This commit is contained in:
Jay D Dee
2020-01-30 03:47:11 -05:00
parent 88f81fda0b
commit 0681ca996d
46 changed files with 2882 additions and 10675 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -11,17 +11,6 @@
#include <wmmintrin.h>
#include "hash-groestl.h"
/* global constants */
__m128i ROUND_CONST_Lx;
//__m128i ROUND_CONST_L0[ROUNDS512];
//__m128i ROUND_CONST_L7[ROUNDS512];
__m128i ROUND_CONST_P[ROUNDS1024];
__m128i ROUND_CONST_Q[ROUNDS1024];
__m128i TRANSP_MASK;
__m128i SUBSH_MASK[8];
__m128i ALL_1B;
__m128i ALL_FF;
#define tos(a) #a
#define tostr(a) tos(a)
@@ -111,7 +100,7 @@ __m128i ALL_FF;
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = ALL_1B;\
b1 = m128_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm_xor_si128(a0, TEMP0);\
MUL2(a1, b0, b1);\
@@ -152,24 +141,41 @@ __m128i ALL_FF;
}/*MixBytes*/
#define SET_CONSTANTS(){\
ALL_FF = _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);\
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
SUBSH_MASK[0] = _mm_set_epi32(0x0306090c, 0x0f020508, 0x0b0e0104, 0x070a0d00);\
SUBSH_MASK[1] = _mm_set_epi32(0x04070a0d, 0x00030609, 0x0c0f0205, 0x080b0e01);\
SUBSH_MASK[2] = _mm_set_epi32(0x05080b0e, 0x0104070a, 0x0d000306, 0x090c0f02);\
SUBSH_MASK[3] = _mm_set_epi32(0x06090c0f, 0x0205080b, 0x0e010407, 0x0a0d0003);\
SUBSH_MASK[4] = _mm_set_epi32(0x070a0d00, 0x0306090c, 0x0f020508, 0x0b0e0104);\
SUBSH_MASK[5] = _mm_set_epi32(0x080b0e01, 0x04070a0d, 0x00030609, 0x0c0f0205);\
SUBSH_MASK[6] = _mm_set_epi32(0x090c0f02, 0x05080b0e, 0x0104070a, 0x0d000306);\
SUBSH_MASK[7] = _mm_set_epi32(0x0e010407, 0x0a0d0003, 0x06090c0f, 0x0205080b);\
for(i = 0; i < ROUNDS1024; i++)\
{\
ROUND_CONST_P[i] = _mm_set_epi32(0xf0e0d0c0 ^ (i * 0x01010101), 0xb0a09080 ^ (i * 0x01010101), 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
ROUND_CONST_Q[i] = _mm_set_epi32(0x0f1f2f3f ^ (i * 0x01010101), 0x4f5f6f7f ^ (i * 0x01010101), 0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101));\
}\
}while(0);\
static const uint64_t round_const_p[] __attribute__ ((aligned (64))) =
{
0x7060504030201000, 0xf0e0d0c0b0a09080,
0x7161514131211101, 0xf1e1d1c1b1a19181,
0x7262524232221202, 0xf2e2d2c2b2a29282,
0x7363534333231303, 0xf3e3d3c3b3a39383,
0x7464544434241404, 0xf4e4d4c4b4a49484,
0x7565554535251505, 0xf5e5d5c5b5a59585,
0x7666564636261606, 0xf6e6d6c6b6a69686,
0x7767574737271707, 0xf7e7d7c7b7a79787,
0x7868584838281808, 0xf8e8d8c8b8a89888,
0x7969594939291909, 0xf9e9d9c9b9a99989,
0x7a6a5a4a3a2a1a0a, 0xfaeadacabaaa9a8a,
0x7b6b5b4b3b2b1b0b, 0xfbebdbcbbbab9b8b,
0x7c6c5c4c3c2c1c0c, 0xfcecdcccbcac9c8c,
0x7d6d5d4d3d2d1d0d, 0xfdedddcdbdad9d8d
};
static const uint64_t round_const_q[] __attribute__ ((aligned (64))) =
{
0x8f9fafbfcfdfefff, 0x0f1f2f3f4f5f6f7f,
0x8e9eaebecedeeefe, 0x0e1e2e3e4e5e6e7e,
0x8d9dadbdcdddedfd, 0x0d1d2d3d4d5d6d7d,
0x8c9cacbcccdcecfc, 0x0c1c2c3c4c5c6c7c,
0x8b9babbbcbdbebfb, 0x0b1b2b3b4b5b6b7b,
0x8a9aaabacadaeafa, 0x0a1a2a3a4a5a6a7a,
0x8999a9b9c9d9e9f9, 0x0919293949596979,
0x8898a8b8c8d8e8f8, 0x0818283848586878,
0x8797a7b7c7d7e7f7, 0x0717273747576777,
0x8696a6b6c6d6e6f6, 0x0616263646566676,
0x8595a5b5c5d5e5f5, 0x0515253545556575,
0x8494a4b4c4d4e4f4, 0x0414243444546474,
0x8393a3b3c3d3e3f3, 0x0313233343536373,
0x8292a2b2c2d2e2f2, 0x0212223242526272
};
/* one round
* a0-a7 = input rows
@@ -194,30 +200,50 @@ __m128i ALL_FF;
u8 round_counter = 0;\
for(round_counter = 0; round_counter < 14; round_counter+=2) {\
/* AddRoundConstant P1024 */\
xmm8 = _mm_xor_si128(xmm8, (ROUND_CONST_P[round_counter]));\
xmm8 = _mm_xor_si128( xmm8, \
casti_m128i( round_const_p, round_counter ) ); \
/* ShiftBytes P1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8(xmm8, (SUBSH_MASK[0]));\
xmm9 = _mm_shuffle_epi8(xmm9, (SUBSH_MASK[1]));\
xmm10 = _mm_shuffle_epi8(xmm10, (SUBSH_MASK[2]));\
xmm11 = _mm_shuffle_epi8(xmm11, (SUBSH_MASK[3]));\
xmm12 = _mm_shuffle_epi8(xmm12, (SUBSH_MASK[4]));\
xmm13 = _mm_shuffle_epi8(xmm13, (SUBSH_MASK[5]));\
xmm14 = _mm_shuffle_epi8(xmm14, (SUBSH_MASK[6]));\
xmm15 = _mm_shuffle_epi8(xmm15, (SUBSH_MASK[7]));\
xmm8 = _mm_shuffle_epi8( xmm8, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm9 = _mm_shuffle_epi8( xmm9, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm10 = _mm_shuffle_epi8( xmm10, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm11 = _mm_shuffle_epi8( xmm11, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm12 = _mm_shuffle_epi8( xmm12, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm13 = _mm_shuffle_epi8( xmm13, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm14 = _mm_shuffle_epi8( xmm14, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm15 = _mm_shuffle_epi8( xmm15, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 ); \
\
/* AddRoundConstant P1024 */\
xmm0 = _mm_xor_si128(xmm0, (ROUND_CONST_P[round_counter+1]));\
xmm0 = _mm_shuffle_epi8(xmm0, (SUBSH_MASK[0]));\
xmm1 = _mm_shuffle_epi8(xmm1, (SUBSH_MASK[1]));\
xmm2 = _mm_shuffle_epi8(xmm2, (SUBSH_MASK[2]));\
xmm3 = _mm_shuffle_epi8(xmm3, (SUBSH_MASK[3]));\
xmm4 = _mm_shuffle_epi8(xmm4, (SUBSH_MASK[4]));\
xmm5 = _mm_shuffle_epi8(xmm5, (SUBSH_MASK[5]));\
xmm6 = _mm_shuffle_epi8(xmm6, (SUBSH_MASK[6]));\
xmm7 = _mm_shuffle_epi8(xmm7, (SUBSH_MASK[7]));\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
xmm0 = _mm_xor_si128( xmm0, \
casti_m128i( round_const_p, round_counter+1 ) ); \
xmm0 = _mm_shuffle_epi8( xmm0, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm1 = _mm_shuffle_epi8( xmm1, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm2 = _mm_shuffle_epi8( xmm2, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm3 = _mm_shuffle_epi8( xmm3, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm4 = _mm_shuffle_epi8( xmm4, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm5 = _mm_shuffle_epi8( xmm5, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm6 = _mm_shuffle_epi8( xmm6, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
