"
#if !defined(GROESTL_8WAY) && !defined(GROESTLX16R_4WAY)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
@@ -88,4 +91,4 @@ int scanhash_groestl( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -23,7 +23,6 @@ int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
int i;
ctx->hashlen = hashlen;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
@@ -36,9 +35,6 @@ int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
// uint64_t len = U64BIG((uint64_t)LENGTH);
// ctx->chaining[ COLS/2 -1 ] = _mm512_set4_epi64( len, 0, len, 0 );
// INIT256_4way(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -46,6 +42,77 @@ int groestl256_4way_init( groestl256_4way_context* ctx, uint64_t hashlen )
return 0;
}
int groestl256_4way_full( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
const int len = (int)databitlen / 128;
const int hashlen_m128i = 32 / 16; // bytes to __m128i
const int hash_offset = SIZE256 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE256;
__m512i* in = (__m512i*)input;
int i;
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
for ( i = 0; i < SIZE256; i++ )
{
ctx->chaining[i] = m512_zero;
ctx->buffer[i] = m512_zero;
}
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 3 ] = m512_const2_64( 0, 0x0100000000000000 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF512_4way( ctx->chaining, &in[ i * SIZE256 ] );
ctx->buf_ptr = blocks * SIZE256;
// copy any remaining data to buffer, it may already contain data
// from a previous update for a midstate precalc
for ( i = 0; i < len % SIZE256; i++ )
ctx->buffer[ rem + i ] = in[ ctx->buf_ptr + i ];
i += rem; // use i as rem_ptr in final
//--- final ---
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const2_64( (uint64_t)blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = m512_const4_64( 0, 0x80, 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE256 - 1; i++ )
ctx->buffer[i] = m512_zero;
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = m512_const2_64( (uint64_t)blocks << 56, 0 );
}
// digest final padding block and do output transform
TF512_4way( ctx->chaining, ctx->buffer );
OF512_4way( ctx->chaining );
// store hash result in output
for ( i = 0; i < hashlen_m128i; i++ )
casti_m512i( output, i ) = ctx->chaining[ hash_offset + i ];
return 0;
}
int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
const void* input, uint64_t databitlen )
{
@@ -75,11 +142,11 @@ int groestl256_4way_update_close( groestl256_4way_context* ctx, void* output,
blocks++; // adjust for final block
if ( i == SIZE256 - 1 )
{
{
// only 1 vector left in buffer, all padding at once
ctx->buffer[i] = m512_const1_128( _mm_set_epi8(
blocks, blocks>>8,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x80 ) );
}
}
else
{
// add first padding

View File

@@ -71,5 +71,8 @@ int groestl256_4way_init( groestl256_4way_context*, uint64_t );
int groestl256_4way_update_close( groestl256_4way_context*, void*,
const void*, uint64_t );
int groestl256_4way_full( groestl256_4way_context*, void*,
const void*, uint64_t );
#endif
#endif

View File

@@ -14,17 +14,78 @@
#include "groestl256-hash-4way.h"
#if defined(__VAES__)
static const __m128i round_const_l0[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xffffffffffffffff },
{ 0x7161514131211101, 0xffffffffffffffff },
{ 0x7262524232221202, 0xffffffffffffffff },
{ 0x7363534333231303, 0xffffffffffffffff },
{ 0x7464544434241404, 0xffffffffffffffff },
{ 0x7565554535251505, 0xffffffffffffffff },
{ 0x7666564636261606, 0xffffffffffffffff },
{ 0x7767574737271707, 0xffffffffffffffff },
{ 0x7868584838281808, 0xffffffffffffffff },
{ 0x7969594939291909, 0xffffffffffffffff }
};
/* global constants */
__m512i ROUND_CONST_Lx;
__m512i ROUND_CONST_L0[ROUNDS512];
__m512i ROUND_CONST_L7[ROUNDS512];
//__m512i ROUND_CONST_P[ROUNDS1024];
//__m512i ROUND_CONST_Q[ROUNDS1024];
__m512i TRANSP_MASK;
__m512i SUBSH_MASK[8];
__m512i ALL_1B;
__m512i ALL_FF;
static const __m128i round_const_l7[] __attribute__ ((aligned (64))) =
{
{ 0x0000000000000000, 0x8f9fafbfcfdfefff },
{ 0x0000000000000000, 0x8e9eaebecedeeefe },
{ 0x0000000000000000, 0x8d9dadbdcdddedfd },
{ 0x0000000000000000, 0x8c9cacbcccdcecfc },
{ 0x0000000000000000, 0x8b9babbbcbdbebfb },
{ 0x0000000000000000, 0x8a9aaabacadaeafa },
{ 0x0000000000000000, 0x8999a9b9c9d9e9f9 },
{ 0x0000000000000000, 0x8898a8b8c8d8e8f8 },
{ 0x0000000000000000, 0x8797a7b7c7d7e7f7 },
{ 0x0000000000000000, 0x8696a6b6c6d6e6f6 }
};
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,
0x2d2529212c242820, 0x2f272b232e262a22,
0x3d3539313c343830, 0x3f373b333e363a32 };
static const __m512i SUBSH_MASK0 = { 0x0c0f0104070b0e00, 0x03060a0d08020509,
0x1c1f1114171b1e10, 0x13161a1d18121519,
0x2c2f2124272b2e20, 0x23262a2d28222529,
0x3c3f3134373b3e30, 0x33363a3d38323539 };
static const __m512i SUBSH_MASK1 = { 0x0e090205000d0801, 0x04070c0f0a03060b,
0x1e191215101d1801, 0x14171c1f1a13161b,
0x2e292225202d2821, 0x24272c2f2a23262b,
0x3e393235303d3831, 0x34373c3f3a33363b };
static const __m512i SUBSH_MASK2 = { 0x080b0306010f0a02, 0x05000e090c04070d,
0x181b1316111f1a12, 0x15101e191c14171d,
0x282b2326212f2a22, 0x25202e292c24272d,
0x383b3336313f3a32, 0x35303e393c34373d };
static const __m512i SUBSH_MASK3 = { 0x0a0d040702090c03, 0x0601080b0e05000f,
0x1a1d141712191c13, 0x1611181b1e15101f,
0x2a2d242722292c23, 0x2621282b2e25202f,
0x3a3d343732393c33, 0x3631383b3e35303f };
static const __m512i SUBSH_MASK4 = { 0x0b0e0500030a0d04, 0x0702090c0f060108,
0x1b1e1510131a1d14, 0x1712191c1f161118,
0x2b2e2520232a2d24, 0x2722292c2f262128,
0x3b3e3530333a3d34, 0x3732393c3f363138 };
static const __m512i SUBSH_MASK5 = { 0x0d080601040c0f05, 0x00030b0e0907020a,
0x1d181611141c1f15, 0x10131b1e1917121a,
0x2d282621242c2f25, 0x20232b2e2927222a,
0x3d383631343c3f35, 0x30333b3e3937323a };
static const __m512i SUBSH_MASK6 = { 0x0f0a0702050e0906, 0x01040d080b00030c,
0x1f1a1712151e1916, 0x11141d181b10131c,
0x2f2a2722252e2926, 0x21242d282b20232c,
0x3f3a3732353e3936, 0x31343d383b30333c };
static const __m512i SUBSH_MASK7 = { 0x090c000306080b07, 0x02050f0a0d01040e,
0x191c101316181b17, 0x12151f1a1d11141e,
0x292c202326282b27, 0x22252f2a2d21242e,
0x393c303336383b37, 0x32353f3a3d31343e };
#define tos(a) #a
#define tostr(a) tos(a)
@@ -40,8 +101,6 @@ __m512i ALL_FF;
i = _mm512_xor_si512(i, j);\
}
/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
@@ -155,95 +214,36 @@ __m512i ALL_FF;
b1 = _mm512_xor_si512(b1, a4);\
}/*MixBytes*/
// calculate the round constants seperately and load at startup
#define SET_CONSTANTS(){\
ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\
TRANSP_MASK = _mm512_set_epi32( \
0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \
0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \
0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \
0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \
SUBSH_MASK[0] = _mm512_set_epi32( \
0x33363a3d, 0x38323539, 0x3c3f3134, 0x373b3e30, \
0x23262a2d, 0x28222529, 0x2c2f2124, 0x272b2e20, \
0x13161a1d, 0x18121519, 0x1c1f1114, 0x171b1e10, \
0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00 ); \
SUBSH_MASK[1] = _mm512_set_epi32( \
0x34373c3f, 0x3a33363b, 0x3e393235, 0x303d3831, \
0x24272c2f, 0x2a23262b, 0x2e292225, 0x202d2821, \
0x14171c1f, 0x1a13161b, 0x1e191215, 0x101d1801, \
0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801 );\
SUBSH_MASK[2] = _mm512_set_epi32( \
0x35303e39, 0x3c34373d, 0x383b3336, 0x313f3a32, \
0x25202e29, 0x2c24272d, 0x282b2326, 0x212f2a22, \
0x15101e19, 0x1c14171d, 0x181b1316, 0x111f1a12, \
0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02 );\
SUBSH_MASK[3] = _mm512_set_epi32( \
0x3631383b, 0x3e35303f, 0x3a3d3437, 0x32393c33, \
0x2621282b, 0x2e25202f, 0x2a2d2427, 0x22292c23, \
0x1611181b, 0x1e15101f, 0x1a1d1417, 0x12191c13, \
0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03 );\
SUBSH_MASK[4] = _mm512_set_epi32( \
0x3732393c, 0x3f363138, 0x3b3e3530, 0x333a3d34, \
0x2722292c, 0x2f262128, 0x2b2e2520, 0x232a2d24, \
0x1712191c, 0x1f161118, 0x1b1e1510, 0x131a1d14, \
0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04 );\
SUBSH_MASK[5] = _mm512_set_epi32( \
0x30333b3e, 0x3937323a, 0x3d383631, 0x343c3f35, \
0x20232b2e, 0x2927222a, 0x2d282621, 0x242c2f25, \
0x10131b1e, 0x1917121a, 0x1d181611, 0x141c1f15, \
0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05 );\
SUBSH_MASK[6] = _mm512_set_epi32( \
0x31343d38, 0x3b30333c, 0x3f3a3732, 0x353e3936, \
0x21242d28, 0x2b20232c, 0x2f2a2722, 0x252e2926, \
0x11141d18, 0x1b10131c, 0x1f1a1712, 0x151e1916, \
0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906 );\
SUBSH_MASK[7] = _mm512_set_epi32( \
0x32353f3a, 0x3d31343e, 0x393c3033, 0x36383b37, \
0x22252f2a, 0x2d21242e, 0x292c2023, 0x26282b27, \
0x12151f1a, 0x1d11141e, 0x191c1013, 0x16181b17, \
0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07 );\
for ( i = 0; i < ROUNDS512; i++ ) \
{\
ROUND_CONST_L0[i] = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x70605040 ^ ( i * 0x01010101 ), 0x30201000 ^ ( i * 0x01010101 ) ); \
ROUND_CONST_L7[i] = _mm512_set4_epi32( 0x8f9fafbf ^ ( i * 0x01010101 ), \
0xcfdfefff ^ ( i * 0x01010101 ), 0x00000000, 0x00000000 ); \
}\
ROUND_CONST_Lx = _mm512_set4_epi32( 0xffffffff, 0xffffffff, \
0x00000000, 0x00000000 ); \
}while(0);\
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
b1 = ROUND_CONST_Lx;\
a0 = _mm512_xor_si512( a0, (ROUND_CONST_L0[i]) );\
b1 = m512_const2_64( 0xffffffffffffffff, 0 ); \
a0 = _mm512_xor_si512( a0, m512_const1_128( round_const_l0[i] ) );\
a1 = _mm512_xor_si512( a1, b1 );\
a2 = _mm512_xor_si512( a2, b1 );\
a3 = _mm512_xor_si512( a3, b1 );\
a4 = _mm512_xor_si512( a4, b1 );\
a5 = _mm512_xor_si512( a5, b1 );\
a6 = _mm512_xor_si512( a6, b1 );\
a7 = _mm512_xor_si512( a7, (ROUND_CONST_L7[i]) );\
a7 = _mm512_xor_si512( a7, m512_const1_128( round_const_l7[i] ) );\
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm512_xor_si512( b0, b0 );\
a0 = _mm512_shuffle_epi8( a0, (SUBSH_MASK[0]) );\
a0 = _mm512_shuffle_epi8( a0, SUBSH_MASK0 );\
a0 = _mm512_aesenclast_epi128(a0, b0 );\
a1 = _mm512_shuffle_epi8( a1, (SUBSH_MASK[1]) );\
a1 = _mm512_shuffle_epi8( a1, SUBSH_MASK1 );\
a1 = _mm512_aesenclast_epi128(a1, b0 );\
a2 = _mm512_shuffle_epi8( a2, (SUBSH_MASK[2]) );\
a2 = _mm512_shuffle_epi8( a2, SUBSH_MASK2 );\
a2 = _mm512_aesenclast_epi128(a2, b0 );\
a3 = _mm512_shuffle_epi8( a3, (SUBSH_MASK[3]) );\
a3 = _mm512_shuffle_epi8( a3, SUBSH_MASK3 );\
a3 = _mm512_aesenclast_epi128(a3, b0 );\
a4 = _mm512_shuffle_epi8( a4, (SUBSH_MASK[4]) );\
a4 = _mm512_shuffle_epi8( a4, SUBSH_MASK4 );\
a4 = _mm512_aesenclast_epi128(a4, b0 );\
a5 = _mm512_shuffle_epi8( a5, (SUBSH_MASK[5]) );\
a5 = _mm512_shuffle_epi8( a5, SUBSH_MASK5 );\
a5 = _mm512_aesenclast_epi128(a5, b0 );\
a6 = _mm512_shuffle_epi8( a6, (SUBSH_MASK[6]) );\
a6 = _mm512_shuffle_epi8( a6, SUBSH_MASK6 );\
a6 = _mm512_aesenclast_epi128(a6, b0 );\
a7 = _mm512_shuffle_epi8( a7, (SUBSH_MASK[7]) );\
a7 = _mm512_shuffle_epi8( a7, SUBSH_MASK7 );\
a7 = _mm512_aesenclast_epi128( a7, b0 );\
\
/* MixBytes */\
@@ -390,29 +390,6 @@ __m512i ALL_FF;
}/**/
void INIT256_4way( __m512i* chaining )
{
static __m512i xmm0, xmm2, xmm6, xmm7;
static __m512i xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm12 - xmm15 */
xmm12 = chaining[0];
xmm13 = chaining[1];
xmm14 = chaining[2];
xmm15 = chaining[3];
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* store transposed IV */
chaining[0] = xmm12;
chaining[1] = xmm2;
chaining[2] = xmm6;
chaining[3] = xmm7;
}
void TF512_4way( __m512i* chaining, __m512i* message )
{
static __m512i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;

View File

@@ -19,10 +19,6 @@
int groestl512_4way_init( groestl512_4way_context* ctx, uint64_t hashlen )
{
int i;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return 1;
@@ -99,7 +95,6 @@ int groestl512_4way_full( groestl512_4way_context* ctx, void* output,
// --- init ---
SET_CONSTANTS();
memset_zero_512( ctx->chaining, SIZE512 );
memset_zero_512( ctx->buffer, SIZE512 );
ctx->chaining[ 6 ] = m512_const2_64( 0x0200000000000000, 0 );