xmm7 = _mm_shuffle_epi8( xmm7, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
}\
}
@@ -225,48 +251,68 @@ __m128i ALL_FF;
u8 round_counter = 0;\
for(round_counter = 0; round_counter < 14; round_counter+=2) {\
/* AddRoundConstant Q1024 */\
xmm1 = ALL_FF;\
xmm8 = _mm_xor_si128(xmm8, xmm1);\
xmm9 = _mm_xor_si128(xmm9, xmm1);\
xmm10 = _mm_xor_si128(xmm10, xmm1);\
xmm11 = _mm_xor_si128(xmm11, xmm1);\
xmm12 = _mm_xor_si128(xmm12, xmm1);\
xmm13 = _mm_xor_si128(xmm13, xmm1);\
xmm14 = _mm_xor_si128(xmm14, xmm1);\
xmm15 = _mm_xor_si128(xmm15, (ROUND_CONST_Q[round_counter]));\
xmm1 = m128_neg1;\
xmm8 = _mm_xor_si128( xmm8, xmm1 ); \
xmm9 = _mm_xor_si128( xmm9, xmm1 ); \
xmm10 = _mm_xor_si128( xmm10, xmm1 ); \
xmm11 = _mm_xor_si128( xmm11, xmm1 ); \
xmm12 = _mm_xor_si128( xmm12, xmm1 ); \
xmm13 = _mm_xor_si128( xmm13, xmm1 ); \
xmm14 = _mm_xor_si128( xmm14, xmm1 ); \
xmm15 = _mm_xor_si128( xmm15, \
casti_m128i( round_const_q, round_counter ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm8 = _mm_shuffle_epi8(xmm8, (SUBSH_MASK[1]));\
xmm9 = _mm_shuffle_epi8(xmm9, (SUBSH_MASK[3]));\
xmm10 = _mm_shuffle_epi8(xmm10, (SUBSH_MASK[5]));\
xmm11 = _mm_shuffle_epi8(xmm11, (SUBSH_MASK[7]));\
xmm12 = _mm_shuffle_epi8(xmm12, (SUBSH_MASK[0]));\
xmm13 = _mm_shuffle_epi8(xmm13, (SUBSH_MASK[2]));\
xmm14 = _mm_shuffle_epi8(xmm14, (SUBSH_MASK[4]));\
xmm15 = _mm_shuffle_epi8(xmm15, (SUBSH_MASK[6]));\
xmm8 = _mm_shuffle_epi8( xmm8, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm9 = _mm_shuffle_epi8( xmm9, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm10 = _mm_shuffle_epi8( xmm10, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm11 = _mm_shuffle_epi8( xmm11, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm12 = _mm_shuffle_epi8( xmm12, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm13 = _mm_shuffle_epi8( xmm13, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm14 = _mm_shuffle_epi8( xmm14, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm15 = _mm_shuffle_epi8( xmm15, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
/* SubBytes + MixBytes */\
SUBMIX(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
SUBMIX( xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, \
xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6 , xmm7 ); \
\
/* AddRoundConstant Q1024 */\
xmm9 = ALL_FF;\
xmm0 = _mm_xor_si128(xmm0, xmm9);\
xmm1 = _mm_xor_si128(xmm1, xmm9);\
xmm2 = _mm_xor_si128(xmm2, xmm9);\
xmm3 = _mm_xor_si128(xmm3, xmm9);\
xmm4 = _mm_xor_si128(xmm4, xmm9);\
xmm5 = _mm_xor_si128(xmm5, xmm9);\
xmm6 = _mm_xor_si128(xmm6, xmm9);\
xmm7 = _mm_xor_si128(xmm7, (ROUND_CONST_Q[round_counter+1]));\
xmm9 = m128_neg1;\
xmm0 = _mm_xor_si128( xmm0, xmm9 ); \
xmm1 = _mm_xor_si128( xmm1, xmm9 ); \
xmm2 = _mm_xor_si128( xmm2, xmm9 ); \
xmm3 = _mm_xor_si128( xmm3, xmm9 ); \
xmm4 = _mm_xor_si128( xmm4, xmm9 ); \
xmm5 = _mm_xor_si128( xmm5, xmm9 ); \
xmm6 = _mm_xor_si128( xmm6, xmm9 ); \
xmm7 = _mm_xor_si128( xmm7, \
casti_m128i( round_const_q, round_counter+1 ) ); \
/* ShiftBytes Q1024 + pre-AESENCLAST */\
xmm0 = _mm_shuffle_epi8(xmm0, (SUBSH_MASK[1]));\
xmm1 = _mm_shuffle_epi8(xmm1, (SUBSH_MASK[3]));\
xmm2 = _mm_shuffle_epi8(xmm2, (SUBSH_MASK[5]));\
xmm3 = _mm_shuffle_epi8(xmm3, (SUBSH_MASK[7]));\
xmm4 = _mm_shuffle_epi8(xmm4, (SUBSH_MASK[0]));\
xmm5 = _mm_shuffle_epi8(xmm5, (SUBSH_MASK[2]));\
xmm6 = _mm_shuffle_epi8(xmm6, (SUBSH_MASK[4]));\
xmm7 = _mm_shuffle_epi8(xmm7, (SUBSH_MASK[6]));\
xmm0 = _mm_shuffle_epi8( xmm0, m128_const_64( 0x04070a0d00030609, \
0x0c0f0205080b0e01 ) ); \
xmm1 = _mm_shuffle_epi8( xmm1, m128_const_64( 0x06090c0f0205080b, \
0x0e0104070a0d0003 ) ); \
xmm2 = _mm_shuffle_epi8( xmm2, m128_const_64( 0x080b0e0104070a0d, \
0x000306090c0f0205 ) ); \
xmm3 = _mm_shuffle_epi8( xmm3, m128_const_64( 0x0e0104070a0d0003, \
0x06090c0f0205080b ) ); \
xmm4 = _mm_shuffle_epi8( xmm4, m128_const_64( 0x0306090c0f020508, \
0x0b0e0104070a0d00 ) ); \
xmm5 = _mm_shuffle_epi8( xmm5, m128_const_64( 0x05080b0e0104070a, \
0x0d000306090c0f02 ) ); \
xmm6 = _mm_shuffle_epi8( xmm6, m128_const_64( 0x070a0d000306090c, \
0x0f0205080b0e0104 ) ); \
xmm7 = _mm_shuffle_epi8( xmm7, m128_const_64( 0x090c0f0205080b0e, \
0x0104070a0d000306 ) ); \
/* SubBytes + MixBytes */\
SUBMIX(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
SUBMIX( xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, \
xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15 ); \
}\
}
@@ -278,7 +324,7 @@ __m128i ALL_FF;
* clobbers: t0-t7
*/
#define Matrix_Transpose(i0, i1, i2, i3, i4, i5, i6, i7, t0, t1, t2, t3, t4, t5, t6, t7){\
t0 = TRANSP_MASK;\
t0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 );\
\
i6 = _mm_shuffle_epi8(i6, t0);\
i0 = _mm_shuffle_epi8(i0, t0);\
@@ -366,7 +412,7 @@ __m128i ALL_FF;
i4 = _mm_unpacklo_epi64(i4, i5);\
t1 = _mm_unpackhi_epi64(t1, i5);\
t2 = i6;\
o0 = TRANSP_MASK;\
o0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 ); \
i6 = _mm_unpacklo_epi64(i6, i7);\
t2 = _mm_unpackhi_epi64(t2, i7);\
/* load transpose mask into a register, because it will be used 8 times */\

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +0,0 @@
// specify assembly or intrinsics implementation
//#define TASM
#define TINTR
// Not to be confused with AVX512VAES
#define VAES
// #define VAVX
// #define VVPERM
//#endif

View File

@@ -1,529 +0,0 @@
/* groestl-asm-aes.h Aug 2011
*
* Groestl implementation with inline assembly using ssse3, sse4.1, and aes
* instructions.
* Authors: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#include "hash-groestl256.h"
/* global constants */
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_Lx[16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_L0[ROUNDS512*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_L7[ROUNDS512*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_P[ROUNDS1024*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_Q[ROUNDS1024*16];
__attribute__ ((aligned (16))) unsigned char TRANSP_MASK[16];
__attribute__ ((aligned (16))) unsigned char SUBSH_MASK[8*16];
__attribute__ ((aligned (16))) unsigned char ALL_1B[16];
__attribute__ ((aligned (16))) unsigned char ALL_FF[16];
/* temporary variables */
__attribute__ ((aligned (16))) unsigned char QTEMP[8*16];
__attribute__ ((aligned (16))) unsigned char TEMP[3*16];
#define tos(a) #a
#define tostr(a) tos(a)
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b */
#define MUL2(i, j, k){\
asm("pxor xmm"tostr(j)", xmm"tostr(j)"");\
asm("pcmpgtb xmm"tostr(j)", xmm"tostr(i)"");\
asm("paddb xmm"tostr(i)", xmm"tostr(i)"");\
asm("pand xmm"tostr(j)", xmm"tostr(k)"");\
asm("pxor xmm"tostr(i)", xmm"tostr(j)"");\
}/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* t_i = a_i + a_{i+1} */\
asm("movdqa xmm"tostr(b6)", xmm"tostr(a0)"");\
asm("movdqa xmm"tostr(b7)", xmm"tostr(a1)"");\
asm("pxor xmm"tostr(a0)", xmm"tostr(a1)"");\
asm("movdqa xmm"tostr(b0)", xmm"tostr(a2)"");\
asm("pxor xmm"tostr(a1)", xmm"tostr(a2)"");\
asm("movdqa xmm"tostr(b1)", xmm"tostr(a3)"");\
asm("pxor xmm"tostr(a2)", xmm"tostr(a3)"");\
asm("movdqa xmm"tostr(b2)", xmm"tostr(a4)"");\
asm("pxor xmm"tostr(a3)", xmm"tostr(a4)"");\
asm("movdqa xmm"tostr(b3)", xmm"tostr(a5)"");\
asm("pxor xmm"tostr(a4)", xmm"tostr(a5)"");\
asm("movdqa xmm"tostr(b4)", xmm"tostr(a6)"");\
asm("pxor xmm"tostr(a5)", xmm"tostr(a6)"");\
asm("movdqa xmm"tostr(b5)", xmm"tostr(a7)"");\
asm("pxor xmm"tostr(a6)", xmm"tostr(a7)"");\
asm("pxor xmm"tostr(a7)", xmm"tostr(b6)"");\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
asm("pxor xmm"tostr(b0)", xmm"tostr(a4)"");\
asm("pxor xmm"tostr(b6)", xmm"tostr(a4)"");\
asm("pxor xmm"tostr(b1)", xmm"tostr(a5)"");\
asm("pxor xmm"tostr(b7)", xmm"tostr(a5)"");\
asm("pxor xmm"tostr(b2)", xmm"tostr(a6)"");\
asm("pxor xmm"tostr(b0)", xmm"tostr(a6)"");\
/* spill values y_4, y_5 to memory */\
asm("movaps [TEMP+0*16], xmm"tostr(b0)"");\
asm("pxor xmm"tostr(b3)", xmm"tostr(a7)"");\
asm("pxor xmm"tostr(b1)", xmm"tostr(a7)"");\
asm("movaps [TEMP+1*16], xmm"tostr(b1)"");\
asm("pxor xmm"tostr(b4)", xmm"tostr(a0)"");\
asm("pxor xmm"tostr(b2)", xmm"tostr(a0)"");\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
asm("movdqa xmm"tostr(b0)", xmm"tostr(a0)"");\
asm("pxor xmm"tostr(b5)", xmm"tostr(a1)"");\
asm("pxor xmm"tostr(b3)", xmm"tostr(a1)"");\
asm("movdqa xmm"tostr(b1)", xmm"tostr(a1)"");\
asm("pxor xmm"tostr(b6)", xmm"tostr(a2)"");\
asm("pxor xmm"tostr(b4)", xmm"tostr(a2)"");\
asm("movaps [TEMP+2*16], xmm"tostr(a2)"");\
asm("pxor xmm"tostr(b7)", xmm"tostr(a3)"");\
asm("pxor xmm"tostr(b5)", xmm"tostr(a3)"");\
\
/* compute x_i = t_i + t_{i+3} */\
asm("pxor xmm"tostr(a0)", xmm"tostr(a3)"");\
asm("pxor xmm"tostr(a1)", xmm"tostr(a4)"");\
asm("pxor xmm"tostr(a2)", xmm"tostr(a5)"");\
asm("pxor xmm"tostr(a3)", xmm"tostr(a6)"");\
asm("pxor xmm"tostr(a4)", xmm"tostr(a7)"");\
asm("pxor xmm"tostr(a5)", xmm"tostr(b0)"");\
asm("pxor xmm"tostr(a6)", xmm"tostr(b1)"");\
asm("pxor xmm"tostr(a7)", [TEMP+2*16]");\
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
asm("movaps xmm"tostr(b1)", [ALL_1B]");\
MUL2(a0, b0, b1);\
asm("pxor xmm"tostr(a0)", [TEMP+0*16]");\
MUL2(a1, b0, b1);\
asm("pxor xmm"tostr(a1)", [TEMP+1*16]");\
MUL2(a2, b0, b1);\
asm("pxor xmm"tostr(a2)", xmm"tostr(b2)"");\
MUL2(a3, b0, b1);\
asm("pxor xmm"tostr(a3)", xmm"tostr(b3)"");\
MUL2(a4, b0, b1);\
asm("pxor xmm"tostr(a4)", xmm"tostr(b4)"");\
MUL2(a5, b0, b1);\
asm("pxor xmm"tostr(a5)", xmm"tostr(b5)"");\
MUL2(a6, b0, b1);\
asm("pxor xmm"tostr(a6)", xmm"tostr(b6)"");\
MUL2(a7, b0, b1);\
asm("pxor xmm"tostr(a7)", xmm"tostr(b7)"");\
\
/* compute v_i : double w_i */\
/* add to y_4 y_5 .. v3, v4, ... */\
MUL2(a0, b0, b1);\
asm("pxor xmm"tostr(b5)", xmm"tostr(a0)"");\
MUL2(a1, b0, b1);\
asm("pxor xmm"tostr(b6)", xmm"tostr(a1)"");\
MUL2(a2, b0, b1);\
asm("pxor xmm"tostr(b7)", xmm"tostr(a2)"");\
MUL2(a5, b0, b1);\
asm("pxor xmm"tostr(b2)", xmm"tostr(a5)"");\
MUL2(a6, b0, b1);\
asm("pxor xmm"tostr(b3)", xmm"tostr(a6)"");\
MUL2(a7, b0, b1);\
asm("pxor xmm"tostr(b4)", xmm"tostr(a7)"");\
MUL2(a3, b0, b1);\
MUL2(a4, b0, b1);\
asm("movaps xmm"tostr(b0)", [TEMP+0*16]");\
asm("movaps xmm"tostr(b1)", [TEMP+1*16]");\
asm("pxor xmm"tostr(b0)", xmm"tostr(a3)"");\
asm("pxor xmm"tostr(b1)", xmm"tostr(a4)"");\
}/*MixBytes*/
#define SET_CONSTANTS(){\
((u64*)ALL_1B)[0] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)ALL_1B)[1] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)TRANSP_MASK)[0] = 0x0d0509010c040800ULL;\
((u64*)TRANSP_MASK)[1] = 0x0f070b030e060a02ULL;\
((u64*)SUBSH_MASK)[ 0] = 0x0c0f0104070b0e00ULL;\
((u64*)SUBSH_MASK)[ 1] = 0x03060a0d08020509ULL;\
((u64*)SUBSH_MASK)[ 2] = 0x0e090205000d0801ULL;\
((u64*)SUBSH_MASK)[ 3] = 0x04070c0f0a03060bULL;\
((u64*)SUBSH_MASK)[ 4] = 0x080b0306010f0a02ULL;\
((u64*)SUBSH_MASK)[ 5] = 0x05000e090c04070dULL;\
((u64*)SUBSH_MASK)[ 6] = 0x0a0d040702090c03ULL;\
((u64*)SUBSH_MASK)[ 7] = 0x0601080b0e05000fULL;\
((u64*)SUBSH_MASK)[ 8] = 0x0b0e0500030a0d04ULL;\
((u64*)SUBSH_MASK)[ 9] = 0x0702090c0f060108ULL;\
((u64*)SUBSH_MASK)[10] = 0x0d080601040c0f05ULL;\