View File

@@ -15,16 +15,86 @@
#if defined(__VAES__)
/* global constants */
__m512i ROUND_CONST_Lx;
//__m128i ROUND_CONST_L0[ROUNDS512];
//__m128i ROUND_CONST_L7[ROUNDS512];
__m512i ROUND_CONST_P[ROUNDS1024];
__m512i ROUND_CONST_Q[ROUNDS1024];
__m512i TRANSP_MASK;
__m512i SUBSH_MASK[8];
__m512i ALL_1B;
__m512i ALL_FF;
static const __m128i round_const_p[] __attribute__ ((aligned (64))) =
{
{ 0x7060504030201000, 0xf0e0d0c0b0a09080 },
{ 0x7161514131211101, 0xf1e1d1c1b1a19181 },
{ 0x7262524232221202, 0xf2e2d2c2b2a29282 },
{ 0x7363534333231303, 0xf3e3d3c3b3a39383 },
{ 0x7464544434241404, 0xf4e4d4c4b4a49484 },
{ 0x7565554535251505, 0xf5e5d5c5b5a59585 },
{ 0x7666564636261606, 0xf6e6d6c6b6a69686 },
{ 0x7767574737271707, 0xf7e7d7c7b7a79787 },
{ 0x7868584838281808, 0xf8e8d8c8b8a89888 },
{ 0x7969594939291909, 0xf9e9d9c9b9a99989 },
{ 0x7a6a5a4a3a2a1a0a, 0xfaeadacabaaa9a8a },
{ 0x7b6b5b4b3b2b1b0b, 0xfbebdbcbbbab9b8b },
{ 0x7c6c5c4c3c2c1c0c, 0xfcecdcccbcac9c8c },
{ 0x7d6d5d4d3d2d1d0d, 0xfdedddcdbdad9d8d }
};
static const __m128i round_const_q[] __attribute__ ((aligned (64))) =
{
{ 0x8f9fafbfcfdfefff, 0x0f1f2f3f4f5f6f7f },
{ 0x8e9eaebecedeeefe, 0x0e1e2e3e4e5e6e7e },
{ 0x8d9dadbdcdddedfd, 0x0d1d2d3d4d5d6d7d },
{ 0x8c9cacbcccdcecfc, 0x0c1c2c3c4c5c6c7c },
{ 0x8b9babbbcbdbebfb, 0x0b1b2b3b4b5b6b7b },
{ 0x8a9aaabacadaeafa, 0x0a1a2a3a4a5a6a7a },
{ 0x8999a9b9c9d9e9f9, 0x0919293949596979 },
{ 0x8898a8b8c8d8e8f8, 0x0818283848586878 },
{ 0x8797a7b7c7d7e7f7, 0x0717273747576777 },
{ 0x8696a6b6c6d6e6f6, 0x0616263646566676 },
{ 0x8595a5b5c5d5e5f5, 0x0515253545556575 },
{ 0x8494a4b4c4d4e4f4, 0x0414243444546474 },
{ 0x8393a3b3c3d3e3f3, 0x0313233343536373 },
{ 0x8292a2b2c2d2e2f2, 0x0212223242526272 }
};
static const __m512i TRANSP_MASK = { 0x0d0509010c040800, 0x0f070b030e060a02,
0x1d1519111c141810, 0x1f171b131e161a12,
0x2d2529212c242820, 0x2f272b232e262a22,
0x3d3539313c343830, 0x3f373b333e363a32 };
static const __m512i SUBSH_MASK0 = { 0x0b0e0104070a0d00, 0x0306090c0f020508,
0x1b1e1114171a1d10, 0x1316191c1f121518,
0x2b2e2124272a2d20, 0x2326292c2f222528,
0x3b3e3134373a3d30, 0x3336393c3f323538 };
static const __m512i SUBSH_MASK1 = { 0x0c0f0205080b0e01, 0x04070a0d00030609,
0x1c1f1215181b1e11, 0x14171a1d10131619,
0x2c2f2225282b2e21, 0x24272a2d20232629,
0x3c3f3235383b3e31, 0x34373a3d30333639 };
static const __m512i SUBSH_MASK2 = { 0x0d000306090c0f02, 0x05080b0e0104070a,
0x1d101316191c1f12, 0x15181b1e1114171a,
0x2d202326292c2f22, 0x25282b2e2124272a,
0x3d303336393c3f32, 0x35383b3e3134373a };
static const __m512i SUBSH_MASK3 = { 0x0e0104070a0d0003, 0x06090c0f0205080b,
0x1e1114171a1d1013, 0x16191c1f1215181b,
0x2e2124272a2d2023, 0x26292c2f2225282b,
0x3e3134373a3d3033, 0x36393c3f3235383b };
static const __m512i SUBSH_MASK4 = { 0x0f0205080b0e0104, 0x070a0d000306090c,
0x1f1215181b1e1114, 0x171a1d101316191c,
0x2f2225282b2e2124, 0x272a2d202326292c,
0x3f3235383b3e3134, 0x373a3d303336393c };
static const __m512i SUBSH_MASK5 = { 0x000306090c0f0205, 0x080b0e0104070a0d,
0x101316191c1f1215, 0x181b1e1114171a1d,
0x202326292c2f2225, 0x282b2e2124272a2d,
0x303336393c3f3235, 0x383b3e3134373a3d };
static const __m512i SUBSH_MASK6 = { 0x0104070a0d000306, 0x090c0f0205080b0e,
0x1114171a1d101316, 0x191c1f1215181b1e,
0x2124272a2d202326, 0x292c2f2225282b2e,
0x3134373a3d303336, 0x393c3f3235383b3e };
static const __m512i SUBSH_MASK7 = { 0x06090c0f0205080b, 0x0e0104070a0d0003,
0x16191c1f1215181b, 0x1e1114171a1d1013,
0x26292c2f2225282b, 0x2e2124272a2d2023,
0x36393c3f3235383b, 0x3e3134373a3d3033 };
#define tos(a) #a
#define tostr(a) tos(a)
@@ -155,69 +225,6 @@ __m512i ALL_FF;
b1 = _mm512_xor_si512(b1, a4);\
}/*MixBytes*/
// calculate the round constants seperately and load at startup
#define SET_CONSTANTS(){\
ALL_FF = _mm512_set1_epi32( 0xffffffff );\
ALL_1B = _mm512_set1_epi32( 0x1b1b1b1b );\
TRANSP_MASK = _mm512_set_epi32( \
0x3f373b33, 0x3e363a32, 0x3d353931, 0x3c343830, \
0x2f272b23, 0x2e262a22, 0x2d252921, 0x2c242820, \
0x1f171b13, 0x1e161a12, 0x1d151911, 0x1c141810, \
0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800 ); \
SUBSH_MASK[0] = _mm512_set_epi32( \
0x3336393c, 0x3f323538, 0x3b3e3134, 0x373a3d30, \
0x2326292c, 0x2f222528, 0x2b2e2124, 0x272a2d20, \
0x1316191c, 0x1f121518, 0x1b1e1114, 0x171a1d10, \
0x0306090c, 0x0f020508, 0x0b0e0104, 0x070a0d00 ); \
SUBSH_MASK[1] = _mm512_set_epi32( \
0x34373a3d, 0x30333639, 0x3c3f3235, 0x383b3e31, \
0x24272a2d, 0x20232629, 0x2c2f2225, 0x282b2e21, \
0x14171a1d, 0x10131619, 0x1c1f1215, 0x181b1e11, \
0x04070a0d, 0x00030609, 0x0c0f0205, 0x080b0e01 ); \
SUBSH_MASK[2] = _mm512_set_epi32( \
0x35383b3e, 0x3134373a, 0x3d303336, 0x393c3f32, \
0x25282b2e, 0x2124272a, 0x2d202326, 0x292c2f22, \
0x15181b1e, 0x1114171a, 0x1d101316, 0x191c1f12, \
0x05080b0e, 0x0104070a, 0x0d000306, 0x090c0f02 ); \
SUBSH_MASK[3] = _mm512_set_epi32( \
0x36393c3f, 0x3235383b, 0x3e313437, 0x3a3d3033, \
0x26292c2f, 0x2225282b, 0x2e212427, 0x2a2d2023, \
0x16191c1f, 0x1215181b, 0x1e111417, 0x1a1d1013, \
0x06090c0f, 0x0205080b, 0x0e010407, 0x0a0d0003 ); \
SUBSH_MASK[4] = _mm512_set_epi32( \
0x373a3d30, 0x3336393c, 0x3f323538, 0x3b3e3134, \
0x272a2d20, 0x2326292c, 0x2f222528, 0x2b2e2124, \
0x171a1d10, 0x1316191c, 0x1f121518, 0x1b1e1114, \
0x070a0d00, 0x0306090c, 0x0f020508, 0x0b0e0104 ); \
SUBSH_MASK[5] = _mm512_set_epi32( \
0x383b3e31, 0x34373a3d, 0x30333639, 0x3c3f3235, \
0x282b2e21, 0x24272a2d, 0x20232629, 0x2c2f2225, \
0x181b1e11, 0x14171a1d, 0x10131619, 0x1c1f1215, \
0x080b0e01, 0x04070a0d, 0x00030609, 0x0c0f0205 ); \
SUBSH_MASK[6] = _mm512_set_epi32( \
0x393c3f32, 0x35383b3e, 0x3134373a, 0x3d303336, \
0x292c2f22, 0x25282b2e, 0x2124272a, 0x2d202326, \
0x191c1f12, 0x15181b1e, 0x1114171a, 0x1d101316, \
0x090c0f02, 0x05080b0e, 0x0104070a, 0x0d000306 ); \
SUBSH_MASK[7] = _mm512_set_epi32( \
0x3e313437, 0x3a3d3033, 0x36393c3f, 0x3235383b, \
0x2e212427, 0x2a2d2023, 0x26292c2f, 0x2225282b, \
0x1e111417, 0x1a1d1013, 0x16191c1f, 0x1215181b, \
0x0e010407, 0x0a0d0003, 0x06090c0f, 0x0205080b ); \
for( i = 0; i < ROUNDS1024; i++ ) \
{ \
ROUND_CONST_P[i] = _mm512_set4_epi32( 0xf0e0d0c0 ^ (i * 0x01010101), \
0xb0a09080 ^ (i * 0x01010101), \
0x70605040 ^ (i * 0x01010101), \
0x30201000 ^ (i * 0x01010101) ); \
ROUND_CONST_Q[i] = _mm512_set4_epi32( 0x0f1f2f3f ^ (i * 0x01010101), \
0x4f5f6f7f ^ (i * 0x01010101), \
0x8f9fafbf ^ (i * 0x01010101), \
0xcfdfefff ^ (i * 0x01010101));\
} \
}while(0);\
/* one round
* a0-a7 = input rows
* b0-b7 = output rows
@@ -242,30 +249,32 @@ __m512i ALL_FF;
for ( round_counter = 0; round_counter < 14; round_counter += 2 ) \
{ \
/* AddRoundConstant P1024 */\
xmm8 = _mm512_xor_si512( xmm8, ( ROUND_CONST_P[ round_counter ] ) );\
xmm8 = _mm512_xor_si512( xmm8, m512_const1_128( \
casti_m128i( round_const_p, round_counter ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[0] ) );\
xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[1] ) );\
xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[2] ) );\
xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[3] ) );\
xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[4] ) );\
xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[5] ) );\
xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[6] ) );\
xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[7] ) );\
xmm8 = _mm512_shuffle_epi8( xmm8, SUBSH_MASK0 ); \
xmm9 = _mm512_shuffle_epi8( xmm9, SUBSH_MASK1 );\
xmm10 = _mm512_shuffle_epi8( xmm10, SUBSH_MASK2 );\
xmm11 = _mm512_shuffle_epi8( xmm11, SUBSH_MASK3 );\
xmm12 = _mm512_shuffle_epi8( xmm12, SUBSH_MASK4 );\
xmm13 = _mm512_shuffle_epi8( xmm13, SUBSH_MASK5 );\
xmm14 = _mm512_shuffle_epi8( xmm14, SUBSH_MASK6 );\
xmm15 = _mm512_shuffle_epi8( xmm15, SUBSH_MASK7 );\
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
/* AddRoundConstant P1024 */\
xmm0 = _mm512_xor_si512( xmm0, ( ROUND_CONST_P[ round_counter+1 ] ) );\
xmm0 = _mm512_xor_si512( xmm0, m512_const1_128( \
casti_m128i( round_const_p, round_counter+1 ) ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[0] ) );\
xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[1] ) );\
xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[2] ) );\
xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[3] ) );\
xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[4] ) );\
xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[5] ) );\
xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[6] ) );\
xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[7] ) );\
xmm0 = _mm512_shuffle_epi8( xmm0, SUBSH_MASK0 );\
xmm1 = _mm512_shuffle_epi8( xmm1, SUBSH_MASK1 );\
xmm2 = _mm512_shuffle_epi8( xmm2, SUBSH_MASK2 );\
xmm3 = _mm512_shuffle_epi8( xmm3, SUBSH_MASK3 );\
xmm4 = _mm512_shuffle_epi8( xmm4, SUBSH_MASK4 );\
xmm5 = _mm512_shuffle_epi8( xmm5, SUBSH_MASK5 );\
xmm6 = _mm512_shuffle_epi8( xmm6, SUBSH_MASK6 );\
xmm7 = _mm512_shuffle_epi8( xmm7, SUBSH_MASK7 );\
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\
@@ -284,16 +293,17 @@ __m512i ALL_FF;
xmm12 = _mm512_xor_si512( xmm12, xmm1 );\
xmm13 = _mm512_xor_si512( xmm13, xmm1 );\
xmm14 = _mm512_xor_si512( xmm14, xmm1 );\
xmm15 = _mm512_xor_si512( xmm15, ( ROUND_CONST_Q[ round_counter ] ) );\
xmm15 = _mm512_xor_si512( xmm15, m512_const1_128( \
casti_m128i( round_const_q, round_counter ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm512_shuffle_epi8( xmm8, ( SUBSH_MASK[1] ) );\
xmm9 = _mm512_shuffle_epi8( xmm9, ( SUBSH_MASK[3] ) );\
xmm10 = _mm512_shuffle_epi8( xmm10, ( SUBSH_MASK[5] ) );\
xmm11 = _mm512_shuffle_epi8( xmm11, ( SUBSH_MASK[7] ) );\
xmm12 = _mm512_shuffle_epi8( xmm12, ( SUBSH_MASK[0] ) );\
xmm13 = _mm512_shuffle_epi8( xmm13, ( SUBSH_MASK[2] ) );\
xmm14 = _mm512_shuffle_epi8( xmm14, ( SUBSH_MASK[4] ) );\
xmm15 = _mm512_shuffle_epi8( xmm15, ( SUBSH_MASK[6] ) );\
xmm8 = _mm512_shuffle_epi8( xmm8, SUBSH_MASK1 );\
xmm9 = _mm512_shuffle_epi8( xmm9, SUBSH_MASK3 );\
xmm10 = _mm512_shuffle_epi8( xmm10, SUBSH_MASK5 );\
xmm11 = _mm512_shuffle_epi8( xmm11, SUBSH_MASK7 );\
xmm12 = _mm512_shuffle_epi8( xmm12, SUBSH_MASK0 );\
xmm13 = _mm512_shuffle_epi8( xmm13, SUBSH_MASK2 );\
xmm14 = _mm512_shuffle_epi8( xmm14, SUBSH_MASK4 );\
xmm15 = _mm512_shuffle_epi8( xmm15, SUBSH_MASK6 );\
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
\
@@ -306,16 +316,17 @@ __m512i ALL_FF;
xmm4 = _mm512_xor_si512( xmm4, xmm9 );\
xmm5 = _mm512_xor_si512( xmm5, xmm9 );\
xmm6 = _mm512_xor_si512( xmm6, xmm9 );\
xmm7 = _mm512_xor_si512( xmm7, ( ROUND_CONST_Q[ round_counter+1 ] ) );\
xmm7 = _mm512_xor_si512( xmm7, m512_const1_128( \
casti_m128i( round_const_q, round_counter+1 ) ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm512_shuffle_epi8( xmm0, ( SUBSH_MASK[1] ) );\
xmm1 = _mm512_shuffle_epi8( xmm1, ( SUBSH_MASK[3] ) );\
xmm2 = _mm512_shuffle_epi8( xmm2, ( SUBSH_MASK[5] ) );\
xmm3 = _mm512_shuffle_epi8( xmm3, ( SUBSH_MASK[7] ) );\
xmm4 = _mm512_shuffle_epi8( xmm4, ( SUBSH_MASK[0] ) );\
xmm5 = _mm512_shuffle_epi8( xmm5, ( SUBSH_MASK[2] ) );\
xmm6 = _mm512_shuffle_epi8( xmm6, ( SUBSH_MASK[4] ) );\
xmm7 = _mm512_shuffle_epi8( xmm7, ( SUBSH_MASK[6] ) );\
xmm0 = _mm512_shuffle_epi8( xmm0, SUBSH_MASK1 );\
xmm1 = _mm512_shuffle_epi8( xmm1, SUBSH_MASK3 );\
xmm2 = _mm512_shuffle_epi8( xmm2, SUBSH_MASK5 );\
xmm3 = _mm512_shuffle_epi8( xmm3, SUBSH_MASK7 );\
xmm4 = _mm512_shuffle_epi8( xmm4, SUBSH_MASK0 );\
xmm5 = _mm512_shuffle_epi8( xmm5, SUBSH_MASK2 );\
xmm6 = _mm512_shuffle_epi8( xmm6, SUBSH_MASK4 );\
xmm7 = _mm512_shuffle_epi8( xmm7, SUBSH_MASK6 );\
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}\

View File

@@ -1,4 +1,7 @@
#include "myrgr-gate.h"
#if !defined(MYRGR_8WAY) && !defined(MYRGR_4WAY)
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
@@ -86,3 +89,4 @@ int scanhash_myriad( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -35,6 +35,8 @@
#include "sph_groestl.h"
#if !defined(__AES__)
#ifdef __cplusplus
extern "C"{
#endif
@@ -3116,4 +3118,6 @@ sph_groestl512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
#ifdef __cplusplus
}
#endif // !AES
#endif

View File

@@ -42,6 +42,7 @@ extern "C"{
#include <stddef.h>
#include "algo/sha/sph_types.h"
#if !defined(__AES__)
/**
* Output size (in bits) for Groestl-224.
*/
@@ -326,4 +327,5 @@ void sph_groestl512_addbits_and_close(
}
#endif
#endif // !AES
#endif

View File

@@ -1,156 +0,0 @@
#include "algo-gate-api.h"
#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>
#include <stdint.h>
#include <stdlib.h>
#include "sph_hefty1.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/skein/sph_skein.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/luffa/luffa_for_sse2.h"
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#endif
void bastionhash(void *output, const void *input)
{
unsigned char hash[64] __attribute__ ((aligned (64)));
#ifdef __AES__
hashState_echo ctx_echo;
#else
sph_echo512_context ctx_echo;
#endif
hashState_luffa ctx_luffa;
sph_fugue512_context ctx_fugue;
sph_whirlpool_context ctx_whirlpool;
sph_shabal512_context ctx_shabal;
sph_hamsi512_context ctx_hamsi;
sph_skein512_context ctx_skein;
HEFTY1(input, 80, hash);
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
if (hash[0] & 0x8)
{
sph_fugue512_init(&ctx_fugue);
sph_fugue512(&ctx_fugue, hash, 64);
sph_fugue512_close(&ctx_fugue, hash);
} else {
sph_skein512_init( &ctx_skein );
sph_skein512( &ctx_skein, hash, 64 );
sph_skein512_close( &ctx_skein, hash );
}
sph_whirlpool_init(&ctx_whirlpool);
sph_whirlpool(&ctx_whirlpool, hash, 64);
sph_whirlpool_close(&ctx_whirlpool, hash);
sph_fugue512_init(&ctx_fugue);
sph_fugue512(&ctx_fugue, hash, 64);
sph_fugue512_close(&ctx_fugue, hash);
if (hash[0] & 0x8)
{
#ifdef __AES__
init_echo( &ctx_echo, 512 );
update_final_echo ( &ctx_echo,(BitSequence*)hash,
(const BitSequence*)hash, 512 );
#else
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, hash, 64);
sph_echo512_close(&ctx_echo, hash);
#endif
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
sph_shabal512_init(&ctx_shabal);
sph_shabal512(&ctx_shabal, hash, 64);
sph_shabal512_close(&ctx_shabal, hash);
sph_skein512_init( &ctx_skein );
sph_skein512( &ctx_skein, hash, 64 );
sph_skein512_close( &ctx_skein, hash );
if (hash[0] & 0x8)
{
sph_shabal512_init(&ctx_shabal);
sph_shabal512(&ctx_shabal, hash, 64);
sph_shabal512_close(&ctx_shabal, hash);
} else {
sph_whirlpool_init(&ctx_whirlpool);
sph_whirlpool(&ctx_whirlpool, hash, 64);
sph_whirlpool_close(&ctx_whirlpool, hash);
}
sph_shabal512_init(&ctx_shabal);
sph_shabal512(&ctx_shabal, hash, 64);
sph_shabal512_close(&ctx_shabal, hash);
if (hash[0] & 0x8)
{
sph_hamsi512_init(&ctx_hamsi);
sph_hamsi512(&ctx_hamsi, hash, 64);
sph_hamsi512_close(&ctx_hamsi, hash);
} else {
init_luffa( &ctx_luffa, 512 );
update_and_final_luffa( &ctx_luffa, (BitSequence*)hash,
(const BitSequence*)hash, 64 );
}
memcpy(output, hash, 32);
}
int scanhash_bastion( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t _ALIGN(64) hash32[8];
uint32_t _ALIGN(64) endiandata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
int thr_id = mythr->id; // thr_id arg is deprecated
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
do {
be32enc(&endiandata[19], n);
bastionhash(hash32, endiandata);
if (hash32[7] < Htarg && fulltest(hash32, ptarget)) {
pdata[19] = n;
submit_solution( work, hash32, mythr );
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_bastion_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT;
gate->scanhash = (void*)&scanhash_bastion;
gate->hash = (void*)&bastionhash;
return true;
};

View File

@@ -1,111 +0,0 @@
#include <string.h>
#include <openssl/sha.h>
#include <stdint.h>
#include "algo-gate-api.h"
#include "sph_hefty1.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/blake/sph_blake.h"
#include "algo/groestl/sph_groestl.h"
/* Combines top 64-bits from each hash into a single hash */
static void combine_hashes(uint32_t *out, uint32_t *hash1, uint32_t *hash2, uint32_t *hash3, uint32_t *hash4)
{
uint32_t *hash[4] = { hash1, hash2, hash3, hash4 };
/* Transpose first 64 bits of each hash into out */
memset(out, 0, 32);
int bits = 0;
for (unsigned int i = 7; i >= 6; i--) {
for (uint32_t mask = 0x80000000; mask; mask >>= 1) {
for (unsigned int k = 0; k < 4; k++) {
out[(255 - bits)/32] <<= 1;
if ((hash[k][i] & mask) != 0)
out[(255 - bits)/32] |= 1;
bits++;
}
}
}
}
extern void heavyhash(unsigned char* output, const unsigned char* input, int len)
{
unsigned char hash1[32];
HEFTY1(input, len, hash1);
// HEFTY1 is new, so take an extra security measure to eliminate
// * the possiblity of collisions:
// *
// * Hash(x) = SHA256(x + HEFTY1(x))
// *
// * N.B. '+' is concatenation.
//
unsigned char hash2[32];;
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, input, len);
SHA256_Update(&ctx, hash1, sizeof(hash1));
SHA256_Final(hash2, &ctx);
// * Additional security: Do not rely on a single cryptographic hash
// * function. Instead, combine the outputs of 4 of the most secure
// * cryptographic hash functions-- SHA256, KECCAK512, GROESTL512
// * and BLAKE512.
uint32_t hash3[16];
sph_keccak512_context keccakCtx;
sph_keccak512_init(&keccakCtx);
sph_keccak512(&keccakCtx, input, len);
sph_keccak512(&keccakCtx, hash1, sizeof(hash1));
sph_keccak512_close(&keccakCtx, (void *)&hash3);
uint32_t hash4[16];
sph_groestl512_context groestlCtx;
sph_groestl512_init(&groestlCtx);
sph_groestl512(&groestlCtx, input, len);
sph_groestl512(&groestlCtx, hash1, sizeof(hash1));
sph_groestl512_close(&groestlCtx, (void *)&hash4);
uint32_t hash5[16];
sph_blake512_context blakeCtx;
sph_blake512_init(&blakeCtx);
sph_blake512(&blakeCtx, input, len);
sph_blake512(&blakeCtx, (unsigned char *)&hash1, sizeof(hash1));
sph_blake512_close(&blakeCtx, (void *)&hash5);
uint32_t *final = (uint32_t *)output;
combine_hashes(final, (uint32_t *)hash2, hash3, hash4, hash5);
}
int scanhash_heavy( uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[8];
uint32_t start_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
do {
heavyhash((unsigned char *)hash, (unsigned char *)pdata, 80);
if (hash[7] <= ptarget[7]) {
if (fulltest(hash, ptarget)) {
*hashes_done = pdata[19] - start_nonce;
return 1;
break;
}
}
pdata[19]++;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - start_nonce;
return 0;
}
bool register_heavy_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_heavy;
gate->hash = (void*)&heavyhash;
return true;
};

View File

@@ -1,4 +1,7 @@
#include "jha-gate.h"
#if !defined(JHA_8WAY) && !defined(JHA_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -133,3 +136,4 @@ int scanhash_jha( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -3,6 +3,8 @@
#include "keccak-hash-4way.h"
#include "keccak-gate.h"
#if defined(__AVX2__)
static const uint64_t RC[] = {
0x0000000000000001, 0x0000000000008082,
0x800000000000808A, 0x8000000080008000,
@@ -239,7 +241,7 @@ keccak512_8way_close(void *cc, void *dst)
#endif // AVX512
#if defined(__AVX2__)
// AVX2
#define INPUT_BUF(size) do { \
size_t j; \

View File

@@ -1,4 +1,6 @@
#include "algo-gate-api.h"
#include "keccak-gate.h"
#if !defined(KECCAK_8WAY) && !defined(KECCAK_4WAY)
#include <stdlib.h>
#include <string.h>
@@ -49,3 +51,4 @@ int scanhash_keccak( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "algo-gate-api.h"
#include "keccak-gate.h"
#if !defined(KECCAK_8WAY) && !defined(KECCAK_4WAY)
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
@@ -48,3 +51,4 @@ int scanhash_sha3d( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,63 +0,0 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "sph_luffa.h"
void luffahash(void *output, const void *input)
{
unsigned char _ALIGN(128) hash[64];
sph_luffa512_context ctx_luffa;
sph_luffa512_init(&ctx_luffa);
sph_luffa512 (&ctx_luffa, input, 80);
sph_luffa512_close(&ctx_luffa, (void*) hash);
memcpy(output, hash, 32);
}
int scanhash_luffa(int thr_id, struct work *work,
uint32_t max_nonce, uint64_t *hashes_done)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) hash64[8];
uint32_t _ALIGN(64) endiandata[20];
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
do {
be32enc(&endiandata[19], n);
luffahash(hash64, endiandata);
if (hash64[7] < Htarg && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return true;
}
n++;
} while (n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_luffa_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_luffa;
gate->hash = (void*)&luffahash;
return true;
};

View File

@@ -1,3 +1,6 @@
#if !defined(LUFFA_FOR_SSE2_H__)
#define LUFFA_FOR_SSE2_H__ 1
/*
* luffa_for_sse2.h
* Version 2.0 (Sep 15th 2009)
@@ -48,8 +51,6 @@
typedef struct {
uint32 buffer[8] __attribute((aligned(32)));
__m128i chainv[10] __attribute((aligned(32))); /* Chaining values */
// uint64 bitlen[2]; /* Message length in bits */
// uint32 rembitlen; /* Length of buffer data to be hashed */
int hashbitlen;
int rembytes;
} hashState_luffa;
@@ -67,4 +68,4 @@ HashReturn update_and_final_luffa( hashState_luffa *state, BitSequence* output,
int luffa_full( hashState_luffa *state, BitSequence* output, int hashbitlen,
const BitSequence* data, size_t inlen );
#endif // LUFFA_FOR_SSE2_H___

View File

@@ -115,9 +115,8 @@ void allium_16way_hash( void *state, const void *input )
intrlv_4x128( vhashA, hash0, hash1, hash2, hash3, 256 );
intrlv_4x128( vhashB, hash4, hash5, hash6, hash7, 256 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
cube_4way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_4way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhashB, 256 );
@@ -125,10 +124,8 @@ void allium_16way_hash( void *state, const void *input )
intrlv_4x128( vhashA, hash8, hash9, hash10, hash11, 256 );
intrlv_4x128( vhashB, hash12, hash13, hash14, hash15, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashA, vhashA, 32 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhashB, vhashB, 32 );
cube_4way_full( &ctx.cube, vhashA, 256, vhashA, 32 );
cube_4way_full( &ctx.cube, vhashB, 256, vhashB, 32 );
dintrlv_4x128( hash8, hash9, hash10, hash11, vhashA, 256 );
dintrlv_4x128( hash12, hash13, hash14, hash15, vhashB, 256 );
@@ -169,7 +166,6 @@ void allium_16way_hash( void *state, const void *input )
skein256_8way_update( &ctx.skein, vhashB, 32 );
skein256_8way_close( &ctx.skein, vhashB );
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
vhashA, 256 );
dintrlv_8x64( hash8, hash9, hash10, hash11, hash12, hash13, hash14, hash15,
@@ -179,77 +175,43 @@ void allium_16way_hash( void *state, const void *input )
intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state, state+32, state+64, state+96, vhash, 256 );
intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+128, state+160, state+192, state+224, vhash, 256 );
intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+256, state+288, state+320, state+352, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
groestl256_4way_init( &ctx.groestl, 32 );
groestl256_4way_update_close( &ctx.groestl, vhash, vhash, 256 );
groestl256_4way_full( &ctx.groestl, vhash, vhash, 256 );
dintrlv_4x128( state+384, state+416, state+448, state+480, vhash, 256 );
#else
update_and_final_groestl256( &ctx.groestl, state, hash0, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+32, hash1, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+64, hash2, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+96, hash3, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+128, hash4, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+160, hash5, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+192, hash6, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+224, hash7, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+256, hash8, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+288, hash9, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+320, hash10, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+352, hash11, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+384, hash12, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+416, hash13, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+448, hash14, 256 );
memcpy( &ctx.groestl, &allium_16way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, state+480, hash15, 256 );
groestl256_full( &ctx.groestl, state, hash0, 256 );
groestl256_full( &ctx.groestl, state+32, hash1, 256 );
groestl256_full( &ctx.groestl, state+64, hash2, 256 );
groestl256_full( &ctx.groestl, state+96, hash3, 256 );
groestl256_full( &ctx.groestl, state+128, hash4, 256 );
groestl256_full( &ctx.groestl, state+160, hash5, 256 );
groestl256_full( &ctx.groestl, state+192, hash6, 256 );
groestl256_full( &ctx.groestl, state+224, hash7, 256 );
groestl256_full( &ctx.groestl, state+256, hash8, 256 );
groestl256_full( &ctx.groestl, state+288, hash9, 256 );
groestl256_full( &ctx.groestl, state+320, hash10, 256 );
groestl256_full( &ctx.groestl, state+352, hash11, 256 );
groestl256_full( &ctx.groestl, state+384, hash12, 256 );
groestl256_full( &ctx.groestl, state+416, hash13, 256 );
groestl256_full( &ctx.groestl, state+448, hash14, 256 );
groestl256_full( &ctx.groestl, state+480, hash15, 256 );
#endif
}
@@ -393,28 +355,14 @@ void allium_8way_hash( void *hash, const void *input )
dintrlv_4x64( hash0, hash1, hash2, hash3, vhashA, 256 );
dintrlv_4x64( hash4, hash5, hash6, hash7, vhashB, 256 );
update_and_final_groestl256( &ctx.groestl, hash0, hash0, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash1, hash1, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash2, hash2, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash3, hash3, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash4, hash4, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash5, hash5, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash6, hash6, 256 );
memcpy( &ctx.groestl, &allium_8way_ctx.groestl,
sizeof(hashState_groestl256) );
update_and_final_groestl256( &ctx.groestl, hash7, hash7, 256 );
groestl256_full( &ctx.groestl, hash0, hash0, 256 );
groestl256_full( &ctx.groestl, hash1, hash1, 256 );
groestl256_full( &ctx.groestl, hash2, hash2, 256 );
groestl256_full( &ctx.groestl, hash3, hash3, 256 );
groestl256_full( &ctx.groestl, hash4, hash4, 256 );
groestl256_full( &ctx.groestl, hash5, hash5, 256 );
groestl256_full( &ctx.groestl, hash6, hash6, 256 );
groestl256_full( &ctx.groestl, hash7, hash7, 256 );
}
int scanhash_allium_8way( struct work *work, uint32_t max_nonce,

View File

@@ -1,4 +1,7 @@
#include "lyra2-gate.h"
#if !( defined(ALLIUM_16WAY) || defined(ALLIUM_8WAY) || defined(ALLIUM_4WAY) )
#include <memory.h>
#include "algo/blake/sph_blake.h"
#include "algo/keccak/sph_keccak.h"
@@ -107,3 +110,4 @@ int scanhash_allium( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -75,7 +75,6 @@ int scanhash_lyra2rev2_4way( struct work *work, uint32_t max_nonce,
bool init_lyra2rev2_4way_ctx();
#else
void lyra2rev2_hash( void *state, const void *input );
int scanhash_lyra2rev2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );

View File

@@ -1,4 +1,7 @@
#include "lyra2-gate.h"
#if !( defined(LYRA2H_8WAY) || defined(LYRA2H_4WAY) )
#include <memory.h>
#include <mm_malloc.h>
#include "lyra2.h"
@@ -71,3 +74,4 @@ int scanhash_lyra2h( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "lyra2-gate.h"
#if !( defined(LYRA2REV2_16WAY) || defined(LYRA2REV2_8WAY) || defined(LYRA2REV2_4WAY) )
#include <memory.h>
#include "algo/blake/sph_blake.h"
#include "algo/cubehash/sph_cubehash.h"
@@ -107,4 +110,4 @@ int scanhash_lyra2rev2( struct work *work,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -79,19 +79,16 @@ void lyra2rev3_16way_hash( void *state, const void *input )
dintrlv_2x256( hash14, hash15, vhash, 256 );
intrlv_4x128( vhash, hash0, hash1, hash2, hash3, 256 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 32 );
cube_4way_full( &ctx.cube, vhash, 256, vhash, 32 );
dintrlv_4x128( hash0, hash1, hash2, hash3, vhash, 256 );
intrlv_4x128( vhash, hash4, hash5, hash6, hash7, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 32 );
cube_4way_full( &ctx.cube, vhash, 256, vhash, 32 );
dintrlv_4x128( hash4, hash5, hash6, hash7, vhash, 256 );
intrlv_4x128( vhash, hash8, hash9, hash10, hash11, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 32 );
cube_4way_full( &ctx.cube, vhash, 256, vhash, 32 );
dintrlv_4x128( hash8, hash9, hash10, hash11, vhash, 256 );
intrlv_4x128( vhash, hash12, hash13, hash14, hash15, 256 );
cube_4way_init( &ctx.cube, 256, 16, 32 );
cube_4way_update_close( &ctx.cube, vhash, vhash, 32 );
cube_4way_full( &ctx.cube, vhash, 256, vhash, 32 );
dintrlv_4x128( hash12, hash13, hash14, hash15, vhash, 256 );
intrlv_2x256( vhash, hash0, hash1, 256 );
@@ -224,21 +221,14 @@ void lyra2rev3_8way_hash( void *state, const void *input )
LYRA2REV3( l2v3_wholeMatrix, hash6, 32, hash6, 32, hash6, 32, 1, 4, 4 );
LYRA2REV3( l2v3_wholeMatrix, hash7, 32, hash7, 32, hash7, 32, 1, 4, 4 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0, (const byte*) hash0, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1, (const byte*) hash1, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2, (const byte*) hash2, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3, (const byte*) hash3, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash4, (const byte*) hash4, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash5, (const byte*) hash5, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash6, (const byte*) hash6, 32 );
cubehashInit( &ctx.cube, 256, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash7, (const byte*) hash7, 32 );
cubehash_full( &ctx.cube, (byte*) hash0, 256, (const byte*) hash0, 32 );
cubehash_full( &ctx.cube, (byte*) hash1, 256, (const byte*) hash1, 32 );
cubehash_full( &ctx.cube, (byte*) hash2, 256, (const byte*) hash2, 32 );
cubehash_full( &ctx.cube, (byte*) hash3, 256, (const byte*) hash3, 32 );
cubehash_full( &ctx.cube, (byte*) hash4, 256, (const byte*) hash4, 32 );
cubehash_full( &ctx.cube, (byte*) hash5, 256, (const byte*) hash5, 32 );
cubehash_full( &ctx.cube, (byte*) hash6, 256, (const byte*) hash6, 32 );
cubehash_full( &ctx.cube, (byte*) hash7, 256, (const byte*) hash7, 32 );
LYRA2REV3( l2v3_wholeMatrix, hash0, 32, hash0, 32, hash0, 32, 1, 4, 4 );
LYRA2REV3( l2v3_wholeMatrix, hash1, 32, hash1, 32, hash1, 32, 1, 4, 4 );
@@ -265,25 +255,24 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
uint32_t *hash7 = &hash[7<<3];
uint32_t lane_hash[8] __attribute__ ((aligned (32)));
uint32_t *pdata = work->data;
const uint32_t *ptarget = work->target;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
const uint32_t Htarg = ptarget[7];
__m256i *noncev = (__m256i*)vdata + 19; // aligned
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark ) ( (uint32_t*)ptarget )[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
blake256_8way_init( &l2v3_8way_ctx.blake );
blake256_8way_update( &l2v3_8way_ctx.blake, vdata, 64 );
do
{
*noncev = mm256_bswap_32( _mm256_set_epi32( n+7, n+6, n+5, n+4,
n+3, n+2, n+1, n ) );
lyra2rev3_8way_hash( hash, vdata );
pdata[19] = n;
@@ -291,15 +280,17 @@ int scanhash_lyra2rev3_8way( struct work *work, const uint32_t max_nonce,
if ( unlikely( hash7[lane] <= Htarg ) )
{
extr_lane_8x32( lane_hash, hash, lane, 256 );
if ( likely( fulltest( lane_hash, ptarget ) && !opt_benchmark ) )
if ( likely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = n + lane;
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( likely( (n < max_nonce-8) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -1,4 +1,7 @@
#include "lyra2-gate.h"
#if !( defined(LYRA2REV3_16WAY) || defined(LYRA2REV3_8WAY) || defined(LYRA2REV3_4WAY) )
#include <memory.h>
#include "algo/blake/sph_blake.h"
#include "algo/cubehash/sph_cubehash.h"
@@ -96,4 +99,4 @@ int scanhash_lyra2rev3( struct work *work,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -97,41 +97,42 @@ void lyra2z_16way_hash( void *state, const void *input )
int scanhash_lyra2z_16way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*16] __attribute__ ((aligned (128)));
uint64_t hash[4*16] __attribute__ ((aligned (128)));
uint32_t vdata[20*16] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
const uint32_t last_nonce = max_nonce - 16;
__m512i *noncev = (__m512i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm512_bswap32_intrlv80_16x32( vdata, pdata );
*noncev = _mm512_set_epi32( n+15, n+14, n+13, n+12, n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4, n+ 3, n+ 2, n +1, n );
lyra2z_16way_midstate( vdata );
do {
*noncev = mm512_bswap_32( _mm512_set_epi32( n+15, n+14, n+13, n+12,
n+11, n+10, n+ 9, n+ 8,
n+ 7, n+ 6, n+ 5, n+ 4,
n+ 3, n+ 2, n+ 1, n ) );
lyra2z_16way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 16; i++ )
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget )
&& !opt_benchmark )
for ( int lane = 0; lane < 16; lane++ )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
const uint64_t *lane_hash = hash + (lane<<2);
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm512_add_epi32( *noncev, m512_const1_32( 16 ) );
n += 16;
} while ( (n < max_nonce-16) && !work_restart[thr_id].restart);
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -195,39 +196,40 @@ void lyra2z_8way_hash( void *state, const void *input )
int scanhash_lyra2z_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*8] __attribute__ ((aligned (64)));
uint64_t hash[4*8] __attribute__ ((aligned (64)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 8;
uint32_t n = first_nonce;
__m256i *noncev = (__m256i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm256_bswap32_intrlv80_8x32( vdata, pdata );
*noncev = _mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n );
lyra2z_8way_midstate( vdata );
do {
*noncev = mm256_bswap_32(
_mm256_set_epi32( n+7, n+6, n+5, n+4, n+3, n+2, n+1, n ) );
lyra2z_8way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 8; i++ )
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget )
&& !opt_benchmark )
for ( int lane = 0; lane < 8; lane++ )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
const uint64_t *lane_hash = hash + (lane<<2);
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm256_add_epi32( *noncev, m256_const1_32( 8 ) );
n += 8;
} while ( (n < max_nonce-8) && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}
@@ -274,39 +276,40 @@ void lyra2z_4way_hash( void *state, const void *input )
int scanhash_lyra2z_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t hash[8*4] __attribute__ ((aligned (64)));
uint64_t hash[4*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
const uint32_t last_nonce = max_nonce - 4;
uint32_t n = first_nonce;
__m128i *noncev = (__m128i*)vdata + 19; // aligned
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if ( opt_benchmark )
ptarget[7] = 0x0000ff;
if ( bench ) ptarget[7] = 0x0000ff;
mm128_bswap32_intrlv80_4x32( vdata, pdata );
*noncev = _mm_set_epi32( n+3, n+2, n+1, n );
lyra2z_4way_midstate( vdata );
do {
*noncev = mm128_bswap_32( _mm_set_epi32( n+3, n+2, n+1, n ) );
lyra2z_4way_hash( hash, vdata );
pdata[19] = n;
for ( int i = 0; i < 4; i++ )
if ( (hash+(i<<3))[7] <= Htarg && fulltest( hash+(i<<3), ptarget )
&& !opt_benchmark )
for ( int lane = 0; lane < 4; lane++ )
{
pdata[19] = n+i;
submit_lane_solution( work, hash+(i<<3), mythr, i );
const uint64_t *lane_hash = hash + (lane<<2);
if ( unlikely( valid_hash( lane_hash, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n + lane );
submit_lane_solution( work, lane_hash, mythr, lane );
}
}
*noncev = _mm_add_epi32( *noncev, m128_const1_32( 4 ) );
n += 4;
} while ( (n < max_nonce-4) && !work_restart[thr_id].restart);
} while ( likely( (n < last_nonce) && !work_restart[thr_id].restart ) );
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
}

View File

@@ -1,6 +1,9 @@
#include <memory.h>
#include <mm_malloc.h>
#include "lyra2-gate.h"
#if !( defined(LYRA2Z_16WAY) || defined(LYRA2Z_8WAY) || defined(LYRA2Z_4WAY) )
#include "lyra2.h"
#include "algo/blake/sph_blake.h"
#include "simd-utils.h"
@@ -80,4 +83,4 @@ int scanhash_lyra2z( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -96,32 +96,30 @@ int scanhash_phi2( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash[8];
uint32_t _ALIGN(128) endiandata[36];
uint32_t _ALIGN(128) edata[36];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
uint32_t n = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
if(opt_benchmark){
ptarget[7] = 0x00ff;
}
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
if( bench ) ptarget[7] = 0x00ff;
phi2_has_roots = false;
for ( int i=0; i < 36; i++ )
for ( int i = 0; i < 36; i++ )
{
be32enc(&endiandata[i], pdata[i]);
be32enc( &edata[i], pdata[i] );
if ( i >= 20 && pdata[i] ) phi2_has_roots = true;
}
do {
be32enc( &endiandata[19], n );
phi2_hash( hash, endiandata );
if ( hash[7] < Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
edata[19] = n;
phi2_hash( hash, edata );
if ( valid_hash( hash, ptarget ) && !opt_benchmark )
{
pdata[19] = n;
be32enc( pdata+19, n );
submit_solution( work, hash, mythr );
}
n++;

View File

@@ -89,6 +89,9 @@ inline void initState( uint64_t State[/*16*/] )
*
* @param v A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
*/
#if !defined(__AVX512F__) && !defined(__AVX2__) && !defined(__SSE2__)
inline static void blake2bLyra( uint64_t *v )
{
ROUND_LYRA(0);
@@ -114,6 +117,8 @@ inline static void reducedBlake2bLyra( uint64_t *v )
ROUND_LYRA(0);
}
#endif
/**
* Performs a squeeze operation, using Blake2b's G function as the
* internal permutation

View File

@@ -171,7 +171,6 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7) \
LYRA_ROUND_AVX(s0,s1,s2,s3,s4,s5,s6,s7)
#endif // AVX2 else SSE2
// Scalar
@@ -200,7 +199,6 @@ static inline uint64_t rotr64( const uint64_t w, const unsigned c ){
G(r,6,v[ 2],v[ 7],v[ 8],v[13]); \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]);
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
union _ovly_512

View File

@@ -1,4 +1,7 @@
#include "nist5-gate.h"
#if !defined(NIST5_8WAY) && !defined(NIST5_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -105,13 +108,4 @@ int scanhash_nist5( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
/*
bool register_nist5_algo( algo_gate_t* gate )
{
gate->optimizations = SSE2_OPT | AES_OPT;
init_nist5_ctx();
gate->scanhash = (void*)&scanhash_nist5;
gate->hash = (void*)&nist5hash;
return true;
};
*/
#endif