((u64*)SUBSH_MASK)[11] = 0x00030b0e0907020aULL;\
((u64*)SUBSH_MASK)[12] = 0x0f0a0702050e0906ULL;\
((u64*)SUBSH_MASK)[13] = 0x01040d080b00030cULL;\
((u64*)SUBSH_MASK)[14] = 0x090c000306080b07ULL;\
((u64*)SUBSH_MASK)[15] = 0x02050f0a0d01040eULL;\
for(i = 0; i < ROUNDS512; i++)\
{\
((u64*)ROUND_CONST_L0)[i*2+1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_L0)[i*2+0] = (i * 0x0101010101010101ULL) ^ 0x7060504030201000ULL;\
((u64*)ROUND_CONST_L7)[i*2+1] = (i * 0x0101010101010101ULL) ^ 0x8f9fafbfcfdfefffULL;\
((u64*)ROUND_CONST_L7)[i*2+0] = 0x0000000000000000ULL;\
}\
((u64*)ROUND_CONST_Lx)[1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_Lx)[0] = 0x0000000000000000ULL;\
}while(0);
#define Push_All_Regs() do{\
/* not using any...
asm("push rax");\
asm("push rbx");\
asm("push rcx");*/\
}while(0);
#define Pop_All_Regs() do{\
/* not using any...
asm("pop rcx");\
asm("pop rbx");\
asm("pop rax");*/\
}while(0);
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
asm ("movaps xmm"tostr(b1)", [ROUND_CONST_Lx]");\
asm ("pxor xmm"tostr(a0)", [ROUND_CONST_L0+"tostr(i)"*16]");\
asm ("pxor xmm"tostr(a1)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a2)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a3)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a4)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a5)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a6)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a7)", [ROUND_CONST_L7+"tostr(i)"*16]");\
/* ShiftBytes + SubBytes (interleaved) */\
asm ("pxor xmm"tostr(b0)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a0)", [SUBSH_MASK+0*16]");\
asm ("aesenclast xmm"tostr(a0)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a1)", [SUBSH_MASK+1*16]");\
asm ("aesenclast xmm"tostr(a1)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a2)", [SUBSH_MASK+2*16]");\
asm ("aesenclast xmm"tostr(a2)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a3)", [SUBSH_MASK+3*16]");\
asm ("aesenclast xmm"tostr(a3)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a4)", [SUBSH_MASK+4*16]");\
asm ("aesenclast xmm"tostr(a4)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a5)", [SUBSH_MASK+5*16]");\
asm ("aesenclast xmm"tostr(a5)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a6)", [SUBSH_MASK+6*16]");\
asm ("aesenclast xmm"tostr(a6)", xmm"tostr(b0)"");\
asm ("pshufb xmm"tostr(a7)", [SUBSH_MASK+7*16]");\
asm ("aesenclast xmm"tostr(a7)", xmm"tostr(b0)"");\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
ROUND(0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(2, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(4, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(6, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(8, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
asm ("movaps xmm"tostr(t0)", [TRANSP_MASK]");\
\
asm ("pshufb xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i1)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i3)", xmm"tostr(t0)"");\
\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(t0)", xmm"tostr(i2)"");\
\
asm ("punpcklwd xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpckhwd xmm"tostr(o1)", xmm"tostr(i1)"");\
asm ("punpcklwd xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpckhwd xmm"tostr(t0)", xmm"tostr(i3)"");\
\
asm ("pshufd xmm"tostr(i0)", xmm"tostr(i0)", 216");\
asm ("pshufd xmm"tostr(o1)", xmm"tostr(o1)", 216");\
asm ("pshufd xmm"tostr(i2)", xmm"tostr(i2)", 216");\
asm ("pshufd xmm"tostr(t0)", xmm"tostr(t0)", 216");\
\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(o1)"");\
\
asm ("punpckldq xmm"tostr(i0)", xmm"tostr(i2)"");\
asm ("punpckldq xmm"tostr(o1)", xmm"tostr(t0)"");\
asm ("punpckhdq xmm"tostr(o2)", xmm"tostr(i2)"");\
asm ("punpckhdq xmm"tostr(o3)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i1)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i4)"");\
asm ("punpckhqdq xmm"tostr(o1)", xmm"tostr(i4)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(i1)"");\
asm ("movdqa xmm"tostr(o4)", xmm"tostr(i2)"");\
asm ("punpcklqdq xmm"tostr(o2)", xmm"tostr(i5)"");\
asm ("punpckhqdq xmm"tostr(o3)", xmm"tostr(i5)"");\
asm ("movdqa xmm"tostr(o5)", xmm"tostr(i2)"");\
asm ("movdqa xmm"tostr(o6)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(o4)", xmm"tostr(i6)"");\
asm ("punpckhqdq xmm"tostr(o5)", xmm"tostr(i6)"");\
asm ("movdqa xmm"tostr(o7)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(o6)", xmm"tostr(i7)"");\
asm ("punpckhqdq xmm"tostr(o7)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
asm ("movdqa xmm"tostr(o0)", xmm"tostr(i0)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpckhqdq xmm"tostr(o0)", xmm"tostr(i1)"");\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i2)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpckhqdq xmm"tostr(o1)", xmm"tostr(i3)"");\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i4)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("punpckhqdq xmm"tostr(o2)", xmm"tostr(i5)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(i6)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(i7)"");\
asm ("punpckhqdq xmm"tostr(o3)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
asm ("pxor xmm"tostr(t0)", xmm"tostr(t0)"");\
asm ("movdqa xmm"tostr(i1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(i3)", xmm"tostr(i2)"");\
asm ("movdqa xmm"tostr(i5)", xmm"tostr(i4)"");\
asm ("movdqa xmm"tostr(i7)", xmm"tostr(i6)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i1)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i3)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i5)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i7)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(i7)"");\