View File

@@ -1,5 +1,8 @@
#include "cpuminer-config.h"
#include "anime-gate.h"
#if !defined(ANIME_8WAY) && !defined(ANIME_4WAY)
#include <stdio.h>
#include <string.h>
#include <stdint.h>
@@ -169,4 +172,4 @@ int scanhash_anime( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "hmq1725-gate.h"
#if !defined(HMQ1725_8WAY) && !defined(HMQ1725_4WAY)
#include <string.h>
#include <stdint.h>
#include "algo/blake/sph_blake.h"
@@ -7,10 +10,7 @@
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
@@ -21,6 +21,9 @@
#if defined(__AES__)
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/echo/aes_ni/hash_api.h"
#else
#include "algo/groestl/sph_groestl.h"
#include "algo/echo/sph_echo.h"
#endif
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
@@ -392,3 +395,4 @@ int scanhash_hmq1725( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,5 +1,8 @@
#include "cpuminer-config.h"
#include "quark-gate.h"
#if !defined(QUARK_8WAY) && !defined(QUARK_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -137,4 +140,4 @@ int scanhash_quark( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "deep-gate.h"
#if !defined(DEEP_8WAY) && !defined(DEEP_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -114,4 +117,4 @@ int scanhash_deep( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "qubit-gate.h"
#if !defined(QUBIT_8WAY) && !defined(QUBIT_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -126,4 +129,4 @@ int scanhash_qubit( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "lbry-gate.h"
#if !defined(LBRY_16WAY) && !defined(LBRY_8WAY) && !defined(LBRY_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -100,3 +103,4 @@ int scanhash_lbry( struct work *work, uint32_t max_nonce,
pdata[27] = n;
return 0;
}
#endif

View File

@@ -1,505 +0,0 @@
/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2014 pooler, 2015 Jordan Earls
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "cpuminer-config.h"
#include "algo-gate-api.h"
#include <stdlib.h>
#include <string.h>
#define BLOCK_HEADER_SIZE 80
// windows
#ifndef htobe32
#define htobe32(x) ((uint32_t)htonl((uint32_t)(x)))
#endif
#ifdef _MSC_VER
#define ROTL(a, b) _rotl(a,b)
#define ROTR(a, b) _rotr(a,b)
#else
#define ROTL(a, b) (((a) << b) | ((a) >> (32 - b)))
#define ROTR(a, b) ((a >> b) | (a << (32 - b)))
#endif
#if defined(_MSC_VER) && defined(_M_X64)
#define _VECTOR __vectorcall
#include <intrin.h>
//#include <emmintrin.h> //SSE2
//#include <pmmintrin.h> //SSE3
//#include <tmmintrin.h> //SSSE3
//#include <smmintrin.h> //SSE4.1
//#include <nmmintrin.h> //SSE4.2
//#include <ammintrin.h> //SSE4A
//#include <wmmintrin.h> //AES
//#include <immintrin.h> //AVX
#define OPT_COMPATIBLE
#elif defined(__GNUC__) && defined(__x86_64__)
#include <x86intrin.h>
#define _VECTOR
#endif
static __thread char *scratchbuf;
#ifdef OPT_COMPATIBLE
static void _VECTOR xor_salsa8(__m128i B[4], const __m128i Bx[4], int i)
{
__m128i X0, X1, X2, X3;
if (i <= 128) {
// a xor 0 = a
X0 = B[0] = Bx[0];
X1 = B[1] = Bx[1];
X2 = B[2] = Bx[2];
X3 = B[3] = Bx[3];
} else {
X0 = B[0] = _mm_xor_si128(B[0], Bx[0]);
X1 = B[1] = _mm_xor_si128(B[1], Bx[1]);
X2 = B[2] = _mm_xor_si128(B[2], Bx[2]);
X3 = B[3] = _mm_xor_si128(B[3], Bx[3]);
}
for (i = 0; i < 4; i++) {
/* Operate on columns. */
X1.m128i_u32[0] ^= ROTL(X0.m128i_u32[0] + X3.m128i_u32[0], 7);
X2.m128i_u32[1] ^= ROTL(X1.m128i_u32[1] + X0.m128i_u32[1], 7);
X3.m128i_u32[2] ^= ROTL(X2.m128i_u32[2] + X1.m128i_u32[2], 7);
X0.m128i_u32[3] ^= ROTL(X3.m128i_u32[3] + X2.m128i_u32[3], 7);
X2.m128i_u32[0] ^= ROTL(X1.m128i_u32[0] + X0.m128i_u32[0], 9);
X3.m128i_u32[1] ^= ROTL(X2.m128i_u32[1] + X1.m128i_u32[1], 9);
X0.m128i_u32[2] ^= ROTL(X3.m128i_u32[2] + X2.m128i_u32[2], 9);
X1.m128i_u32[3] ^= ROTL(X0.m128i_u32[3] + X3.m128i_u32[3], 9);
X3.m128i_u32[0] ^= ROTL(X2.m128i_u32[0] + X1.m128i_u32[0], 13);
X0.m128i_u32[1] ^= ROTL(X3.m128i_u32[1] + X2.m128i_u32[1], 13);
X1.m128i_u32[2] ^= ROTL(X0.m128i_u32[2] + X3.m128i_u32[2], 13);
X2.m128i_u32[3] ^= ROTL(X1.m128i_u32[3] + X0.m128i_u32[3], 13);
X0.m128i_u32[0] ^= ROTL(X3.m128i_u32[0] + X2.m128i_u32[0], 18);
X1.m128i_u32[1] ^= ROTL(X0.m128i_u32[1] + X3.m128i_u32[1], 18);
X2.m128i_u32[2] ^= ROTL(X1.m128i_u32[2] + X0.m128i_u32[2], 18);
X3.m128i_u32[3] ^= ROTL(X2.m128i_u32[3] + X1.m128i_u32[3], 18);
/* Operate on rows. */
X0.m128i_u32[1] ^= ROTL(X0.m128i_u32[0] + X0.m128i_u32[3], 7); X1.m128i_u32[2] ^= ROTL(X1.m128i_u32[1] + X1.m128i_u32[0], 7);
X2.m128i_u32[3] ^= ROTL(X2.m128i_u32[2] + X2.m128i_u32[1], 7); X3.m128i_u32[0] ^= ROTL(X3.m128i_u32[3] + X3.m128i_u32[2], 7);
X0.m128i_u32[2] ^= ROTL(X0.m128i_u32[1] + X0.m128i_u32[0], 9); X1.m128i_u32[3] ^= ROTL(X1.m128i_u32[2] + X1.m128i_u32[1], 9);
X2.m128i_u32[0] ^= ROTL(X2.m128i_u32[3] + X2.m128i_u32[2], 9); X3.m128i_u32[1] ^= ROTL(X3.m128i_u32[0] + X3.m128i_u32[3], 9);
X0.m128i_u32[3] ^= ROTL(X0.m128i_u32[2] + X0.m128i_u32[1], 13); X1.m128i_u32[0] ^= ROTL(X1.m128i_u32[3] + X1.m128i_u32[2], 13);
X2.m128i_u32[1] ^= ROTL(X2.m128i_u32[0] + X2.m128i_u32[3], 13); X3.m128i_u32[2] ^= ROTL(X3.m128i_u32[1] + X3.m128i_u32[0], 13);
X0.m128i_u32[0] ^= ROTL(X0.m128i_u32[3] + X0.m128i_u32[2], 18); X1.m128i_u32[1] ^= ROTL(X1.m128i_u32[0] + X1.m128i_u32[3], 18);
X2.m128i_u32[2] ^= ROTL(X2.m128i_u32[1] + X2.m128i_u32[0], 18); X3.m128i_u32[3] ^= ROTL(X3.m128i_u32[2] + X3.m128i_u32[1], 18);
}
B[0] = _mm_add_epi32(B[0], X0);
B[1] = _mm_add_epi32(B[1], X1);
B[2] = _mm_add_epi32(B[2], X2);
B[3] = _mm_add_epi32(B[3], X3);
}
#else
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16], int i)
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
if (i <= 128) {
// a xor 0 = a
x00 = B[ 0] = Bx[ 0]; x01 = B[ 1] = Bx[ 1]; x02 = B[ 2] = Bx[ 2]; x03 = B[ 3] = Bx[ 3];
x04 = B[ 4] = Bx[ 4]; x05 = B[ 5] = Bx[ 5]; x06 = B[ 6] = Bx[ 6]; x07 = B[ 7] = Bx[ 7];
x08 = B[ 8] = Bx[ 8]; x09 = B[ 9] = Bx[ 9]; x10 = B[10] = Bx[10]; x11 = B[11] = Bx[11];
x12 = B[12] = Bx[12]; x13 = B[13] = Bx[13]; x14 = B[14] = Bx[14]; x15 = B[15] = Bx[15];
} else {
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
}
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
#endif
static const uint32_t sha256_k[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
do { \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1; \
} while (0)
/* Adjusted round function for rotating state */
#define RNDr(S, W, i) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + sha256_k[i])
static void sha256_transform_volatile(uint32_t *state, uint32_t *block)
{
uint32_t* W=block; //note: block needs to be a mutable 64 int32_t
uint32_t S[8];
uint32_t t0, t1;
int i;
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0);
RNDr(S, W, 1);
RNDr(S, W, 2);
RNDr(S, W, 3);
RNDr(S, W, 4);
RNDr(S, W, 5);
RNDr(S, W, 6);
RNDr(S, W, 7);
RNDr(S, W, 8);
RNDr(S, W, 9);
RNDr(S, W, 10);
RNDr(S, W, 11);
RNDr(S, W, 12);
RNDr(S, W, 13);
RNDr(S, W, 14);
RNDr(S, W, 15);
RNDr(S, W, 16);
RNDr(S, W, 17);
RNDr(S, W, 18);
RNDr(S, W, 19);
RNDr(S, W, 20);
RNDr(S, W, 21);
RNDr(S, W, 22);
RNDr(S, W, 23);
RNDr(S, W, 24);
RNDr(S, W, 25);
RNDr(S, W, 26);
RNDr(S, W, 27);
RNDr(S, W, 28);
RNDr(S, W, 29);
RNDr(S, W, 30);
RNDr(S, W, 31);
RNDr(S, W, 32);
RNDr(S, W, 33);
RNDr(S, W, 34);
RNDr(S, W, 35);
RNDr(S, W, 36);
RNDr(S, W, 37);
RNDr(S, W, 38);
RNDr(S, W, 39);
RNDr(S, W, 40);
RNDr(S, W, 41);
RNDr(S, W, 42);
RNDr(S, W, 43);
RNDr(S, W, 44);
RNDr(S, W, 45);
RNDr(S, W, 46);
RNDr(S, W, 47);
RNDr(S, W, 48);
RNDr(S, W, 49);
RNDr(S, W, 50);
RNDr(S, W, 51);
RNDr(S, W, 52);
RNDr(S, W, 53);
RNDr(S, W, 54);
RNDr(S, W, 55);
RNDr(S, W, 56);
RNDr(S, W, 57);
RNDr(S, W, 58);
RNDr(S, W, 59);
RNDr(S, W, 60);
RNDr(S, W, 61);
RNDr(S, W, 62);
RNDr(S, W, 63);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
// standard sha256 hash
#if 1
static void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
{
uint32_t _ALIGN(64) S[16];
uint32_t _ALIGN(64) T[64];
int i, r;
sha256_init(S);
for (r = len; r > -9; r -= 64) {
if (r < 64)
memset(T, 0, 64);
memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r));
if (r >= 0 && r < 64)
((unsigned char *)T)[r] = 0x80;
for (i = 0; i < 16; i++)
T[i] = be32dec(T + i);
if (r < 56)
T[15] = 8 * len;
//sha256_transform(S, T, 0);
sha256_transform_volatile(S, T);
}
for (i = 0; i < 8; i++)
be32enc((uint32_t *)hash + i, S[i]);
}
#else
#include <openssl/sha.h>
static void sha256_hash(unsigned char *hash, const unsigned char *data, int len)
{
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, data, len);
SHA256_Final(hash, &ctx);
}
#endif
// hash exactly 64 bytes (ie, sha256 block size)
static void sha256_hash512(uint32_t *hash, const uint32_t *data)
{
uint32_t _ALIGN(64) S[16];
uint32_t _ALIGN(64) T[64];
uchar _ALIGN(64) E[64*4] = { 0 };
int i;
sha256_init(S);
for (i = 0; i < 16; i++)
T[i] = be32dec(&data[i]);
sha256_transform_volatile(S, T);
E[3] = 0x80;
E[61] = 0x02; // T[15] = 8 * 64 => 0x200;
sha256_transform_volatile(S, (uint32_t*)E);
for (i = 0; i < 8; i++)
be32enc(&hash[i], S[i]);
}
void pluck_hash(uint32_t *hash, const uint32_t *data, uchar *hashbuffer, const int N)
{
int size = N * 1024;
sha256_hash(hashbuffer, (void*)data, BLOCK_HEADER_SIZE);
memset(&hashbuffer[32], 0, 32);
for(int i = 64; i < size - 32; i += 32)
{
uint32_t _ALIGN(64) randseed[16];
uint32_t _ALIGN(64) randbuffer[16];
uint32_t _ALIGN(64) joint[16];
//i-4 because we use integers for all references against this, and we don't want to go 3 bytes over the defined area
//we could use size here, but then it's probable to use 0 as the value in most cases
int randmax = i - 4;
//setup randbuffer to be an array of random indexes
memcpy(randseed, &hashbuffer[i - 64], 64);
if(i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64);
//else memset(randbuffer, 0, 64);
xor_salsa8((void*)randbuffer, (void*)randseed, i);
memcpy(joint, &hashbuffer[i - 32], 32);
//use the last hash value as the seed
for (int j = 32; j < 64; j += 4)
{
//every other time, change to next random index
//randmax - 32 as otherwise we go beyond memory that's already been written to
uint32_t rand = randbuffer[(j - 32) >> 2] % (randmax - 32);
joint[j >> 2] = *((uint32_t *)&hashbuffer[rand]);
}
sha256_hash512((uint32_t*) &hashbuffer[i], joint);
//setup randbuffer to be an array of random indexes
//use last hash value and previous hash value(post-mixing)
memcpy(randseed, &hashbuffer[i - 32], 64);
if(i > 128) memcpy(randbuffer, &hashbuffer[i - 128], 64);
//else memset(randbuffer, 0, 64);
xor_salsa8((void*)randbuffer, (void*)randseed, i);
//use the last hash value as the seed
for (int j = 0; j < 32; j += 2)
{
uint32_t rand = randbuffer[j >> 1] % randmax;
*((uint32_t *)(hashbuffer + rand)) = *((uint32_t *)(hashbuffer + j + randmax));
}
}
memcpy(hash, hashbuffer, 32);
}
int scanhash_pluck( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) hash[8];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
volatile uint8_t *restart = &(work_restart[thr_id].restart);
uint32_t n = first_nonce;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0ffff;
for (int i=0; i < 19; i++)
be32enc(&endiandata[i], pdata[i]);
const uint32_t Htarg = ptarget[7];
do {
//be32enc(&endiandata[19], n);
endiandata[19] = n;
pluck_hash(hash, endiandata, scratchbuf, opt_pluck_n);
if (hash[7] <= Htarg && fulltest(hash, ptarget))
{
*hashes_done = n - first_nonce + 1;
pdata[19] = htobe32(endiandata[19]);
return 1;
}
n++;
} while (n < max_nonce && !(*restart));
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool pluck_miner_thread_init( int thr_id )
{
scratchbuf = malloc( 128 * 1024 );
if ( scratchbuf )
return true;
applog( LOG_ERR, "Thread %u: Pluck buffer allocation failed", thr_id );
return false;
}
bool register_pluck_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->miner_thread_init = (void*)&pluck_miner_thread_init;
gate->scanhash = (void*)&scanhash_pluck;
gate->hash = (void*)&pluck_hash;
opt_target_factor = 65536.0;
return true;
};

View File

@@ -1,4 +1,7 @@
#include "sha256t-gate.h"
#if !defined(SHA256T_16WAY) && !defined(SHA256T_8WAY) && !defined(SHA256T_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -102,3 +105,4 @@ int scanhash_sha256q( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "sha256t-gate.h"
#if !defined(SHA256T_16WAY) && !defined(SHA256T_8WAY) && !defined(SHA256T_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -98,3 +101,5 @@ int scanhash_sha256t( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "algo-gate-api.h"
#if !defined(SKEIN_8WAY) && !defined(SKEIN_4WAY)
#include <string.h>
#include <stdint.h>
#include "sph_skein.h"
@@ -52,4 +55,4 @@ int scanhash_skein( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "skein-gate.h"
#if !defined(SKEIN_8WAY) && !defined(SKEIN_4WAY)
#include <string.h>
#include <stdint.h>
@@ -66,4 +69,4 @@ int scanhash_skein2( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -252,12 +252,6 @@ SPH_XCAT(HASH, _addbits_and_close)(void *cc,
current = (unsigned)sc->count_low & (SPH_BLEN - 1U);
#endif
//uint64_t *b= (uint64_t*)sc->buf;
//uint64_t *s= (uint64_t*)sc->state;
// printf("Sptr 1= %u\n",current);
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[0], b[1], b[2], b[3] );
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[4], b[5], b[6], b[7] );
#ifdef PW01
sc->buf[current ++] = (0x100 | (ub & 0xFF)) >> (8 - n);
#else
@@ -269,10 +263,6 @@ SPH_XCAT(HASH, _addbits_and_close)(void *cc,
}
#endif
// printf("Sptr 2= %u\n",current);
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[0], b[1], b[2], b[3] );
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[4], b[5], b[6], b[7] );
if (current > SPH_MAXPAD) {
memset(sc->buf + current, 0, SPH_BLEN - current);
RFUN(sc->buf, SPH_VAL);
@@ -333,16 +323,8 @@ SPH_XCAT(HASH, _addbits_and_close)(void *cc,
#endif
#endif
// printf("Sptr 3= %u\n",current);
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[0], b[1], b[2], b[3] );
// printf("SBuf %016llx %016llx %016llx %016llx\n", b[4], b[5], b[6], b[7] );
RFUN(sc->buf, SPH_VAL);
// printf("Sptr after= %u\n",current);
// printf("SState %016llx %016llx %016llx %016llx\n", s[0], s[1], s[2], s[3] );
// printf("SState %016llx %016llx %016llx %016llx\n", s[4], s[5], s[6], s[7] );
#ifdef SPH_NO_OUTPUT
(void)dst;
(void)rnum;

View File

@@ -1,4 +1,7 @@
#include "c11-gate.h"
#if !defined(C11_8WAY) && !defined(C11_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -9,9 +12,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
@@ -149,3 +149,4 @@ int scanhash_c11( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,131 +0,0 @@
#include "algo-gate-api.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
//#define DEBUG_ALGO
extern void freshhash(void* output, const void* input, uint32_t len)
{
unsigned char hash[128]; // uint32_t hashA[16], hashB[16];
#define hashA hash
#define hashB hash+64
sph_shavite512_context ctx_shavite;
sph_simd512_context ctx_simd;
sph_echo512_context ctx_echo;
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, input, len);
sph_shavite512_close(&ctx_shavite, hashA);
sph_simd512_init(&ctx_simd);
sph_simd512(&ctx_simd, hashA, 64);
sph_simd512_close(&ctx_simd, hashB);
sph_shavite512_init(&ctx_shavite);
sph_shavite512(&ctx_shavite, hashB, 64);
sph_shavite512_close(&ctx_shavite, hashA);
sph_simd512_init(&ctx_simd);
sph_simd512(&ctx_simd, hashA, 64);
sph_simd512_close(&ctx_simd, hashB);
sph_echo512_init(&ctx_echo);
sph_echo512(&ctx_echo, hashB, 64);
sph_echo512_close(&ctx_echo, hashA);
memcpy(output, hash, 32);
}
int scanhash_fresh( struct work *work,
uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t len = 80;
int thr_id = mythr->id; // thr_id arg is deprecated
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
const uint32_t Htarg = ptarget[7];
#ifdef _MSC_VER
uint32_t __declspec(align(32)) hash64[8];
#else
uint32_t hash64[8] __attribute__((aligned(32)));
#endif
uint32_t endiandata[32];
uint64_t htmax[] = {
0,
0xF,
0xFF,
0xFFF,
0xFFFF,
0x10000000
};
uint32_t masks[] = {
0xFFFFFFFF,
0xFFFFFFF0,
0xFFFFFF00,
0xFFFFF000,
0xFFFF0000,
0
};
// we need bigendian data...
for (int k = 0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
#ifdef DEBUG_ALGO
if (Htarg != 0)
printf("[%d] Htarg=%X\n", thr_id, Htarg);
#endif
for (int m=0; m < 6; m++) {
if (Htarg <= htmax[m]) {
uint32_t mask = masks[m];
do {
pdata[19] = ++n;
be32enc(&endiandata[19], n);
freshhash(hash64, endiandata, len);
#ifndef DEBUG_ALGO
if ((!(hash64[7] & mask)) && fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
#else
if (!(n % 0x1000) && !thr_id) printf(".");
if (!(hash64[7] & mask)) {
printf("[%d]",thr_id);
if (fulltest(hash64, ptarget)) {
*hashes_done = n - first_nonce + 1;
return true;
}
}
#endif
} while (n < max_nonce && !work_restart[thr_id].restart);
// see blake.c if else to understand the loop on htmax => mask
break;
}
}
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
bool register_fresh_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->scanhash = (void*)&scanhash_fresh;
gate->hash = (void*)&freshhash;
opt_target_factor = 256.0;
return true;
};