}/**/
void INIT256(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
asm volatile ("emms");
/* load IV into registers xmm12 - xmm15 */
asm ("movaps xmm12, [rdi+0*16]");
asm ("movaps xmm13, [rdi+1*16]");
asm ("movaps xmm14, [rdi+2*16]");
asm ("movaps xmm15, [rdi+3*16]");
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* store transposed IV */
asm ("movaps [rdi+0*16], xmm12");
asm ("movaps [rdi+1*16], xmm2");
asm ("movaps [rdi+2*16], xmm6");
asm ("movaps [rdi+3*16], xmm7");
asm volatile ("emms");
asm (".att_syntax noprefix");
}
void TF512(u64* h, u64* m)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
/* message M in rsi */
#ifdef IACA_TRACE
IACA_START;
#endif
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load message into registers xmm12 - xmm15 (Q = message) */
asm ("movaps xmm12, [rsi+0*16]");
asm ("movaps xmm13, [rsi+1*16]");
asm ("movaps xmm14, [rsi+2*16]");
asm ("movaps xmm15, [rsi+3*16]");
/* transform message M from column ordering into row ordering */
/* we first put two rows (2x64 bit) of the message into one 128-bit xmm register */
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* load previous chaining value */
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
asm ("movaps xmm8, [rdi+0*16]");
asm ("movaps xmm0, [rdi+1*16]");
asm ("movaps xmm4, [rdi+2*16]");
asm ("movaps xmm5, [rdi+3*16]");
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
asm ("pxor xmm8, xmm12");
asm ("pxor xmm0, xmm2");
asm ("pxor xmm4, xmm6");
asm ("pxor xmm5, xmm7");
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(8, 0, 4, 5, 12, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
asm ("pxor xmm0, xmm8");
asm ("pxor xmm1, xmm10");
asm ("pxor xmm2, xmm12");
asm ("pxor xmm3, xmm14");
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
asm ("pxor xmm0, [rdi+0*16]");
asm ("pxor xmm1, [rdi+1*16]");
asm ("pxor xmm2, [rdi+2*16]");
asm ("pxor xmm3, [rdi+3*16]");
/* store CV */
asm ("movaps [rdi+0*16], xmm0");
asm ("movaps [rdi+1*16], xmm1");
asm ("movaps [rdi+2*16], xmm2");
asm ("movaps [rdi+3*16], xmm3");
Pop_All_Regs();
asm (".att_syntax noprefix");
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
asm ("movaps xmm8, [rdi+0*16]");
asm ("movaps xmm10, [rdi+1*16]");
asm ("movaps xmm12, [rdi+2*16]");
asm ("movaps xmm14, [rdi+3*16]");
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(8, 9, 10, 11, 12, 13, 14, 15, 0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(8, 9, 10, 11, 12, 13, 14, 15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
asm ("pxor xmm8, [rdi+0*16]");
asm ("pxor xmm10, [rdi+1*16]");
asm ("pxor xmm12, [rdi+2*16]");
asm ("pxor xmm14, [rdi+3*16]");
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(8, 10, 12, 14, 4, 9, 11, 0);
/* we only need to return the truncated half of the state */
asm ("movaps [rdi+2*16], xmm9");
asm ("movaps [rdi+3*16], xmm11");
Pop_All_Regs();
asm (".att_syntax noprefix");
return;
}

View File

@@ -1,519 +0,0 @@
/* groestl-asm-avx.h Aug 2011
*
* Groestl implementation with inline assembly using ssse3, sse4.1, aes and avx
* instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#include "hash-groestl256.h"
/* global variables */
__attribute__ ((aligned (32))) unsigned char ROUND_CONST_Lx[16];
__attribute__ ((aligned (32))) unsigned char ROUND_CONST_L0[ROUNDS512*16];
__attribute__ ((aligned (32))) unsigned char ROUND_CONST_L7[ROUNDS512*16];
__attribute__ ((aligned (32))) unsigned char ROUND_CONST_P[ROUNDS1024*16];
__attribute__ ((aligned (32))) unsigned char ROUND_CONST_Q[ROUNDS1024*16];
__attribute__ ((aligned (32))) unsigned char TRANSP_MASK[16];
__attribute__ ((aligned (32))) unsigned char SUBSH_MASK[8*16];
__attribute__ ((aligned (32))) unsigned char ALL_1B[32];
__attribute__ ((aligned (32))) unsigned char ALL_FF[32];
/* temporary variables */
__attribute__ ((aligned (32))) unsigned char TEMP[6*32];
#define tos(a) #a
#define tostr(a) tos(a)
#define SET_CONSTANTS(){\
((u64*)TRANSP_MASK)[0] = 0x0d0509010c040800ULL;\
((u64*)TRANSP_MASK)[1] = 0x0f070b030e060a02ULL;\
((u64*)ALL_1B)[0] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)ALL_1B)[1] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)SUBSH_MASK)[ 0] = 0x0c0f0104070b0e00ULL;\
((u64*)SUBSH_MASK)[ 1] = 0x03060a0d08020509ULL;\
((u64*)SUBSH_MASK)[ 2] = 0x0e090205000d0801ULL;\
((u64*)SUBSH_MASK)[ 3] = 0x04070c0f0a03060bULL;\
((u64*)SUBSH_MASK)[ 4] = 0x080b0306010f0a02ULL;\
((u64*)SUBSH_MASK)[ 5] = 0x05000e090c04070dULL;\
((u64*)SUBSH_MASK)[ 6] = 0x0a0d040702090c03ULL;\
((u64*)SUBSH_MASK)[ 7] = 0x0601080b0e05000fULL;\
((u64*)SUBSH_MASK)[ 8] = 0x0b0e0500030a0d04ULL;\
((u64*)SUBSH_MASK)[ 9] = 0x0702090c0f060108ULL;\
((u64*)SUBSH_MASK)[10] = 0x0d080601040c0f05ULL;\
((u64*)SUBSH_MASK)[11] = 0x00030b0e0907020aULL;\
((u64*)SUBSH_MASK)[12] = 0x0f0a0702050e0906ULL;\
((u64*)SUBSH_MASK)[13] = 0x01040d080b00030cULL;\
((u64*)SUBSH_MASK)[14] = 0x090c000306080b07ULL;\
((u64*)SUBSH_MASK)[15] = 0x02050f0a0d01040eULL;\
for(i = 0; i < ROUNDS512; i++)\
{\
((u64*)ROUND_CONST_L0)[i*2+1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_L0)[i*2+0] = (i * 0x0101010101010101ULL) ^ 0x7060504030201000ULL;\
((u64*)ROUND_CONST_L7)[i*2+1] = (i * 0x0101010101010101ULL) ^ 0x8f9fafbfcfdfefffULL;\
((u64*)ROUND_CONST_L7)[i*2+0] = 0x0000000000000000ULL;\
}\
((u64*)ROUND_CONST_Lx)[1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_Lx)[0] = 0x0000000000000000ULL;\
}while(0);
#define Push_All_Regs() do{\
/* not using any...