View File

@@ -1,5 +1,7 @@
#include "timetravel-gate.h"
#if !defined(TIMETRAVEL_8WAY) && !defined(TIMETRAVEL_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -290,4 +292,4 @@ int scanhash_timetravel( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "timetravel10-gate.h"
#if !defined(TIMETRAVEL10_8WAY) && !defined(TIMETRAVEL10_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -329,3 +332,4 @@ int scanhash_timetravel10( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -1,12 +1,13 @@
#include "tribus-gate.h"
#if !defined(TRIBUS_8WAY) && !defined(TRIBUS_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/jh//sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#ifdef __AES__
#include "algo/echo/aes_ni/hash_api.h"
#else
@@ -117,4 +118,4 @@ int scanhash_tribus( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,5 +1,8 @@
#include "cpuminer-config.h"
#include "x11-gate.h"
#if !defined(X11_8WAY) && !defined(X11_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -10,9 +13,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
@@ -172,3 +172,4 @@ int scanhash_x11( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,5 +1,8 @@
#include "cpuminer-config.h"
#include "x11evo-gate.h"
#if !defined(X11EVO_8WAY) && !defined(X11EVO_4WAY)
#include <string.h>
#include <stdint.h>
#include <compat/portable_endian.h>
@@ -8,10 +11,7 @@
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#ifdef __AES__
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/echo/aes_ni/hash_api.h"
@@ -204,3 +204,4 @@ int scanhash_x11evo( struct work* work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x11gost-gate.h"
#if !defined(X11GOST_8WAY) && !defined(X11GOST_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -10,9 +13,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
@@ -160,3 +160,4 @@ int scanhash_x11gost( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,5 +1,7 @@
#include "x12-gate.h"
#if !defined(X12_8WAY) && !defined(X12_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -12,9 +14,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/luffa/luffa_for_sse2.h"
@@ -177,3 +176,4 @@ int scanhash_x12( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,262 +0,0 @@
/**
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2015 kernels10, tpruvot
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file drop.c
* @author kernels10 <kernels10@gmail.com.com>
* @author tpruvot <tpruvot@github>
*/
#define POK_BOOL_MASK 0x00008000
#define POK_DATA_MASK 0xFFFF0000
#include "algo-gate-api.h"
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/echo/sph_echo.h"
#include "algo/fugue//sph_fugue.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/simd/sph_simd.h"
#include "algo/shavite/sph_shavite.h"
static void shiftr_lp(const uint32_t *input, uint32_t *output, unsigned int shift)
{
if(!shift) {
memcpy(output, input, 64);
return;
}
memset(output, 0, 64);
for(int i = 0; i < 15; ++i) {
output[i + 1] |= (input[i] >> (32 - shift));
output[i] |= (input[i] << shift);
}
output[15] |= (input[15] << shift);
return;
}
static void switchHash(const void *input, void *output, int id)
{
/*
sph_keccak512_context ctx_keccak;
sph_blake512_context ctx_blake;
sph_groestl512_context ctx_groestl;
sph_skein512_context ctx_skein;
sph_luffa512_context ctx_luffa;
sph_echo512_context ctx_echo;
sph_simd512_context ctx_simd;
sph_cubehash512_context ctx_cubehash;
sph_fugue512_context ctx_fugue;
sph_shavite512_context ctx_shavite;
switch(id) {
case 0:
sph_keccak512_init(&ctx_keccak); sph_keccak512(&ctx_keccak, input, 64); sph_keccak512_close(&ctx_keccak, output);
break;
case 1:
sph_blake512_init(&ctx_blake); sph_blake512(&ctx_blake, input, 64); sph_blake512_close(&ctx_blake, output);
break;
case 2:
sph_groestl512_init(&ctx_groestl); sph_groestl512(&ctx_groestl, input, 64); sph_groestl512_close(&ctx_groestl, output);
break;
case 3:
sph_skein512_init(&ctx_skein); sph_skein512(&ctx_skein, input, 64); sph_skein512_close(&ctx_skein, output);
break;
case 4:
sph_luffa512_init(&ctx_luffa); sph_luffa512(&ctx_luffa, input, 64); sph_luffa512_close(&ctx_luffa, output);
break;
case 5:
sph_echo512_init(&ctx_echo); sph_echo512(&ctx_echo, input, 64); sph_echo512_close(&ctx_echo, output);
break;
case 6:
sph_shavite512_init(&ctx_shavite); sph_shavite512(&ctx_shavite, input, 64); sph_shavite512_close(&ctx_shavite, output);
break;
case 7:
sph_fugue512_init(&ctx_fugue); sph_fugue512(&ctx_fugue, input, 64); sph_fugue512_close(&ctx_fugue, output);
break;
case 8:
sph_simd512_init(&ctx_simd); sph_simd512(&ctx_simd, input, 64); sph_simd512_close(&ctx_simd, output);
break;
case 9:
sph_cubehash512_init(&ctx_cubehash); sph_cubehash512(&ctx_cubehash, input, 64); sph_cubehash512_close(&ctx_cubehash, output);
break;
default:
break;
}
*/
}
void droplp_hash(void *state, const void *input)
{
uint32_t _ALIGN(64) hash[2][16];
sph_jh512_context ctx_jh;
uint32_t *hashA = hash[0];
uint32_t *hashB = hash[1];
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, input, 80);
sph_jh512_close(&ctx_jh, (void*)(hashA));
unsigned int startPosition = hashA[0] % 31;
unsigned int i = 0;
int j = 0;
int start = 0;
for (i = startPosition; i < 31; i+=9) {
start = i % 10;
for (j = start; j < 10; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
for (j = 0; j < start; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
}
for (i = 0; i < startPosition; i += 9) {
start = i % 10;
for (j = start; j < 10; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
for (j = 0; j < start; j++) {
shiftr_lp(hashA, hashB, (i & 3));
switchHash((const void*)hashB, (void*)hashA, j);
}
}
memcpy(state, hashA, 32);
}
static void droplp_hash_pok(void *output, uint32_t *pdata, const uint32_t version)
{
uint32_t _ALIGN(64) hash[8];
uint32_t pok;
pdata[0] = version;
droplp_hash(hash, pdata);
// fill PoK
pok = version | (hash[0] & POK_DATA_MASK);
if (pdata[0] != pok) {
pdata[0] = pok;
droplp_hash(hash, pdata);
}
memcpy(output, hash, 32);
}
int scanhash_drop( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(64) hash[16];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t version = pdata[0] & (~POK_DATA_MASK);
const uint32_t first_nonce = pdata[19];
uint32_t nonce = first_nonce;
int thr_id = mythr->id; // thr_id arg is deprecated
#define tmpdata pdata
if (opt_benchmark)
ptarget[7] = 0x07ff;
const uint32_t htarg = ptarget[7];
do {
tmpdata[19] = nonce;
droplp_hash_pok(hash, tmpdata, version);
if (hash[7] <= htarg && fulltest(hash, ptarget)) {
pdata[0] = tmpdata[0];
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
if (opt_debug)
applog(LOG_INFO, "found nonce %x", nonce);
return 1;
}
nonce++;
} while (nonce < max_nonce && !work_restart[thr_id].restart);
pdata[19] = nonce;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
void drop_get_new_work( struct work* work, struct work* g_work, int thr_id,
uint32_t* end_nonce_ptr )
{
// ignore POK in first word
// const int nonce_i = 19;
const int wkcmp_sz = 72; // (19-1) * sizeof(uint32_t)
uint32_t *nonceptr = algo_gate.get_nonceptr( work->data );
if ( memcmp( &work->data[1], &g_work->data[1], wkcmp_sz )
|| ( *nonceptr >= *end_nonce_ptr ) )
{
work_free( work );
work_copy( work, g_work );
*nonceptr = ( 0xffffffffU / opt_n_threads ) * thr_id;
if ( opt_randomize )
*nonceptr += ( (rand() *4 ) & UINT32_MAX ) / opt_n_threads;
*end_nonce_ptr = ( 0xffffffffU / opt_n_threads ) * (thr_id+1) - 0x20;
}
else
++(*nonceptr);
}
void drop_display_pok( struct work* work )
{
if ( work->data[0] & 0x00008000 )
applog(LOG_BLUE, "POK received: %08xx", work->data[0] );
}
int drop_get_work_data_size() { return 80; }
// Need to fix POK offset problems like zr5
bool register_drop_algo( algo_gate_t* gate )
{
algo_not_tested();
gate->scanhash = (void*)&scanhash_drop;
gate->hash = (void*)&droplp_hash_pok;
gate->get_new_work = (void*)&drop_get_new_work;
gate->build_stratum_request = (void*)&std_be_build_stratum_request;
gate->work_decode = (void*)&std_be_work_decode;
gate->submit_getwork_result = (void*)&std_be_submit_getwork_result;
gate->set_work_data_endian = (void*)&set_work_data_big_endian;
gate->decode_extra_data = (void*)&drop_display_pok;
gate->get_work_data_size = (void*)&drop_get_work_data_size;
gate->work_cmp_size = 72;
opt_target_factor = 65536.0;
return true;
};

View File

@@ -1,4 +1,7 @@
#include "phi1612-gate.h"
#if !defined(PHI1612_8WAY) && !defined(PHI1612_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -123,3 +126,4 @@ int scanhash_phi1612( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "skunk-gate.h"
#if !defined(SKUNK_8WAY) && !defined(SKUNK_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -88,3 +91,4 @@ bool skunk_thread_init()
sph_gost512_init( &skunk_ctx.gost );
return true;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x13-gate.h"
#if !defined(X13_8WAY) && !defined(X13_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -9,9 +12,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/luffa/luffa_for_sse2.h"
@@ -185,3 +185,4 @@ int scanhash_x13( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x13sm3-gate.h"
#if !defined(X13BCD_8WAY) && !defined(X13VCD_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -10,7 +13,6 @@
#include "algo/sm3/sph_sm3.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/cubehash/cubehash_sse2.h"
@@ -184,3 +186,4 @@ int scanhash_x13bcd( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x13sm3-gate.h"
#if !defined(X13SM3_8WAY) && !defined(X13SM3_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -10,7 +13,6 @@
#include "algo/sm3/sph_sm3.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/simd/sph_simd.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/luffa/luffa_for_sse2.h"
@@ -197,3 +199,4 @@ int scanhash_x13sm3( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "polytimos-gate.h"
#if !defined(POLYTIMOS_8WAY) && !defined(POLYTIMOS_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -111,3 +114,4 @@ int scanhash_polytimos( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "veltor-gate.h"
#if !defined(VELTOR_8WAY) && !defined(VELTOR_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -102,3 +105,4 @@ int scanhash_veltor( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -1,19 +1,17 @@
#include "x14-gate.h"
#if !defined(X14_8WAY) && !defined(X14_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
@@ -186,3 +184,4 @@ int scanhash_x14( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x15-gate.h"
#if !defined(X15_8WAY) && !defined(X15_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -9,9 +12,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
@@ -217,3 +217,4 @@ int scanhash_x15( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -85,13 +85,6 @@ void hex_hash( void* output, const void* input )
memcpy( &ctx, &hex_ctx, sizeof(ctx) );
void *in = (void*) input;
int size = 80;
/*
if ( s_ntime == UINT32_MAX )
{
const uint8_t* in8 = (uint8_t*) input;
x16_r_s_getAlgoString( &in8[4], hashOrder );
}
*/
char elem = hashOrder[0];
uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
@@ -249,12 +242,8 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0cff;
casti_m128i( edata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( edata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( edata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( edata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( edata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
mm128_bswap32_80( edata, pdata );
uint32_t ntime = swab32(pdata[17]);
if ( s_ntime != ntime )
{
@@ -277,6 +266,10 @@ int scanhash_hex( struct work *work, uint32_t max_nonce,
sph_skein512_init( &hex_ctx.skein );
sph_skein512( &hex_ctx.skein, edata, 64 );
break;
case LUFFA:
init_luffa( &hex_ctx.luffa, 512 );
update_luffa( &hex_ctx.luffa, (const BitSequence*)edata, 64 );
break;
case CUBEHASH:
cubehashInit( &hex_ctx.cube, 512, 16, 32 );
cubehashUpdate( &hex_ctx.cube, (const byte*)edata, 64 );

View File

@@ -2,74 +2,85 @@
* x16r algo implementation
*
* Implementation by tpruvot@github Jan 2018
* Optimized by JayDDee@github Jan 2018
* Optimized by https://github.com/JayDDee/ Jan 2018
*/
#include "x16r-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha-hash-4way.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#include "algo/shavite/shavite-hash-4way.h"
#include "algo/echo/echo-hash-4way.h"
#endif
// The hash and prehash code is shared among x16r, x16s, x16rt, and x21s.
// The generic function performs the x16 hash as per the hash order
// and produces a 512 bit intermediate hash which needs to be converted
// to 256 bit final hash by a wrapper function.
#if defined (X16R_8WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
// Perform midstate prehash of hash functions with block size <= 64 bytes
// and interleave 4x64 before nonce insertion for final hash.
union _x16r_8way_context_overlay
void x16r_8way_prehash( void *vdata, void *pdata )
{
blake512_8way_context blake;
bmw512_8way_context bmw;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cubehashParam cube;
// cube_4way_context cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
sph_whirlpool_context whirlpool;
sha512_8way_context sha512;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
uint32_t vdata2[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
typedef union _x16r_8way_context_overlay x16r_8way_context_overlay;
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
static __thread x16r_8way_context_overlay x16r_ctx;
switch ( algo )
{
case JH:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
jh512_8way_init( &x16r_ctx.jh );
jh512_8way_update( &x16r_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_init( &x16r_ctx.skein );
skein512_8way_update( &x16r_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_4x128( vdata2, edata, edata, edata, edata, 640 );
luffa_4way_init( &x16r_ctx.luffa, 512 );
luffa_4way_update( &x16r_ctx.luffa, vdata2, 64 );
rintrlv_4x128_8x64( vdata, vdata2, vdata2, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
hamsi512_8way_init( &x16r_ctx.hamsi );
hamsi512_8way_update( &x16r_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm256_bswap32_intrlv80_8x32( vdata2, pdata );
shabal512_8way_init( &x16r_ctx.shabal );
shabal512_8way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_8x32_8x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
default:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
}
}
void x16r_8way_hash( void* output, const void* input )
// Perform the full x16r hash and returns 512 bit intermediate hash.
// Called by wrapper hash function to optionally continue hashing and
// convert to final hash.
void x16r_8way_hash_generic( void* output, const void* input )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -97,7 +108,7 @@ void x16r_8way_hash( void* output, const void* input )
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -464,23 +475,39 @@ void x16r_8way_hash( void* output, const void* input )
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
memcpy( output+128, hash4, 32 );
memcpy( output+160, hash5, 32 );
memcpy( output+192, hash6, 32 );
memcpy( output+224, hash7, 32 );
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
memcpy( output+256, hash4, 64 );
memcpy( output+320, hash5, 64 );
memcpy( output+384, hash6, 64 );
memcpy( output+448, hash7, 64 );
}
// x16-r,-s,-rt wrapper called directly by scanhash to repackage 512 bit
// hash to 256 bit final hash.
void x16r_8way_hash( void* output, const void* input )
{
uint8_t hash[64*8] __attribute__ ((aligned (128)));
x16r_8way_hash_generic( hash, input );
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
memcpy( output+128, hash+256, 32 );
memcpy( output+160, hash+320, 32 );
memcpy( output+192, hash+384, 32 );
memcpy( output+224, hash+448, 32 );
}
// x16r only
int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t vdata2[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -496,66 +523,18 @@ int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
const uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
jh512_8way_init( &x16r_ctx.jh );
jh512_8way_update( &x16r_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_init( &x16r_ctx.skein );
skein512_8way_update( &x16r_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_4x128( vdata2, edata, edata, edata, edata, 640 );
luffa_4way_init( &x16r_ctx.luffa, 512 );
luffa_4way_update( &x16r_ctx.luffa, vdata2, 64 );
rintrlv_4x128_8x64( vdata, vdata2, vdata2, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
hamsi512_8way_init( &x16r_ctx.hamsi );
hamsi512_8way_update( &x16r_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm256_bswap32_intrlv80_8x32( vdata2, pdata );
shabal512_8way_init( &x16r_ctx.shabal );
shabal512_8way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_8x32_8x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
default:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
}
x16r_8way_prehash( vdata, pdata );
*noncev = mm512_intrlv_blend_32( _mm512_set_epi32(
n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
@@ -580,34 +559,62 @@ int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
#elif defined (X16R_4WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16r_4way_context_overlay
void x16r_4way_prehash( void *vdata, void *pdata )
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_echo echo;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
hashState_luffa luffa1;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
} __attribute__ ((aligned (64)));
typedef union _x16r_4way_context_overlay x16r_4way_context_overlay;
uint32_t vdata2[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
static __thread x16r_4way_context_overlay x16r_ctx;
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
void x16r_4way_hash( void* output, const void* input )
switch ( algo )
{
case JH:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
jh512_4way_init( &x16r_ctx.jh );
jh512_4way_update( &x16r_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x16r_ctx.skein );
skein512_4way_update( &x16r_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_2x128( vdata2, edata, edata, 640 );
luffa_2way_init( &x16r_ctx.luffa, 512 );
luffa_2way_update( &x16r_ctx.luffa, vdata2, 64 );
rintrlv_2x128_4x64( vdata, vdata2, vdata2, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
hamsi512_4way_init( &x16r_ctx.hamsi );
hamsi512_4way_update( &x16r_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm128_bswap32_intrlv80_4x32( vdata2, pdata );
shabal512_4way_init( &x16r_ctx.shabal );
shabal512_4way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_4x32_4x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
default:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
}
}
void x16r_4way_hash_generic( void* output, const void* input )
{
uint32_t vhash[20*4] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
@@ -626,7 +633,7 @@ void x16r_4way_hash( void* output, const void* input )
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -698,11 +705,12 @@ void x16r_4way_hash( void* output, const void* input )
case LUFFA:
if ( i == 0 )
{
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash + (16<<1), 16 );
intrlv_2x128( vhash, hash0, hash1, 640 );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash + (16<<1), 16 );
intrlv_2x128( vhash, hash2, hash3, 640 );
memcpy( &ctx, &x16r_ctx, sizeof(ctx) );
luffa_2way_update_close( &ctx.luffa, vhash, vhash + (16<<1), 16 );
dintrlv_2x128_512( hash2, hash3, vhash );
}
else
@@ -863,10 +871,21 @@ void x16r_4way_hash( void* output, const void* input )
}
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
memcpy( output, hash0, 64 );
memcpy( output+64, hash1, 64 );
memcpy( output+128, hash2, 64 );
memcpy( output+192, hash3, 64 );
}
void x16r_4way_hash( void* output, const void* input )
{
uint8_t hash[64*4] __attribute__ ((aligned (64)));
x16r_4way_hash_generic( hash, input );
memcpy( output, hash, 32 );
memcpy( output+32, hash+64, 32 );
memcpy( output+64, hash+128, 32 );
memcpy( output+96, hash+192, 32 );
}
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
@@ -874,8 +893,6 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t vdata2[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -891,67 +908,20 @@ int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
const uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order %s (%08x)", hashOrder, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
jh512_4way_init( &x16r_ctx.jh );
jh512_4way_update( &x16r_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x16r_ctx.skein );
skein512_4way_update( &x16r_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_2x128( vdata2, edata, edata, 640 );
luffa_2way_init( &x16r_ctx.luffa, 512 );
luffa_2way_update( &x16r_ctx.luffa, vdata2, 64 );
rintrlv_2x128_4x64( vdata, vdata2, vdata2, 512 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16r_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16r_ctx.cube, (const byte*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
hamsi512_4way_init( &x16r_ctx.hamsi );
hamsi512_4way_update( &x16r_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm128_bswap32_intrlv80_4x32( vdata2, pdata );
shabal512_4way_init( &x16r_ctx.shabal );
shabal512_4way_update( &x16r_ctx.shabal, vdata2, 64 );
rintrlv_4x32_4x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16r_ctx.whirlpool );
sph_whirlpool( &x16r_ctx.whirlpool, edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
default:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
x16r_4way_prehash( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16r_4way_hash( hash, vdata );