asm("push rax");\
asm("push rbx");\
asm("push rcx");*/\
}while(0);
#define Pop_All_Regs() do{\
/* not using any...
asm("pop rcx");\
asm("pop rbx");\
asm("pop rax");*/\
}while(0);
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b
* xmm[z] has to be zero */
#define VMUL2(i, j, k, z){\
asm("vpcmpgtb xmm"tostr(j)", xmm"tostr(z)", xmm"tostr(i)"");\
asm("vpaddb xmm"tostr(i)", xmm"tostr(i)", xmm"tostr(i)"");\
asm("vpand xmm"tostr(j)", xmm"tostr(j)", xmm"tostr(k)"");\
asm("vpxor xmm"tostr(i)", xmm"tostr(i)", xmm"tostr(j)"");\
}/**/
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b
* xmm[z] has to be zero */
#define VMUL2v2(i, j, k, z){\
asm("vpblendvb xmm"tostr(j)", xmm"tostr(z)", xmm"tostr(k)", xmm"tostr(i)"");\
asm("vpaddb xmm"tostr(i)", xmm"tostr(i)", xmm"tostr(i)"");\
asm("vpxor xmm"tostr(i)", xmm"tostr(i)", xmm"tostr(j)"");\
}/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* xmm"tostr(8..xmm"tostr(15 = a2 a3... a0 a1 */\
asm("vmovdqa xmm"tostr(b0)", xmm"tostr(a2)"");\
asm("vmovdqa xmm"tostr(b1)", xmm"tostr(a3)"");\
asm("vmovdqa xmm"tostr(b2)", xmm"tostr(a4)"");\
asm("vmovdqa xmm"tostr(b3)", xmm"tostr(a5)"");\
asm("vmovdqa xmm"tostr(b4)", xmm"tostr(a6)"");\
asm("vmovdqa xmm"tostr(b5)", xmm"tostr(a7)"");\
asm("vmovdqa xmm"tostr(b6)", xmm"tostr(a0)"");\
asm("vmovdqa xmm"tostr(b7)", xmm"tostr(a1)"");\
\
/* t_i = a_i + a_{i+1} */\
asm("vpxor xmm"tostr(a0)", xmm"tostr(a0)", xmm"tostr(a1)"");\
asm("vpxor xmm"tostr(a1)", xmm"tostr(a1)", xmm"tostr(a2)"");\
asm("vpxor xmm"tostr(a2)", xmm"tostr(a2)", xmm"tostr(a3)"");\
asm("vpxor xmm"tostr(a3)", xmm"tostr(a3)", xmm"tostr(a4)"");\
asm("vpxor xmm"tostr(a4)", xmm"tostr(a4)", xmm"tostr(a5)"");\
asm("vpxor xmm"tostr(a5)", xmm"tostr(a5)", xmm"tostr(a6)"");\
asm("vpxor xmm"tostr(a6)", xmm"tostr(a6)", xmm"tostr(a7)"");\
asm("vpxor xmm"tostr(a7)", xmm"tostr(a7)", xmm"tostr(b6)"");\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
asm("vpxor xmm"tostr(b0)", xmm"tostr(b0)", xmm"tostr(a4)"");\
asm("vpxor xmm"tostr(b1)", xmm"tostr(b1)", xmm"tostr(a5)"");\
asm("vpxor xmm"tostr(b2)", xmm"tostr(b2)", xmm"tostr(a6)"");\
asm("vpxor xmm"tostr(b3)", xmm"tostr(b3)", xmm"tostr(a7)"");\
asm("vpxor xmm"tostr(b4)", xmm"tostr(b4)", xmm"tostr(a0)"");\
asm("vpxor xmm"tostr(b5)", xmm"tostr(b5)", xmm"tostr(a1)"");\
asm("vpxor xmm"tostr(b6)", xmm"tostr(b6)", xmm"tostr(a2)"");\
asm("vpxor xmm"tostr(b7)", xmm"tostr(b7)", xmm"tostr(a3)"");\
\
asm("vpxor xmm"tostr(b0)", xmm"tostr(b0)", xmm"tostr(a6)"");\
asm("vpxor xmm"tostr(b1)", xmm"tostr(b1)", xmm"tostr(a7)"");\
asm("vpxor xmm"tostr(b2)", xmm"tostr(b2)", xmm"tostr(a0)"");\
asm("vpxor xmm"tostr(b3)", xmm"tostr(b3)", xmm"tostr(a1)"");\
asm("vpxor xmm"tostr(b4)", xmm"tostr(b4)", xmm"tostr(a2)"");\
asm("vpxor xmm"tostr(b5)", xmm"tostr(b5)", xmm"tostr(a3)"");\
asm("vpxor xmm"tostr(b6)", xmm"tostr(b6)", xmm"tostr(a4)"");\
asm("vpxor xmm"tostr(b7)", xmm"tostr(b7)", xmm"tostr(a5)"");\
\
/* spill values y_4, y_5 to memory */\
asm("vmovaps [TEMP+0*16], xmm"tostr(b0)"");\
asm("vmovaps [TEMP+1*16], xmm"tostr(b1)"");\
asm("vmovaps [TEMP+2*16], xmm"tostr(b2)"");\
\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
asm("vmovdqa xmm"tostr(b0)", xmm"tostr(a0)"");\
asm("vmovdqa xmm"tostr(b1)", xmm"tostr(a1)"");\
asm("vmovaps [TEMP+3*16], xmm"tostr(a2)"");\
\
/* compute x_i = t_i + t_{i+3} */\
asm("vpxor xmm"tostr(a0)", xmm"tostr(a0)", xmm"tostr(a3)"");\
asm("vpxor xmm"tostr(a1)", xmm"tostr(a1)", xmm"tostr(a4)"");\
asm("vpxor xmm"tostr(a2)", xmm"tostr(a2)", xmm"tostr(a5)"");\
asm("vpxor xmm"tostr(a3)", xmm"tostr(a3)", xmm"tostr(a6)"");\
asm("vpxor xmm"tostr(a4)", xmm"tostr(a4)", xmm"tostr(a7)"");\
asm("vpxor xmm"tostr(a5)", xmm"tostr(a5)", xmm"tostr(b0)"");\
asm("vpxor xmm"tostr(a6)", xmm"tostr(a6)", xmm"tostr(b1)"");\
asm("vpxor xmm"tostr(a7)", xmm"tostr(a7)", [TEMP+3*16]");\
\
/*compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
asm("vmovaps xmm"tostr(b1)", [ALL_1B]");\
asm("vpxor xmm"tostr(b2)", xmm"tostr(b2)", xmm"tostr(b2)"");\
VMUL2(a7, b0, b1, b2);\
VMUL2(a6, b0, b1, b2);\
VMUL2(a5, b0, b1, b2);\
VMUL2(a4, b0, b1, b2);\
VMUL2(a3, b0, b1, b2);\
VMUL2(a2, b0, b1, b2);\
VMUL2(a1, b0, b1, b2);\
VMUL2(a0, b0, b1, b2);\
\
/* compute w_i : add y_{i+4} */\
asm("vpxor xmm"tostr(a0)", xmm"tostr(a0)", [TEMP+0*16]");\
asm("vpxor xmm"tostr(a1)", xmm"tostr(a1)", [TEMP+1*16]");\
asm("vpxor xmm"tostr(a2)", xmm"tostr(a2)", [TEMP+2*16]");\
asm("vpxor xmm"tostr(a3)", xmm"tostr(a3)", xmm"tostr(b3)"");\
asm("vpxor xmm"tostr(a4)", xmm"tostr(a4)", xmm"tostr(b4)"");\
asm("vpxor xmm"tostr(a5)", xmm"tostr(a5)", xmm"tostr(b5)"");\
asm("vpxor xmm"tostr(a6)", xmm"tostr(a6)", xmm"tostr(b6)"");\
asm("vpxor xmm"tostr(a7)", xmm"tostr(a7)", xmm"tostr(b7)"");\
\
/*compute v_i: double w_i */\
VMUL2(a0, b0, b1, b2);\
VMUL2(a1, b0, b1, b2);\
VMUL2(a2, b0, b1, b2);\
VMUL2(a3, b0, b1, b2);\
VMUL2(a4, b0, b1, b2);\
VMUL2(a5, b0, b1, b2);\
VMUL2(a6, b0, b1, b2);\
VMUL2(a7, b0, b1, b2);\
\
/* add to y_4 y_5 .. v3, v4, ... */\
asm("vpxor xmm"tostr(b0)", xmm"tostr(a3)", [TEMP+0*16]");\
asm("vpxor xmm"tostr(b1)", xmm"tostr(a4)", [TEMP+1*16]");\
asm("vpxor xmm"tostr(b2)", xmm"tostr(a5)", [TEMP+2*16]");\
asm("vpxor xmm"tostr(b3)", xmm"tostr(b3)", xmm"tostr(a6)"");\
asm("vpxor xmm"tostr(b4)", xmm"tostr(b4)", xmm"tostr(a7)"");\
asm("vpxor xmm"tostr(b5)", xmm"tostr(b5)", xmm"tostr(a0)"");\
asm("vpxor xmm"tostr(b6)", xmm"tostr(b6)", xmm"tostr(a1)"");\
asm("vpxor xmm"tostr(b7)", xmm"tostr(b7)", xmm"tostr(a2)"");\
}/*MixBytes*/