View File

@@ -1,7 +1,22 @@
#include "x16r-gate.h"
__thread char x16r_hash_order[ X16R_HASH_FUNC_COUNT + 1 ] = { 0 };
void (*x16_r_s_getAlgoString) ( const uint8_t*, char* ) = NULL;
#if defined (X16R_8WAY)
__thread x16r_8way_context_overlay x16r_ctx;
#elif defined (X16R_4WAY)
__thread x16r_4way_context_overlay x16r_ctx;
#endif
__thread x16r_context_overlay x16_ctx;
void x16r_getAlgoString( const uint8_t* prevblock, char *output )
{
char *sptr = output;
@@ -207,15 +222,15 @@ void veil_build_extraheader( struct work* g_work, struct stratum_ctx* sctx )
bool register_x16rt_algo( algo_gate_t* gate )
{
#if defined (X16RT_8WAY)
#if defined (X16R_8WAY)
gate->scanhash = (void*)&scanhash_x16rt_8way;
gate->hash = (void*)&x16rt_8way_hash;
#elif defined (X16RT_4WAY)
gate->hash = (void*)&x16r_8way_hash;
#elif defined (X16R_4WAY)
gate->scanhash = (void*)&scanhash_x16rt_4way;
gate->hash = (void*)&x16rt_4way_hash;
gate->hash = (void*)&x16r_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x16rt;
gate->hash = (void*)&x16rt_hash;
gate->hash = (void*)&x16r_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
opt_target_factor = 256.0;
@@ -224,15 +239,15 @@ bool register_x16rt_algo( algo_gate_t* gate )
bool register_x16rt_veil_algo( algo_gate_t* gate )
{
#if defined (X16RT_8WAY)
#if defined (X16R_8WAY)
gate->scanhash = (void*)&scanhash_x16rt_8way;
gate->hash = (void*)&x16rt_8way_hash;
#elif defined (X16RT_4WAY)
gate->hash = (void*)&x16r_8way_hash;
#elif defined (X16R_4WAY)
gate->scanhash = (void*)&scanhash_x16rt_4way;
gate->hash = (void*)&x16rt_4way_hash;
gate->hash = (void*)&x16r_4way_hash;
#else
gate->scanhash = (void*)&scanhash_x16rt;
gate->hash = (void*)&x16rt_hash;
gate->hash = (void*)&x16r_hash;
#endif
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT | VAES_OPT;
gate->build_extraheader = (void*)&veil_build_extraheader;
@@ -247,7 +262,7 @@ bool register_x16rt_veil_algo( algo_gate_t* gate )
bool register_hex_algo( algo_gate_t* gate )
{
gate->scanhash = (void*)&scanhash_hex;
gate->hash = (void*)&hex_hash;
gate->hash = (void*)&x16r_hash;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT;
gate->gen_merkle_root = (void*)&SHA256_gen_merkle_root;
opt_target_factor = 128.0;
@@ -260,13 +275,13 @@ bool register_hex_algo( algo_gate_t* gate )
bool register_x21s_algo( algo_gate_t* gate )
{
#if defined (X21S_8WAY)
#if defined (X16R_8WAY)
gate->scanhash = (void*)&scanhash_x21s_8way;
gate->hash = (void*)&x21s_8way_hash;
gate->miner_thread_init = (void*)&x21s_8way_thread_init;
gate->optimizations = SSE2_OPT | AES_OPT | AVX2_OPT | AVX512_OPT
| VAES_OPT;
#elif defined (X21S_4WAY)
#elif defined (X16R_4WAY)
gate->scanhash = (void*)&scanhash_x21s_4way;
gate->hash = (void*)&x21s_4way_hash;
gate->miner_thread_init = (void*)&x21s_4way_thread_init;

View File

@@ -5,29 +5,60 @@
#include "simd-utils.h"
#include <stdint.h>
#include <unistd.h>
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X16R_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X16R_4WAY 1
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
#if defined (__AVX2__)
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/sha/sha-hash-4way.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#include "algo/shavite/shavite-hash-4way.h"
#include "algo/echo/echo-hash-4way.h"
#endif
#endif // AVX2
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X16R_8WAY 1
#define X16RV2_8WAY 1
#define X16RT_8WAY 1
#define X21S_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X16RV2_4WAY 1
#endif
#define X16RT_4WAY 1
#define X21S_4WAY 1
#define X16R_4WAY 1
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X16RT_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X16RT_4WAY 1
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__) && defined(__AVX512DQ__) && defined(__AVX512BW__)
#define X21S_8WAY 1
#elif defined(__AVX2__) && defined(__AES__)
#define X21S_4WAY 1
#endif
enum x16r_Algo {
@@ -50,6 +81,8 @@ enum x16r_Algo {
X16R_HASH_FUNC_COUNT
};
extern __thread char x16r_hash_order[ X16R_HASH_FUNC_COUNT + 1 ];
extern void (*x16_r_s_getAlgoString) ( const uint8_t*, char* );
void x16r_getAlgoString( const uint8_t *prevblock, char *output );
void x16s_getAlgoString( const uint8_t *prevblock, char *output );
@@ -67,25 +100,115 @@ bool register_x21s__algo( algo_gate_t* gate );
// x16r, x16s
#if defined(X16R_8WAY)
void x16r_8way_hash( void *state, const void *input );
int scanhash_x16r_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
union _x16r_8way_context_overlay
{
blake512_8way_context blake;
bmw512_8way_context bmw;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cubehashParam cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
sph_whirlpool_context whirlpool;
sha512_8way_context sha512;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
typedef union _x16r_8way_context_overlay x16r_8way_context_overlay;
extern __thread x16r_8way_context_overlay x16r_ctx;
void x16r_8way_prehash( void *, void * );
void x16r_8way_hash_generic( void *, const void * );
void x16r_8way_hash( void *, const void * );
int scanhash_x16r_8way( struct work *, uint32_t ,
uint64_t *, struct thr_info * );
extern __thread x16r_8way_context_overlay x16r_ctx;
#elif defined(X16R_4WAY)
void x16r_4way_hash( void *state, const void *input );
int scanhash_x16r_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
union _x16r_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_echo echo;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
hashState_luffa luffa1;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
} __attribute__ ((aligned (64)));
#else
typedef union _x16r_4way_context_overlay x16r_4way_context_overlay;
void x16r_hash( void *state, const void *input );
int scanhash_x16r( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
extern __thread x16r_4way_context_overlay x16r_ctx;
void x16r_4way_prehash( void *, void * );
void x16r_4way_hash_generic( void *, const void * );
void x16r_4way_hash( void *, const void * );
int scanhash_x16r_4way( struct work *, uint32_t,
uint64_t *, struct thr_info * );
extern __thread x16r_4way_context_overlay x16r_ctx;
#endif
// needed for hex
union _x16r_context_overlay
{
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
} __attribute__ ((aligned (64)));
typedef union _x16r_context_overlay x16r_context_overlay;
extern __thread x16r_context_overlay x16_ctx;
void x16r_prehash( void *, void * );
void x16r_hash_generic( void *, const void * );
void x16r_hash( void *, const void * );
int scanhash_x16r( struct work *, uint32_t, uint64_t *, struct thr_info * );
// x16Rv2
#if defined(X16RV2_8WAY)
@@ -108,35 +231,35 @@ int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
#endif
// x16rt, veil
#if defined(X16RT_8WAY)
#if defined(X16R_8WAY)
void x16rt_8way_hash( void *state, const void *input );
//void x16rt_8way_hash( void *state, const void *input );
int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#elif defined(X16RT_4WAY)
#elif defined(X16R_4WAY)
void x16rt_4way_hash( void *state, const void *input );
//void x16rt_4way_hash( void *state, const void *input );
int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#else
void x16rt_hash( void *state, const void *input );
//void x16rt_hash( void *state, const void *input );
int scanhash_x16rt( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
#endif
// x21s
#if defined(X21S_8WAY)
#if defined(X16R_8WAY)
void x21s_8way_hash( void *state, const void *input );
int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );
bool x21s_8way_thread_init();
#elif defined(X21S_4WAY)
#elif defined(X16R_4WAY)
void x21s_4way_hash( void *state, const void *input );
int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
@@ -152,7 +275,7 @@ bool x21s_thread_init();
#endif
void hex_hash( void *state, const void *input );
//void hex_hash( void *state, const void *input );
int scanhash_hex( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr );

View File

@@ -9,72 +9,56 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16r_context_overlay
void x16r_prehash( void *edata, void *pdata )
{
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
};
typedef union _x16r_context_overlay x16r_context_overlay;
const char elem = x16r_hash_order[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
void x16r_hash( void* output, const void* input )
switch ( algo )
{
case JH:
sph_jh512_init( &x16_ctx.jh );
sph_jh512( &x16_ctx.jh, edata, 64 );
break;
case SKEIN:
sph_skein512_init( &x16_ctx.skein );
sph_skein512( &x16_ctx.skein, edata, 64 );
break;
case LUFFA:
init_luffa( &x16_ctx.luffa, 512 );
update_luffa( &x16_ctx.luffa, (const BitSequence*)edata, 64 );
break;
case CUBEHASH:
cubehashInit( &x16_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16_ctx.cube, (const byte*)edata, 64 );
break;
case HAMSI:
sph_hamsi512_init( &x16_ctx.hamsi );
sph_hamsi512( &x16_ctx.hamsi, edata, 64 );
break;
case SHABAL:
sph_shabal512_init( &x16_ctx.shabal );
sph_shabal512( &x16_ctx.shabal, edata, 64 );
break;
case WHIRLPOOL:
sph_whirlpool_init( &x16_ctx.whirlpool );
sph_whirlpool( &x16_ctx.whirlpool, edata, 64 );
break;
}
}
void x16r_hash_generic( void* output, const void* input )
{
uint32_t _ALIGN(128) hash[16];
x16r_context_overlay ctx;
memcpy( &ctx, &x16_ctx, sizeof(ctx) );
void *in = (void*) input;
int size = 80;
/*
if ( s_ntime == UINT32_MAX )
{
const uint8_t* in8 = (uint8_t*) input;
x16_r_s_getAlgoString( &in8[4], hashOrder );
}
*/
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const char elem = x16r_hash_order[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
@@ -91,23 +75,21 @@ void x16r_hash( void* output, const void* input )
break;
case GROESTL:
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)in, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash, (char*)in, size<<3 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in, size );
sph_groestl512_close(&ctx.groestl, hash);
#endif
break;
case SKEIN:
sph_skein512_init( &ctx.skein );
sph_skein512( &ctx.skein, in, size );
sph_skein512_close( &ctx.skein, hash );
break;
case JH:
sph_jh512_init( &ctx.jh );
sph_jh512(&ctx.jh, in, size );
if ( i == 0 )
sph_jh512(&ctx.jh, in+64, 16 );
else
{
sph_jh512_init( &ctx.jh );
sph_jh512(&ctx.jh, in, size );
}
sph_jh512_close(&ctx.jh, hash );
break;
case KECCAK:
@@ -115,15 +97,31 @@ void x16r_hash( void* output, const void* input )
sph_keccak512( &ctx.keccak, in, size );
sph_keccak512_close( &ctx.keccak, hash );
break;
case SKEIN:
if ( i == 0 )
sph_skein512(&ctx.skein, in+64, 16 );
else
{
sph_skein512_init( &ctx.skein );
sph_skein512( &ctx.skein, in, size );
}
sph_skein512_close( &ctx.skein, hash );
break;
case LUFFA:
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)in, size );
if ( i == 0 )
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)in+64, 16 );
else
luffa_full( &ctx.luffa, (BitSequence*)hash, 512,
(const BitSequence*)in, size );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)in, size );
if ( i == 0 )
cubehashUpdateDigest( &ctx.cube, (byte*)hash,
(const byte*)in+64, 16 );
else
cubehash_full( &ctx.cube, (byte*)hash, 512,
(byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
@@ -131,93 +129,109 @@ void x16r_hash( void* output, const void* input )
sph_shavite512_close( &ctx.shavite, hash );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
simd_full( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
break;
case ECHO:
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
echo_full( &ctx.echo, hash, 512, in, size );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in, size );
sph_echo512_close( &ctx.echo, hash );
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in, size );
sph_echo512_close( &ctx.echo, hash );
#endif
break;
case HAMSI:
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, in, size );
sph_hamsi512_close( &ctx.hamsi, hash );
if ( i == 0 )
sph_hamsi512( &ctx.hamsi, in+64, 16 );
else
{
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, in, size );
}
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
break;
case SHABAL:
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, in, size );
sph_shabal512_close( &ctx.shabal, hash );
if ( i == 0 )
sph_shabal512( &ctx.shabal, in+64, 16 );
else
{
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, in, size );
}
sph_shabal512_close( &ctx.shabal, hash );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool_close( &ctx.whirlpool, hash );
if ( i == 0 )
sph_whirlpool( &ctx.whirlpool, in+64, 16 );
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
}
sph_whirlpool_close( &ctx.whirlpool, hash );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, in, size );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, in, size );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
memcpy( output, hash, 64 );
}
void x16r_hash( void* output, const void* input )
{
uint8_t hash[64] __attribute__ ((aligned (64)));
x16r_hash_generic( hash, input );
memcpy( output, hash, 32 );
}
int scanhash_x16r( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
volatile uint8_t *restart = &( work_restart[thr_id].restart );
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0cff;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
mm128_bswap32_80( edata, pdata );
static __thread uint32_t s_ntime = UINT32_MAX;
if ( s_ntime != pdata[17] )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)(&edata[1]), x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_DEBUG, "hash order %s (%08x)", x16r_hash_order, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
x16r_prehash( edata, pdata );
do
{
be32enc( &endiandata[19], nonce );
x16r_hash( hash32, endiandata );
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( hash32[7] <= Htarg )
if (fulltest( hash32, ptarget ) && !opt_benchmark )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash32, mythr );
}
nonce++;
@@ -226,3 +240,4 @@ int scanhash_x16r( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

View File

@@ -2,481 +2,14 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha-hash-4way.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#include "algo/shavite/shavite-hash-4way.h"
#include "algo/echo/echo-hash-4way.h"
#endif
#if defined (X16RT_8WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_8way_context_overlay
{
blake512_8way_context blake;
bmw512_8way_context bmw;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cubehashParam cube;
// cube_4way_context cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
sph_whirlpool_context whirlpool;
sha512_8way_context sha512;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
typedef union _x16rt_8way_context_overlay x16rt_8way_context_overlay;
static __thread x16rt_8way_context_overlay x16rt_ctx;
void x16rt_8way_hash( void* output, const void* input )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t hash4[20] __attribute__ ((aligned (64)));
uint32_t hash5[20] __attribute__ ((aligned (64)));
uint32_t hash6[20] __attribute__ ((aligned (64)));
uint32_t hash7[20] __attribute__ ((aligned (64)));
x16rt_8way_context_overlay ctx;
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
void *in4 = (void*) hash4;
void *in5 = (void*) hash5;
void *in6 = (void*) hash6;
void *in7 = (void*) hash7;
int size = 80;
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
input, 640 );
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_8way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
blake512_8way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5,
hash6, hash7, vhash );
break;
case BMW:
bmw512_8way_init( &ctx.bmw );
if ( i == 0 )
bmw512_8way_update( &ctx.bmw, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
bmw512_8way_update( &ctx.bmw, vhash, size );
}
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case GROESTL:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhash, vhash, size<<3 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
groestl512_4way_init( &ctx.groestl, 64 );
groestl512_4way_update_close( &ctx.groestl, vhash, vhash, size<<3 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)in4, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)in5, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)in6, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)in7, size<<3 );
#endif
break;
case JH:
if ( i == 0 )
jh512_8way_update( &ctx.jh, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, size );
}
jh512_8way_close( &ctx.jh, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case KECCAK:
keccak512_8way_init( &ctx.keccak );
if ( i == 0 )
keccak512_8way_update( &ctx.keccak, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
keccak512_8way_update( &ctx.keccak, vhash, size );
}
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case SKEIN:
if ( i == 0 )
skein512_8way_update( &ctx.skein, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, size );
}
skein512_8way_close( &ctx.skein, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case LUFFA:
if ( i == 0 )
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)in3 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4,
(const byte*)in4 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5,
(const byte*)in5 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6,
(const byte*)in6 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7,
(const byte*)in7 + 64, 16 );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash4,
(const byte*)in4, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash5,
(const byte*)in5, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash6,
(const byte*)in6, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash7,
(const byte*)in7, size );
}
break;
case SHAVITE:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
shavite512_4way_full( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in4, size );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in5, size );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in6, size );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in7, size );
sph_shavite512_close( &ctx.shavite, hash7 );
#endif
break;
case SIMD:
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
break;
case ECHO:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
echo_full( &ctx.echo, (BitSequence *)hash4, 512,
(const BitSequence *)in4, size );
echo_full( &ctx.echo, (BitSequence *)hash5, 512,
(const BitSequence *)in5, size );
echo_full( &ctx.echo, (BitSequence *)hash6, 512,
(const BitSequence *)in6, size );
echo_full( &ctx.echo, (BitSequence *)hash7, 512,
(const BitSequence *)in7, size );
#endif
break;
case HAMSI:
if ( i == 0 )
hamsi512_8way_update( &ctx.hamsi, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, size );
}
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in4, size );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in5, size );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in6, size );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in7, size );
sph_fugue512_close( &ctx.fugue, hash7 );
break;
case SHABAL:
intrlv_8x32( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
if ( i == 0 )
shabal512_8way_update( &ctx.shabal, vhash + (16<<3), 16 );
else
{
shabal512_8way_init( &ctx.shabal );
shabal512_8way_update( &ctx.shabal, vhash, size );
}
shabal512_8way_close( &ctx.shabal, vhash );
dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in4 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in5 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in6 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in7 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in4, size );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in5, size );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in6, size );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in7, size );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
}
break;
case SHA_512:
sha512_8way_init( &ctx.sha512 );
if ( i == 0 )
sha512_8way_update( &ctx.sha512, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
sha512_8way_update( &ctx.sha512, vhash, size );
}
sha512_8way_close( &ctx.sha512, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
}
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
memcpy( output+128, hash4, 32 );
memcpy( output+160, hash5, 32 );
memcpy( output+192, hash6, 32 );
memcpy( output+224, hash7, 32 );
}
#if defined (X16R_8WAY)
int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t vdata2[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) timeHash[8*8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -490,74 +23,25 @@ int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
if ( bench ) ptarget[7] = 0x0cff;
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
x16rt_getAlgoString( &timeHash[0], x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
jh512_8way_init( &x16rt_ctx.jh );
jh512_8way_update( &x16rt_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_init( &x16rt_ctx.skein );
skein512_8way_update( &x16rt_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_4x128( vdata2, edata, edata, edata, edata, 640 );
luffa_4way_init( &x16rt_ctx.luffa, 512 );
luffa_4way_update( &x16rt_ctx.luffa, vdata2, 64 );
rintrlv_4x128_8x64( vdata, vdata2, vdata2, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16rt_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16rt_ctx.cube, (const byte*)edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
hamsi512_8way_init( &x16rt_ctx.hamsi );
hamsi512_8way_update( &x16rt_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm256_bswap32_intrlv80_8x32( vdata2, pdata );
shabal512_8way_init( &x16rt_ctx.shabal );
shabal512_8way_update( &x16rt_ctx.shabal, vdata2, 64 );
rintrlv_8x32_8x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16rt_ctx.whirlpool );
sph_whirlpool( &x16rt_ctx.whirlpool, edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
default:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
x16r_hash_order, ntime, timeHash );
}
x16r_8way_prehash( vdata, pdata );
*noncev = mm512_intrlv_blend_32( _mm512_set_epi32(
n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16rt_8way_hash( hash, vdata );
x16r_8way_hash( hash, vdata );
for ( int i = 0; i < 8; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
@@ -574,313 +58,13 @@ int scanhash_x16rt_8way( struct work *work, uint32_t max_nonce,
return 0;
}
#elif defined (X16RT_4WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_echo echo;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
hashState_luffa luffa1;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
};
typedef union _x16rt_4way_context_overlay x16rt_4way_context_overlay;
static __thread x16rt_4way_context_overlay x16rt_ctx;
void x16rt_4way_hash( void* output, const void* input )
{
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t vhash[20*4] __attribute__ ((aligned (64)));
x16rt_4way_context_overlay ctx;
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
int size = 80;
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
// Input data is both 64 bit interleaved (input)
// and deinterleaved in inp0-3. First function has no need re-interleave.
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_4way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
blake512_4way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case BMW:
bmw512_4way_init( &ctx.bmw );
if ( i == 0 )
bmw512_4way_update( &ctx.bmw, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
bmw512_4way_update( &ctx.bmw, vhash, size );
}
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case GROESTL:
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
break;
case JH:
if ( i == 0 )
jh512_4way_update( &ctx.jh, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, size );
}
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case KECCAK:
keccak512_4way_init( &ctx.keccak );
if ( i == 0 )
keccak512_4way_update( &ctx.keccak, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
keccak512_4way_update( &ctx.keccak, vhash, size );
}
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case SKEIN:
if ( i == 0 )
skein512_4way_update( &ctx.skein, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, size );
}
skein512_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case LUFFA:
if ( i == 0 )
{
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash0,
(const BitSequence*)in0 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash1,
(const BitSequence*)in1 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash2,
(const BitSequence*)in2 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash3,
(const BitSequence*)in3 + 64, 16 );
}
else
{
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3 + 64, 16 );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)in3, size );
}
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case ECHO:
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
break;
case HAMSI:
if ( i == 0 )
hamsi512_4way_update( &ctx.hamsi, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, size );
}
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
if ( i == 0 )
shabal512_4way_update( &ctx.shabal, vhash + (16<<2), 16 );
else
{
shabal512_4way_init( &ctx.shabal );
shabal512_4way_update( &ctx.shabal, vhash, size );
}
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x16rt_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
}
break;
case SHA_512:
sha512_4way_init( &ctx.sha512 );
if ( i == 0 )
sha512_4way_update( &ctx.sha512, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
sha512_4way_update( &ctx.sha512, vhash, size );
}
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
size = 64;
}
memcpy( output, hash0, 32 );
memcpy( output+32, hash1, 32 );
memcpy( output+64, hash2, 32 );
memcpy( output+96, hash3, 32 );
}
#elif defined (X16R_4WAY)
int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t hash[4*16] __attribute__ ((aligned (64)));
uint32_t vdata[24*4] __attribute__ ((aligned (64)));
uint32_t vdata32[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t _ALIGN(64) timeHash[4*8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -894,70 +78,24 @@ int scanhash_x16rt_4way( struct work *work, uint32_t max_nonce,
if ( bench ) ptarget[7] = 0x0cff;
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
x16rt_getAlgoString( &timeHash[0], x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
jh512_4way_init( &x16rt_ctx.jh );
jh512_4way_update( &x16rt_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x16rt_ctx.skein );
skein512_4way_update( &x16rt_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
init_luffa( &x16rt_ctx.luffa1, 512 );
update_luffa( &x16rt_ctx.luffa1, (const BitSequence*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x16rt_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x16rt_ctx.cube, (const byte*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
hamsi512_4way_init( &x16rt_ctx.hamsi );
hamsi512_4way_update( &x16rt_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm128_bswap32_intrlv80_4x32( vdata32, pdata );
shabal512_4way_init( &x16rt_ctx.shabal );
shabal512_4way_update( &x16rt_ctx.shabal, vdata32, 64 );
rintrlv_4x32_4x64( vdata, vdata32, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x16rt_ctx.whirlpool );
sph_whirlpool( &x16rt_ctx.whirlpool, edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
default:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
x16r_hash_order, ntime, timeHash );
}
x16r_4way_prehash( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x16rt_4way_hash( hash, vdata );
x16r_4way_hash( hash, vdata );
for ( int i = 0; i < 4; i++ )
if ( unlikely( valid_hash( hash + (i<<3), ptarget ) && !bench ) )
{