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
asm ("vmovaps xmm"tostr(b1)", [ROUND_CONST_Lx]");\
asm ("vpxor xmm"tostr(a0)", xmm"tostr(a0)", [ROUND_CONST_L0+"tostr(i)"*16]");\
asm ("vpxor xmm"tostr(a1)", xmm"tostr(a1)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a2)", xmm"tostr(a2)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a3)", xmm"tostr(a3)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a4)", xmm"tostr(a4)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a5)", xmm"tostr(a5)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a6)", xmm"tostr(a6)", xmm"tostr(b1)"");\
asm ("vpxor xmm"tostr(a7)", xmm"tostr(a7)", [ROUND_CONST_L7+"tostr(i)"*16]");\
/* ShiftBytes + SubBytes (interleaved) */\
asm ("vpxor xmm"tostr(b0)", xmm"tostr(b0)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a0)", xmm"tostr(a0)", [SUBSH_MASK+0*16]");\
asm ("vaesenclast xmm"tostr(a0)", xmm"tostr(a0)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a1)", xmm"tostr(a1)", [SUBSH_MASK+1*16]");\
asm ("vaesenclast xmm"tostr(a1)", xmm"tostr(a1)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a2)", xmm"tostr(a2)", [SUBSH_MASK+2*16]");\
asm ("vaesenclast xmm"tostr(a2)", xmm"tostr(a2)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a3)", xmm"tostr(a3)", [SUBSH_MASK+3*16]");\
asm ("vaesenclast xmm"tostr(a3)", xmm"tostr(a3)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a4)", xmm"tostr(a4)", [SUBSH_MASK+4*16]");\
asm ("vaesenclast xmm"tostr(a4)", xmm"tostr(a4)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a5)", xmm"tostr(a5)", [SUBSH_MASK+5*16]");\
asm ("vaesenclast xmm"tostr(a5)", xmm"tostr(a5)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a6)", xmm"tostr(a6)", [SUBSH_MASK+6*16]");\
asm ("vaesenclast xmm"tostr(a6)", xmm"tostr(a6)", xmm"tostr(b0)"");\
asm ("vpshufb xmm"tostr(a7)", xmm"tostr(a7)", [SUBSH_MASK+7*16]");\
asm ("vaesenclast xmm"tostr(a7)", xmm"tostr(a7)", xmm"tostr(b0)"");\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
ROUND(0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(2, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(4, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(6, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(8, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
asm ("vmovaps xmm"tostr(t0)", [TRANSP_MASK]");\
\
asm ("vpshufb xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("vpshufb xmm"tostr(i1)", xmm"tostr(i1)", xmm"tostr(t0)"");\
asm ("vpshufb xmm"tostr(i2)", xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("vpshufb xmm"tostr(i3)", xmm"tostr(i3)", xmm"tostr(t0)"");\
\
asm ("vpunpckhwd xmm"tostr(o1)", xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("vpunpcklwd xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("vpunpckhwd xmm"tostr(t0)", xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("vpunpcklwd xmm"tostr(i2)", xmm"tostr(i2)", xmm"tostr(i3)"");\
\
asm ("vpshufd xmm"tostr(i0)", xmm"tostr(i0)", 216");\
asm ("vpshufd xmm"tostr(o1)", xmm"tostr(o1)", 216");\
asm ("vpshufd xmm"tostr(i2)", xmm"tostr(i2)", 216");\
asm ("vpshufd xmm"tostr(t0)", xmm"tostr(t0)", 216");\
\
asm ("vpunpckhdq xmm"tostr(o2)", xmm"tostr(i0)", xmm"tostr(i2)"");\
asm ("vpunpckhdq xmm"tostr(o3)", xmm"tostr(o1)", xmm"tostr(t0)"");\
asm ("vpunpckldq xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(i2)"");\
asm ("vpunpckldq xmm"tostr(o1)", xmm"tostr(o1)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
asm ("vpunpckhqdq xmm"tostr(o1)", xmm"tostr(i0)", xmm"tostr(i4)"");\
asm ("vpunpcklqdq xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(i4)"");\
asm ("vpunpcklqdq xmm"tostr(o2)", xmm"tostr(i1)", xmm"tostr(i5)"");\
asm ("vpunpckhqdq xmm"tostr(o3)", xmm"tostr(i1)", xmm"tostr(i5)"");\
asm ("vpunpcklqdq xmm"tostr(o4)", xmm"tostr(i2)", xmm"tostr(i6)"");\
asm ("vpunpckhqdq xmm"tostr(o5)", xmm"tostr(i2)", xmm"tostr(i6)"");\
asm ("vpunpcklqdq xmm"tostr(o6)", xmm"tostr(i3)", xmm"tostr(i7)"");\
asm ("vpunpckhqdq xmm"tostr(o7)", xmm"tostr(i3)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
asm ("vpunpckhqdq xmm"tostr(o0)", xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("vpunpcklqdq xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("vpunpckhqdq xmm"tostr(o1)", xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("vpunpcklqdq xmm"tostr(i2)", xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("vpunpckhqdq xmm"tostr(o2)", xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("vpunpcklqdq xmm"tostr(i4)", xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("vpunpckhqdq xmm"tostr(o3)", xmm"tostr(i6)", xmm"tostr(i7)"");\
asm ("vpunpcklqdq xmm"tostr(i6)", xmm"tostr(i6)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
asm ("vpxor xmm"tostr(t0)", xmm"tostr(t0)", xmm"tostr(t0)"");\
asm ("vpunpckhqdq xmm"tostr(i1)", xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("vpunpcklqdq xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("vpunpckhqdq xmm"tostr(i3)", xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("vpunpcklqdq xmm"tostr(i2)", xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("vpunpckhqdq xmm"tostr(i5)", xmm"tostr(i4)", xmm"tostr(t0)"");\
asm ("vpunpcklqdq xmm"tostr(i4)", xmm"tostr(i4)", xmm"tostr(t0)"");\
asm ("vpunpckhqdq xmm"tostr(i7)", xmm"tostr(i6)", xmm"tostr(t0)"");\
asm ("vpunpcklqdq xmm"tostr(i6)", xmm"tostr(i6)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