View File

@@ -1,234 +1,46 @@
#include "x16r-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread bool s_implemented = false;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
union _x16rt_context_overlay
{
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
};
typedef union _x16rt_context_overlay x16rt_context_overlay;
void x16rt_hash( void* output, const void* input )
{
uint32_t _ALIGN(128) hash[16];
x16rt_context_overlay ctx;
int size = 80;
void *in = (void*) input;
/*
void *in = (void*) input;
uint32_t *in32 = (uint32_t*) in;
uint32_t ntime = in32[17];
if ( s_ntime == UINT32_MAX )
{
uint32_t _ALIGN(64) timeHash[8];
x16rt_getTimeHash(ntime, &timeHash);
x16rt_getAlgoString(&timeHash[0], hashOrder);
}
*/
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
sph_blake512_init( &ctx.blake );
sph_blake512( &ctx.blake, in, size );
sph_blake512_close( &ctx.blake, hash );
break;
case BMW:
sph_bmw512_init( &ctx.bmw );
sph_bmw512(&ctx.bmw, in, size);
sph_bmw512_close(&ctx.bmw, hash);
break;
case GROESTL:
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)in, size<<3 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in, size );
sph_groestl512_close(&ctx.groestl, hash);
#endif
break;
case SKEIN:
sph_skein512_init( &ctx.skein );
sph_skein512( &ctx.skein, in, size );
sph_skein512_close( &ctx.skein, hash );
break;
case JH:
sph_jh512_init( &ctx.jh );
sph_jh512(&ctx.jh, in, size );
sph_jh512_close(&ctx.jh, hash );
break;
case KECCAK:
sph_keccak512_init( &ctx.keccak );
sph_keccak512( &ctx.keccak, in, size );
sph_keccak512_close( &ctx.keccak, hash );
break;
case LUFFA:
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)in, size );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
break;
case ECHO:
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in, size );
sph_echo512_close( &ctx.echo, hash );
#endif
break;
case HAMSI:
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, in, size );
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
break;
case SHABAL:
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, in, size );
sph_shabal512_close( &ctx.shabal, hash );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool_close( &ctx.whirlpool, hash );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, in, size );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
in = (void*) hash;
size = 64;
}
memcpy(output, hash, 32);
}
#if !defined(X16R_8WAY) && !defined(X16R_4WAY)
int scanhash_x16rt( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t _ALIGN(64) timeHash[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0cff;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
mm128_bswap32_80( edata, pdata );
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = swab32( pdata[17] );
if ( s_ntime != ntime )
{
x16rt_getTimeHash( ntime, &timeHash );
x16rt_getAlgoString( &timeHash[0], hashOrder );
x16rt_getAlgoString( &timeHash[0], x16r_hash_order );
s_ntime = ntime;
s_implemented = true;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order: %s time: (%08x) time hash: (%08x)",
hashOrder, ntime, timeHash );
}
if ( !s_implemented )
{
applog( LOG_WARNING, "s not implemented");
sleep(1);
return 0;
x16r_hash_order, ntime, timeHash );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
x16r_prehash( edata, pdata );
do
{
be32enc( &endiandata[19], nonce );
x16rt_hash( hash32, endiandata );
edata[19] = nonce;
x16r_hash( hash32, edata );
if ( hash32[7] <= Htarg )
if (fulltest( hash32, ptarget ) && !opt_benchmark )
if ( valid_hash( hash32, ptarget ) && !bench )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash32, mythr );
}
nonce++;
@@ -237,3 +49,6 @@ int scanhash_x16rt( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif // !defined(X16R_8WAY) && !defined(X16R_4WAY)

View File

@@ -6,6 +6,8 @@
*/
#include "x16r-gate.h"
#if !defined(X16R_8WAY) && !defined(X16R_4WAY)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@@ -245,3 +247,5 @@ int scanhash_x16rv2( struct work *work, uint32_t max_nonce,
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
#endif

View File

@@ -8,480 +8,43 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/blake-hash-4way.h"
#include "algo/bmw/bmw-hash-4way.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#include "algo/skein/skein-hash-4way.h"
#include "algo/jh/jh-hash-4way.h"
#include "algo/keccak/keccak-hash-4way.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa-hash-2way.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/cubehash/cube-hash-2way.h"
#include "algo/simd/simd-hash-2way.h"
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/hamsi/hamsi-hash-4way.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/shabal-hash-4way.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include "algo/sha/sha-hash-4way.h"
#include "algo/haval/haval-hash-4way.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/gost/sph_gost.h"
#include "algo/lyra2/lyra2.h"
#if defined(__VAES__)
#include "algo/groestl/groestl512-hash-4way.h"
#include "algo/shavite/shavite-hash-4way.h"
#include "algo/echo/echo-hash-4way.h"
#endif
#if defined(__SHA__)
#include <openssl/sha.h>
#endif
#if defined(X21S_8WAY) || defined(X21S_4WAY)
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
#endif
#if defined (X21S_8WAY)
static __thread uint64_t* x21s_8way_matrix;
union _x21s_8way_context_overlay
{
blake512_8way_context blake;
bmw512_8way_context bmw;
skein512_8way_context skein;
jh512_8way_context jh;
keccak512_8way_context keccak;
luffa_4way_context luffa;
cubehashParam cube;
// cube_4way_context cube;
simd_4way_context simd;
hamsi512_8way_context hamsi;
sph_fugue512_context fugue;
shabal512_8way_context shabal;
sph_whirlpool_context whirlpool;
sha512_8way_context sha512;
haval256_5_8way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
sha256_8way_context sha256;
#if defined(__VAES__)
groestl512_4way_context groestl;
shavite512_4way_context shavite;
echo_4way_context echo;
#else
hashState_groestl groestl;
sph_shavite512_context shavite;
hashState_echo echo;
#endif
} __attribute__ ((aligned (64)));
typedef union _x21s_8way_context_overlay x21s_8way_context_overlay;
static __thread x21s_8way_context_overlay x21s_ctx;
void x21s_8way_hash( void* output, const void* input )
{
uint32_t vhash[20*8] __attribute__ ((aligned (128)));
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t hash4[20] __attribute__ ((aligned (64)));
uint32_t hash5[20] __attribute__ ((aligned (64)));
uint32_t hash6[20] __attribute__ ((aligned (64)));
uint32_t hash7[20] __attribute__ ((aligned (64)));
uint32_t vhash[16*8] __attribute__ ((aligned (128)));
uint8_t shash[64*8] __attribute__ ((aligned (64)));
uint32_t *hash0 = (uint32_t*) shash;
uint32_t *hash1 = (uint32_t*)( shash+64 );
uint32_t *hash2 = (uint32_t*)( shash+128 );
uint32_t *hash3 = (uint32_t*)( shash+192 );
uint32_t *hash4 = (uint32_t*)( shash+256 );
uint32_t *hash5 = (uint32_t*)( shash+320 );
uint32_t *hash6 = (uint32_t*)( shash+384 );
uint32_t *hash7 = (uint32_t*)( shash+448 );
x21s_8way_context_overlay ctx;
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
void *in4 = (void*) hash4;
void *in5 = (void*) hash5;
void *in6 = (void*) hash6;
void *in7 = (void*) hash7;
int size = 80;
dintrlv_8x64( hash0, hash1, hash2, hash3, hash4, hash5, hash6, hash7,
input, 640 );
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_8way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
blake512_8way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5,
hash6, hash7, vhash );
break;
case BMW:
bmw512_8way_init( &ctx.bmw );
if ( i == 0 )
bmw512_8way_update( &ctx.bmw, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
bmw512_8way_update( &ctx.bmw, vhash, size );
}
bmw512_8way_close( &ctx.bmw, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case GROESTL:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
groestl512_4way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
groestl512_4way_full( &ctx.groestl, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash4, (char*)in4, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash5, (char*)in5, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash6, (char*)in6, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash7, (char*)in7, size<<3 );
#endif
break;
case JH:
if ( i == 0 )
jh512_8way_update( &ctx.jh, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
jh512_8way_init( &ctx.jh );
jh512_8way_update( &ctx.jh, vhash, size );
}
jh512_8way_close( &ctx.jh, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case KECCAK:
keccak512_8way_init( &ctx.keccak );
if ( i == 0 )
keccak512_8way_update( &ctx.keccak, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
keccak512_8way_update( &ctx.keccak, vhash, size );
}
keccak512_8way_close( &ctx.keccak, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case SKEIN:
if ( i == 0 )
skein512_8way_update( &ctx.skein, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
skein512_8way_init( &ctx.skein );
skein512_8way_update( &ctx.skein, vhash, size );
}
skein512_8way_close( &ctx.skein, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case LUFFA:
if ( i == 0 )
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa_4way_update_close( &ctx.luffa, vhash,
vhash + (16<<2), 16 );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
else
{
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
luffa512_4way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)in3 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash4,
(const byte*)in4 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash5,
(const byte*)in5 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash6,
(const byte*)in6 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*)hash7,
(const byte*)in7 + 64, 16 );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash4,
(const byte*)in4, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash5,
(const byte*)in5, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash6,
(const byte*)in6, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash7,
(const byte*)in7, size );
}
break;
case SHAVITE:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
shavite512_4way_init( &ctx.shavite );
shavite512_4way_update_close( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
shavite512_4way_init( &ctx.shavite );
shavite512_4way_update_close( &ctx.shavite, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in4, size );
sph_shavite512_close( &ctx.shavite, hash4 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in5, size );
sph_shavite512_close( &ctx.shavite, hash5 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in6, size );
sph_shavite512_close( &ctx.shavite, hash6 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in7, size );
sph_shavite512_close( &ctx.shavite, hash7 );
#endif
break;
case SIMD:
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
simd512_4way_full( &ctx.simd, vhash, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
break;
case ECHO:
#if defined(__VAES__)
intrlv_4x128( vhash, in0, in1, in2, in3, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash0, hash1, hash2, hash3, vhash );
intrlv_4x128( vhash, in4, in5, in6, in7, size<<3 );
echo_4way_full( &ctx.echo, vhash, 512, vhash, size );
dintrlv_4x128_512( hash4, hash5, hash6, hash7, vhash );
#else
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
echo_full( &ctx.echo, (BitSequence *)hash4, 512,
(const BitSequence *)in4, size );
echo_full( &ctx.echo, (BitSequence *)hash5, 512,
(const BitSequence *)in5, size );
echo_full( &ctx.echo, (BitSequence *)hash6, 512,
(const BitSequence *)in6, size );
echo_full( &ctx.echo, (BitSequence *)hash7, 512,
(const BitSequence *)in7, size );
#endif
break;
case HAMSI:
if ( i == 0 )
hamsi512_8way_update( &ctx.hamsi, input + (64<<3), 16 );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
hamsi512_8way_init( &ctx.hamsi );
hamsi512_8way_update( &ctx.hamsi, vhash, size );
}
hamsi512_8way_close( &ctx.hamsi, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in4, size );
sph_fugue512_close( &ctx.fugue, hash4 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in5, size );
sph_fugue512_close( &ctx.fugue, hash5 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in6, size );
sph_fugue512_close( &ctx.fugue, hash6 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in7, size );
sph_fugue512_close( &ctx.fugue, hash7 );
break;
case SHABAL:
intrlv_8x32( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
if ( i == 0 )
shabal512_8way_update( &ctx.shabal, vhash + (16<<3), 16 );
else
{
shabal512_8way_init( &ctx.shabal );
shabal512_8way_update( &ctx.shabal, vhash, size );
}
shabal512_8way_close( &ctx.shabal, vhash );
dintrlv_8x32_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in4 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in5 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in6 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in7 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in4, size );
sph_whirlpool_close( &ctx.whirlpool, hash4 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in5, size );
sph_whirlpool_close( &ctx.whirlpool, hash5 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in6, size );
sph_whirlpool_close( &ctx.whirlpool, hash6 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in7, size );
sph_whirlpool_close( &ctx.whirlpool, hash7 );
}
break;
case SHA_512:
sha512_8way_init( &ctx.sha512 );
if ( i == 0 )
sha512_8way_update( &ctx.sha512, input, size );
else
{
intrlv_8x64( vhash, in0, in1, in2, in3, in4, in5, in6, in7,
size<<3 );
sha512_8way_update( &ctx.sha512, vhash, size );
}
sha512_8way_close( &ctx.sha512, vhash );
dintrlv_8x64_512( hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7, vhash );
break;
}
size = 64;
}
x16r_8way_hash_generic( shash, input );
intrlv_8x32_512( vhash, hash0, hash1, hash2, hash3, hash4, hash5, hash6,
hash7 );
@@ -568,8 +131,6 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[16*8] __attribute__ ((aligned (128)));
uint32_t vdata[20*8] __attribute__ ((aligned (64)));
uint32_t vdata2[20*8] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t *hash7 = &hash[7<<3];
uint32_t lane_hash[8] __attribute__ ((aligned (64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
@@ -588,71 +149,21 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_INFO, "hash order %s (%08x)", hashOrder, ntime );
}
// Do midstate prehash on hash functions with block size <= 64 bytes.
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
jh512_8way_init( &x21s_ctx.jh );
jh512_8way_update( &x21s_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
skein512_8way_init( &x21s_ctx.skein );
skein512_8way_update( &x21s_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
intrlv_4x128( vdata2, edata, edata, edata, edata, 640 );
luffa_4way_init( &x21s_ctx.luffa, 512 );
luffa_4way_update( &x21s_ctx.luffa, vdata2, 64 );
rintrlv_4x128_8x64( vdata, vdata2, vdata2, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x21s_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x21s_ctx.cube, (const byte*)edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
hamsi512_8way_init( &x21s_ctx.hamsi );
hamsi512_8way_update( &x21s_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm256_bswap32_intrlv80_8x32( vdata2, pdata );
shabal512_8way_init( &x21s_ctx.shabal );
shabal512_8way_update( &x21s_ctx.shabal, vdata2, 64 );
rintrlv_8x32_8x64( vdata, vdata2, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x21s_ctx.whirlpool );
sph_whirlpool( &x21s_ctx.whirlpool, edata, 64 );
intrlv_8x64( vdata, edata, edata, edata, edata,
edata, edata, edata, edata, 640 );
break;
default:
mm512_bswap32_intrlv80_8x64( vdata, pdata );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
x16r_8way_prehash( vdata, pdata );
*noncev = mm512_intrlv_blend_32( _mm512_set_epi32(
n+7, 0, n+6, 0, n+5, 0, n+4, 0,
n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_8way_hash( hash, vdata );
@@ -670,7 +181,7 @@ int scanhash_x21s_8way( struct work *work, uint32_t max_nonce,
*noncev = _mm512_add_epi32( *noncev,
m512_const1_64( 0x0000000800000000 ) );
n += 8;
} while ( ( n < last_nonce ) && !(*restart) );
} while ( likely( ( n < last_nonce ) && !(*restart) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;
@@ -692,23 +203,6 @@ static __thread uint64_t* x21s_4way_matrix;
union _x21s_4way_context_overlay
{
blake512_4way_context blake;
bmw512_4way_context bmw;
hashState_echo echo;
hashState_groestl groestl;
skein512_4way_context skein;
jh512_4way_context jh;
keccak512_4way_context keccak;
luffa_2way_context luffa;
hashState_luffa luffa1;
cubehashParam cube;
sph_shavite512_context shavite;
simd_2way_context simd;
hamsi512_4way_context hamsi;
sph_fugue512_context fugue;
shabal512_4way_context shabal;
sph_whirlpool_context whirlpool;
sha512_4way_context sha512;
haval256_5_4way_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
@@ -718,282 +212,21 @@ union _x21s_4way_context_overlay
sha256_4way_context sha256;
#endif
} __attribute__ ((aligned (64)));
typedef union _x21s_4way_context_overlay x21s_4way_context_overlay;
static __thread x21s_4way_context_overlay x21s_ctx;
typedef union _x21s_4way_context_overlay x21s_4way_context_overlay;
void x21s_4way_hash( void* output, const void* input )
{
uint32_t hash0[20] __attribute__ ((aligned (64)));
uint32_t hash1[20] __attribute__ ((aligned (64)));
uint32_t hash2[20] __attribute__ ((aligned (64)));
uint32_t hash3[20] __attribute__ ((aligned (64)));
uint32_t vhash[20*4] __attribute__ ((aligned (64)));
uint32_t vhash[16*4] __attribute__ ((aligned (64)));
uint8_t shash[64*4] __attribute__ ((aligned (64)));
x21s_4way_context_overlay ctx;
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
void *in0 = (void*) hash0;
void *in1 = (void*) hash1;
void *in2 = (void*) hash2;
void *in3 = (void*) hash3;
int size = 80;
dintrlv_4x64( hash0, hash1, hash2, hash3, input, 640 );
// Input data is both 64 bit interleaved (input)
// and deinterleaved in inp0-3.
// If First function uses 64 bit data it is not required to interleave inp
// first. It may use the inerleaved data dmost convenient, ie 4way 64 bit.
// All other functions assume data is deinterleaved in hash0-3
// All functions must exit with data deinterleaved in hash0-3.
// Alias in0-3 points to either inp0-3 or hash0-3 according to
// its hashOrder position. Size is also set accordingly.
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
if ( i == 0 )
blake512_4way_full( &ctx.blake, vhash, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
blake512_4way_full( &ctx.blake, vhash, vhash, size );
}
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case BMW:
bmw512_4way_init( &ctx.bmw );
if ( i == 0 )
bmw512_4way_update( &ctx.bmw, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
bmw512_4way_update( &ctx.bmw, vhash, size );
}
bmw512_4way_close( &ctx.bmw, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case GROESTL:
groestl512_full( &ctx.groestl, (char*)hash0, (char*)in0, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash1, (char*)in1, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash2, (char*)in2, size<<3 );
groestl512_full( &ctx.groestl, (char*)hash3, (char*)in3, size<<3 );
break;
case JH:
if ( i == 0 )
jh512_4way_update( &ctx.jh, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
jh512_4way_init( &ctx.jh );
jh512_4way_update( &ctx.jh, vhash, size );
}
jh512_4way_close( &ctx.jh, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case KECCAK:
keccak512_4way_init( &ctx.keccak );
if ( i == 0 )
keccak512_4way_update( &ctx.keccak, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
keccak512_4way_update( &ctx.keccak, vhash, size );
}
keccak512_4way_close( &ctx.keccak, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case SKEIN:
if ( i == 0 )
skein512_4way_update( &ctx.skein, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
skein512_4way_init( &ctx.skein );
skein512_4way_update( &ctx.skein, vhash, size );
}
skein512_4way_close( &ctx.skein, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case LUFFA:
if ( i == 0 )
{
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash0,
(const BitSequence*)in0 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash1,
(const BitSequence*)in1 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash2,
(const BitSequence*)in2 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
update_and_final_luffa( &ctx.luffa1, (BitSequence*)hash3,
(const BitSequence*)in3 + 64, 16 );
}
else
{
intrlv_2x128( vhash, in0, in1, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash0, hash1, vhash );
intrlv_2x128( vhash, in2, in3, size<<3 );
luffa512_2way_full( &ctx.luffa, vhash, vhash, size );
dintrlv_2x128_512( hash2, hash3, vhash );
}
break;
case CUBEHASH:
if ( i == 0 )
{
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash1,
(const byte*)in1 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash2,
(const byte*)in2 + 64, 16 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
cubehashUpdateDigest( &ctx.cube, (byte*) hash3,
(const byte*)in3 + 64, 16 );
}
else
{
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash0,
(const byte*)in0, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash1,
(const byte*)in1, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash2,
(const byte*)in2, size );
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*)hash3,
(const byte*)in3, size );
}
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in0, size );
sph_shavite512_close( &ctx.shavite, hash0 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in1, size );
sph_shavite512_close( &ctx.shavite, hash1 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in2, size );
sph_shavite512_close( &ctx.shavite, hash2 );
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in3, size );
sph_shavite512_close( &ctx.shavite, hash3 );
break;
case SIMD:
intrlv_2x128( vhash, in0, in1, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash0, hash1, vhash, 512 );
intrlv_2x128( vhash, in2, in3, size<<3 );
simd_2way_init( &ctx.simd, 512 );
simd_2way_update_close( &ctx.simd, vhash, vhash, size<<3 );
dintrlv_2x128( hash2, hash3, vhash, 512 );
break;
case ECHO:
echo_full( &ctx.echo, (BitSequence *)hash0, 512,
(const BitSequence *)in0, size );
echo_full( &ctx.echo, (BitSequence *)hash1, 512,
(const BitSequence *)in1, size );
echo_full( &ctx.echo, (BitSequence *)hash2, 512,
(const BitSequence *)in2, size );
echo_full( &ctx.echo, (BitSequence *)hash3, 512,
(const BitSequence *)in3, size );
break;
case HAMSI:
if ( i == 0 )
hamsi512_4way_update( &ctx.hamsi, input + (64<<2), 16 );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
hamsi512_4way_init( &ctx.hamsi );
hamsi512_4way_update( &ctx.hamsi, vhash, size );
}
hamsi512_4way_close( &ctx.hamsi, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in0, size );
sph_fugue512_close( &ctx.fugue, hash0 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in1, size );
sph_fugue512_close( &ctx.fugue, hash1 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in2, size );
sph_fugue512_close( &ctx.fugue, hash2 );
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in3, size );
sph_fugue512_close( &ctx.fugue, hash3 );
break;
case SHABAL:
intrlv_4x32( vhash, in0, in1, in2, in3, size<<3 );
if ( i == 0 )
shabal512_4way_update( &ctx.shabal, vhash + (16<<2), 16 );
else
{
shabal512_4way_init( &ctx.shabal );
shabal512_4way_update( &ctx.shabal, vhash, size );
}
shabal512_4way_close( &ctx.shabal, vhash );
dintrlv_4x32( hash0, hash1, hash2, hash3, vhash, 512 );
break;
case WHIRLPOOL:
if ( i == 0 )
{
sph_whirlpool( &ctx.whirlpool, in0 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in1 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in2 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
memcpy( &ctx, &x21s_ctx, sizeof(ctx) );
sph_whirlpool( &ctx.whirlpool, in3 + 64, 16 );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
}
else
{
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in0, size );
sph_whirlpool_close( &ctx.whirlpool, hash0 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in1, size );
sph_whirlpool_close( &ctx.whirlpool, hash1 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in2, size );
sph_whirlpool_close( &ctx.whirlpool, hash2 );
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in3, size );
sph_whirlpool_close( &ctx.whirlpool, hash3 );
}
break;
case SHA_512:
sha512_4way_init( &ctx.sha512 );
if ( i == 0 )
sha512_4way_update( &ctx.sha512, input, size );
else
{
intrlv_4x64( vhash, in0, in1, in2, in3, size<<3 );
sha512_4way_update( &ctx.sha512, vhash, size );
}
sha512_4way_close( &ctx.sha512, vhash );
dintrlv_4x64( hash0, hash1, hash2, hash3, vhash, 512 );
break;
}
size = 64;
}
uint32_t *hash0 = (uint32_t*) shash;
uint32_t *hash1 = (uint32_t*)( shash+64 );
uint32_t *hash2 = (uint32_t*)( shash+128 );
uint32_t *hash3 = (uint32_t*)( shash+192 );
x16r_4way_hash_generic( shash, input );
intrlv_4x32( vhash, hash0, hash1, hash2, hash3, 512 );
haval256_5_4way_init( &ctx.haval );
@@ -1073,8 +306,6 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
{
uint32_t hash[16*4] __attribute__ ((aligned (64)));
uint32_t vdata[20*4] __attribute__ ((aligned (64)));
uint32_t vdata32[20*4] __attribute__ ((aligned (64)));
uint32_t edata[20] __attribute__ ((aligned (64)));
uint32_t bedata1[2] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -1090,66 +321,20 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
bedata1[0] = bswap_32( pdata[1] );
bedata1[1] = bswap_32( pdata[2] );
static __thread uint32_t s_ntime = UINT32_MAX;
uint32_t ntime = bswap_32( pdata[17] );
if ( s_ntime != ntime )
{
x16_r_s_getAlgoString( (const uint8_t*)bedata1, hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)bedata1, x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
}
const char elem = hashOrder[0];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case JH:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
jh512_4way_init( &x21s_ctx.jh );
jh512_4way_update( &x21s_ctx.jh, vdata, 64 );
break;
case SKEIN:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
skein512_4way_init( &x21s_ctx.skein );
skein512_4way_update( &x21s_ctx.skein, vdata, 64 );
break;
case LUFFA:
mm128_bswap32_80( edata, pdata );
init_luffa( &x21s_ctx.luffa1, 512 );
update_luffa( &x21s_ctx.luffa1, (const BitSequence*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case CUBEHASH:
mm128_bswap32_80( edata, pdata );
cubehashInit( &x21s_ctx.cube, 512, 16, 32 );
cubehashUpdate( &x21s_ctx.cube, (const byte*)edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
case HAMSI:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
hamsi512_4way_init( &x21s_ctx.hamsi );
hamsi512_4way_update( &x21s_ctx.hamsi, vdata, 64 );
break;
case SHABAL:
mm128_bswap32_intrlv80_4x32( vdata32, pdata );
shabal512_4way_init( &x21s_ctx.shabal );
shabal512_4way_update( &x21s_ctx.shabal, vdata32, 64 );
rintrlv_4x32_4x64( vdata, vdata32, 640 );
break;
case WHIRLPOOL:
mm128_bswap32_80( edata, pdata );
sph_whirlpool_init( &x21s_ctx.whirlpool );
sph_whirlpool( &x21s_ctx.whirlpool, edata, 64 );
intrlv_4x64( vdata, edata, edata, edata, edata, 640 );
break;
default:
mm256_bswap32_intrlv80_4x64( vdata, pdata );
applog( LOG_DEBUG, "hash order %s (%08x)", x16r_hash_order, ntime );
}
x16r_4way_prehash( vdata, pdata );
*noncev = mm256_intrlv_blend_32(
_mm256_set_epi32( n+3, 0, n+2, 0, n+1, 0, n, 0 ), *noncev );
do
{
x21s_4way_hash( hash, vdata );
@@ -1162,7 +347,7 @@ int scanhash_x21s_4way( struct work *work, uint32_t max_nonce,
*noncev = _mm256_add_epi32( *noncev,
m256_const1_64( 0x0000000400000000 ) );
n += 4;
} while ( ( n < last_nonce ) && !(*restart) );
} while ( likely( ( n < last_nonce ) && !(*restart) ) );
pdata[19] = n;
*hashes_done = n - first_nonce;
return 0;

View File

@@ -5,63 +5,21 @@
* Optimized by JayDDee@github Jan 2018
*/
#include "x16r-gate.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#include "algo/groestl/sph_groestl.h"
#include "algo/jh/sph_jh.h"
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/luffa_for_sse2.h"
#include "algo/cubehash/cubehash_sse2.h"
#include "algo/simd/nist.h"
#include "algo/echo/sph_echo.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
#include "algo/whirlpool/sph_whirlpool.h"
#include <openssl/sha.h>
#if defined(__AES__)
#include "algo/echo/aes_ni/hash_api.h"
#include "algo/groestl/aes_ni/hash-groestl.h"
#endif
#include "algo/haval/sph-haval.h"
#include "algo/tiger/sph_tiger.h"
#include "algo/gost/sph_gost.h"
#include "algo/lyra2/lyra2.h"
static __thread uint32_t s_ntime = UINT32_MAX;
static __thread char hashOrder[X16R_HASH_FUNC_COUNT + 1] = { 0 };
#if !defined(X16R_8WAY) && !defined(X16R_4WAY)
static __thread uint64_t* x21s_matrix;
union _x21s_context_overlay
{
#if defined(__AES__)
hashState_echo echo;
hashState_groestl groestl;
#else
sph_groestl512_context groestl;
sph_echo512_context echo;
#endif
sph_blake512_context blake;
sph_bmw512_context bmw;
sph_skein512_context skein;
sph_jh512_context jh;
sph_keccak512_context keccak;
hashState_luffa luffa;
cubehashParam cube;
sph_shavite512_context shavite;
hashState_sd simd;
sph_hamsi512_context hamsi;
sph_fugue512_context fugue;
sph_shabal512_context shabal;
sph_whirlpool_context whirlpool;
SHA512_CTX sha512;
sph_haval256_5_context haval;
sph_tiger_context tiger;
sph_gost512_context gost;
@@ -73,112 +31,8 @@ void x21s_hash( void* output, const void* input )
{
uint32_t _ALIGN(128) hash[16];
x21s_context_overlay ctx;
void *in = (void*) input;
int size = 80;
for ( int i = 0; i < 16; i++ )
{
const char elem = hashOrder[i];
const uint8_t algo = elem >= 'A' ? elem - 'A' + 10 : elem - '0';
switch ( algo )
{
case BLAKE:
sph_blake512_init( &ctx.blake );
sph_blake512( &ctx.blake, in, size );
sph_blake512_close( &ctx.blake, hash );
break;
case BMW:
sph_bmw512_init( &ctx.bmw );
sph_bmw512(&ctx.bmw, in, size);
sph_bmw512_close(&ctx.bmw, hash);
break;
case GROESTL:
#if defined(__AES__)
init_groestl( &ctx.groestl, 64 );
update_and_final_groestl( &ctx.groestl, (char*)hash,
(const char*)in, size<<3 );
#else
sph_groestl512_init( &ctx.groestl );
sph_groestl512( &ctx.groestl, in, size );
sph_groestl512_close(&ctx.groestl, hash);
#endif
break;
case SKEIN:
sph_skein512_init( &ctx.skein );
sph_skein512( &ctx.skein, in, size );
sph_skein512_close( &ctx.skein, hash );
break;
case JH:
sph_jh512_init( &ctx.jh );
sph_jh512(&ctx.jh, in, size );
sph_jh512_close(&ctx.jh, hash );
break;
case KECCAK:
sph_keccak512_init( &ctx.keccak );
sph_keccak512( &ctx.keccak, in, size );
sph_keccak512_close( &ctx.keccak, hash );
break;
case LUFFA:
init_luffa( &ctx.luffa, 512 );
update_and_final_luffa( &ctx.luffa, (BitSequence*)hash,
(const BitSequence*)in, size );
break;
case CUBEHASH:
cubehashInit( &ctx.cube, 512, 16, 32 );
cubehashUpdateDigest( &ctx.cube, (byte*) hash,
(const byte*)in, size );
break;
case SHAVITE:
sph_shavite512_init( &ctx.shavite );
sph_shavite512( &ctx.shavite, in, size );
sph_shavite512_close( &ctx.shavite, hash );
break;
case SIMD:
init_sd( &ctx.simd, 512 );
update_final_sd( &ctx.simd, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
break;
case ECHO:
#if defined(__AES__)
init_echo( &ctx.echo, 512 );
update_final_echo ( &ctx.echo, (BitSequence *)hash,
(const BitSequence*)in, size<<3 );
#else
sph_echo512_init( &ctx.echo );
sph_echo512( &ctx.echo, in, size );
sph_echo512_close( &ctx.echo, hash );
#endif
break;
case HAMSI:
sph_hamsi512_init( &ctx.hamsi );
sph_hamsi512( &ctx.hamsi, in, size );
sph_hamsi512_close( &ctx.hamsi, hash );
break;
case FUGUE:
sph_fugue512_init( &ctx.fugue );
sph_fugue512( &ctx.fugue, in, size );
sph_fugue512_close( &ctx.fugue, hash );
break;
case SHABAL:
sph_shabal512_init( &ctx.shabal );
sph_shabal512( &ctx.shabal, in, size );
sph_shabal512_close( &ctx.shabal, hash );
break;
case WHIRLPOOL:
sph_whirlpool_init( &ctx.whirlpool );
sph_whirlpool( &ctx.whirlpool, in, size );
sph_whirlpool_close( &ctx.whirlpool, hash );
break;
case SHA_512:
SHA512_Init( &ctx.sha512 );
SHA512_Update( &ctx.sha512, in, size );
SHA512_Final( (unsigned char*) hash, &ctx.sha512 );
break;
}
in = (void*) hash;
size = 64;
}
x16r_hash_generic( hash, input );
sph_haval256_5_init( &ctx.haval );
sph_haval256_5( &ctx.haval, (const void*) hash, 64) ;
@@ -206,42 +60,38 @@ int scanhash_x21s( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t _ALIGN(128) hash32[8];
uint32_t _ALIGN(128) endiandata[20];
uint32_t _ALIGN(128) edata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t Htarg = ptarget[7];
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
const int thr_id = mythr->id;
uint32_t nonce = first_nonce;
volatile uint8_t *restart = &(work_restart[thr_id].restart);
const bool bench = opt_benchmark;
if ( bench ) ptarget[7] = 0x0cff;
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
mm128_bswap32_80( edata, pdata );
static __thread uint32_t s_ntime = UINT32_MAX;
if ( s_ntime != pdata[17] )
{
uint32_t ntime = swab32(pdata[17]);
x16_r_s_getAlgoString( (const uint8_t*) (&endiandata[1]), hashOrder );
x16_r_s_getAlgoString( (const uint8_t*)(&edata[1]), x16r_hash_order );
s_ntime = ntime;
if ( opt_debug && !thr_id )
applog( LOG_DEBUG, "hash order %s (%08x)", hashOrder, ntime );
applog( LOG_INFO, "hash order %s (%08x)", x16r_hash_order, ntime );
}
if ( opt_benchmark )
ptarget[7] = 0x0cff;
x16r_prehash( edata, pdata );
do
{
be32enc( &endiandata[19], nonce );
x21s_hash( hash32, endiandata );
edata[19] = nonce;
x21s_hash( hash32, edata );
if ( hash32[7] <= Htarg )
if (fulltest( hash32, ptarget ) && !opt_benchmark )
if ( unlikely( valid_hash( hash32, ptarget ) && !bench ) )
{
pdata[19] = nonce;
pdata[19] = bswap_32( nonce );
submit_solution( work, hash32, mythr );
}
nonce++;
@@ -261,3 +111,4 @@ bool x21s_thread_init()
return x21s_matrix;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "sonoa-gate.h"
#if !defined(SONOA_8WAY) && !defined(SONOA_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -616,3 +619,5 @@ int scanhash_sonoa( struct work *work, uint32_t max_nonce,
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x17-gate.h"
#if !defined(X17_8WAY) && !defined(X17_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -9,9 +12,6 @@
#include "algo/keccak/sph_keccak.h"
#include "algo/skein/sph_skein.h"
#include "algo/shavite/sph_shavite.h"
#include "algo/luffa/sph_luffa.h"
#include "algo/cubehash/sph_cubehash.h"
#include "algo/simd/sph_simd.h"
#include "algo/hamsi/sph_hamsi.h"
#include "algo/fugue/sph_fugue.h"
#include "algo/shabal/sph_shabal.h"
@@ -148,30 +148,32 @@ void x17_hash(void *output, const void *input)
int scanhash_x17( struct work *work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr)
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash64[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t n = pdata[19] - 1;
const uint32_t first_nonce = pdata[19];
int thr_id = mythr->id; // thr_id arg is deprecated
// we need bigendian data...
casti_m128i( endiandata, 0 ) = mm128_bswap_32( casti_m128i( pdata, 0 ) );
casti_m128i( endiandata, 1 ) = mm128_bswap_32( casti_m128i( pdata, 1 ) );
casti_m128i( endiandata, 2 ) = mm128_bswap_32( casti_m128i( pdata, 2 ) );
casti_m128i( endiandata, 3 ) = mm128_bswap_32( casti_m128i( pdata, 3 ) );
casti_m128i( endiandata, 4 ) = mm128_bswap_32( casti_m128i( pdata, 4 ) );
const int thr_id = mythr->id;
const bool bench = opt_benchmark;
mm128_bswap32_80( edata, pdata );
do
{
pdata[19] = ++n;
be32enc( &endiandata[19], n );
x17_hash( hash64, endiandata );
if unlikely( valid_hash( hash64, ptarget ) && !opt_benchmark )
submit_solution( work, hash64, mythr );
edata[19] = n;
x17_hash( hash64, edata );
if ( unlikely( valid_hash( hash64, ptarget ) && !bench ) )
{
pdata[19] = bswap_32( n );
submit_solution( work, hash64, mythr );
}
n++;
} while ( n < max_nonce && !work_restart[thr_id].restart);
*hashes_done = n - first_nonce + 1;
pdata[19] = n;
return 0;
}
#endif

View File

@@ -1,5 +1,7 @@
#include "xevan-gate.h"
#if !defined(XEVAN_8WAY) && !defined(XEVAN_4WAY)
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
@@ -268,3 +270,4 @@ int scanhash_xevan( struct work *work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,3 +1,7 @@
#include "x22i-gate.h"
#if !( defined(X22I_8WAY) || defined(X22I_4WAY) )
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#if defined(__AES__)
@@ -24,7 +28,6 @@
#include "algo/lyra2/lyra2.h"
#include "algo/gost/sph_gost.h"
#include "algo/swifftx/swifftx.h"
#include "x22i-gate.h"
union _x22i_context_overlay
{
@@ -200,3 +203,4 @@ int scanhash_x22i( struct work* work, uint32_t max_nonce,
return 0;
}
#endif

View File

@@ -1,4 +1,7 @@
#include "x22i-gate.h"
#if !( defined(X25X_8WAY) || defined(X25X_4WAY) )
#include "algo/blake/sph_blake.h"
#include "algo/bmw/sph_bmw.h"
#if defined(__AES__)
@@ -201,7 +204,7 @@ void x25x_hash( void *output, const void *input )
int scanhash_x25x( struct work* work, uint32_t max_nonce,
uint64_t *hashes_done, struct thr_info *mythr )
{
uint32_t endiandata[20] __attribute__((aligned(64)));
uint32_t edata[20] __attribute__((aligned(64)));
uint32_t hash[8] __attribute__((aligned(64)));
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
@@ -213,17 +216,19 @@ int scanhash_x25x( struct work* work, uint32_t max_nonce,
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x08ff;
mm128_bswap32_80( edata, pdata );
for (int k=0; k < 20; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&edata[k], pdata[k]);
InitializeSWIFFTX();
do
{
pdata[19] = ++n;
be32enc( &endiandata[19], n );
be32enc( &edata[19], n );
x25x_hash( hash, endiandata );
x25x_hash( hash, edata );
if ( hash[7] < Htarg )
if ( fulltest( hash, ptarget ) && !opt_benchmark )
@@ -234,3 +239,4 @@ int scanhash_x25x( struct work* work, uint32_t max_nonce,
return 0;
}
#endif