asm ("vpunpcklqdq xmm"tostr(i0)", xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("vpunpcklqdq xmm"tostr(i2)", xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("vpunpcklqdq xmm"tostr(i4)", xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("vpunpcklqdq xmm"tostr(i6)", xmm"tostr(i6)", xmm"tostr(i7)"");\
}/**/
void INIT256(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
asm volatile ("emms");
/* load IV into registers xmm12 - xmm15 */
asm ("vmovaps xmm12, [rdi+0*16]");
asm ("vmovaps xmm13, [rdi+1*16]");
asm ("vmovaps xmm14, [rdi+2*16]");
asm ("vmovaps xmm15, [rdi+3*16]");
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* store transposed IV */
asm ("vmovaps [rdi+0*16], xmm12");
asm ("vmovaps [rdi+1*16], xmm2");
asm ("vmovaps [rdi+2*16], xmm6");
asm ("vmovaps [rdi+3*16], xmm7");
asm volatile ("emms");
asm (".att_syntax noprefix");
}
void TF512(u64* h, u64* m)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
/* message M in rsi */
#ifdef IACA_TRACE
IACA_START;
#endif
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load message into registers xmm12 - xmm15 (Q = message) */
asm ("vmovaps xmm12, [rsi+0*16]");
asm ("vmovaps xmm13, [rsi+1*16]");
asm ("vmovaps xmm14, [rsi+2*16]");
asm ("vmovaps xmm15, [rsi+3*16]");
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* load previous chaining value and xor message to CV to get input of P */
/* we first put two rows (2x64 bit) of the CV into one 128-bit xmm register */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
asm ("vpxor xmm8, xmm12, [rdi+0*16]");
asm ("vpxor xmm0, xmm2, [rdi+1*16]");
asm ("vpxor xmm4, xmm6, [rdi+2*16]");
asm ("vpxor xmm5, xmm7, [rdi+3*16]");
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(8, 0, 4, 5, 12, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
asm ("vpxor xmm0, xmm0, xmm8");
asm ("vpxor xmm1, xmm1, xmm10");
asm ("vpxor xmm2, xmm2, xmm12");
asm ("vpxor xmm3, xmm3, xmm14");
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
asm ("vpxor xmm0, xmm0, [rdi+0*16]");
asm ("vpxor xmm1, xmm1, [rdi+1*16]");
asm ("vpxor xmm2, xmm2, [rdi+2*16]");
asm ("vpxor xmm3, xmm3, [rdi+3*16]");
/* store CV */
asm ("vmovaps [rdi+0*16], xmm0");
asm ("vmovaps [rdi+1*16], xmm1");
asm ("vmovaps [rdi+2*16], xmm2");
asm ("vmovaps [rdi+3*16], xmm3");
Pop_All_Regs();
asm (".att_syntax noprefix");
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
asm ("vmovaps xmm8, [rdi+0*16]");
asm ("vmovaps xmm10, [rdi+1*16]");
asm ("vmovaps xmm12, [rdi+2*16]");
asm ("vmovaps xmm14, [rdi+3*16]");
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(8, 9, 10, 11, 12, 13, 14, 15, 0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(8, 9, 10, 11, 12, 13, 14, 15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
asm ("vpxor xmm8, xmm8, [rdi+0*16]");
asm ("vpxor xmm10, xmm10, [rdi+1*16]");
asm ("vpxor xmm12, xmm12, [rdi+2*16]");
asm ("vpxor xmm14, xmm14, [rdi+3*16]");
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(8, 10, 12, 14, 4, 9, 11, 0);
/* we only need to return the truncated half of the state */
asm ("vmovaps [rdi+2*16], xmm9");
asm ("vmovaps [rdi+3*16], xmm11");
Pop_All_Regs();
asm (".att_syntax noprefix");
return;
}

View File

@@ -1,856 +0,0 @@
/* groestl-asm-vperm.h Aug 2011
*
* Groestl implementation with inline assembly using ssse3 instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* Based on the vperm and aes_ni implementations of the hash function Groestl
* by Cagdas Calik <ccalik@metu.edu.tr> http://www.metu.edu.tr/~ccalik/
* Institute of Applied Mathematics, Middle East Technical University, Turkey
*
* This code is placed in the public domain
*/
#include "hash-groestl256.h"
/* global constants */
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_Lx[16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_L0[ROUNDS512*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_L7[ROUNDS512*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_P[ROUNDS1024*16];
__attribute__ ((aligned (16))) unsigned char ROUND_CONST_Q[ROUNDS1024*16];
__attribute__ ((aligned (16))) unsigned char TRANSP_MASK[16];
__attribute__ ((aligned (16))) unsigned char SUBSH_MASK[8*16];
__attribute__ ((aligned (16))) unsigned char ALL_0F[16];
__attribute__ ((aligned (16))) unsigned char ALL_15[16];
__attribute__ ((aligned (16))) unsigned char ALL_1B[16];
__attribute__ ((aligned (16))) unsigned char ALL_63[16];
__attribute__ ((aligned (16))) unsigned char ALL_FF[16];
__attribute__ ((aligned (16))) unsigned char VPERM_IPT[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_OPT[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_INV[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_SB1[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_SB2[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_SB4[2*16];
__attribute__ ((aligned (16))) unsigned char VPERM_SBO[2*16];
/* temporary variables */
__attribute__ ((aligned (16))) unsigned char TEMP_MUL1[8*16];
__attribute__ ((aligned (16))) unsigned char TEMP_MUL2[8*16];
__attribute__ ((aligned (16))) unsigned char TEMP_MUL4[1*16];
__attribute__ ((aligned (16))) unsigned char QTEMP[8*16];
__attribute__ ((aligned (16))) unsigned char TEMP[8*16];
#define tos(a) #a
#define tostr(a) tos(a)
#define SET_SHARED_CONSTANTS(){\
((u64*)TRANSP_MASK)[0] = 0x0d0509010c040800ULL;\
((u64*)TRANSP_MASK)[1] = 0x0f070b030e060a02ULL;\
((u64*)ALL_1B)[0] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)ALL_1B)[1] = 0x1b1b1b1b1b1b1b1bULL;\
((u64*)ALL_63)[ 0] = 0x6363636363636363ULL;\
((u64*)ALL_63)[ 1] = 0x6363636363636363ULL;\
((u64*)ALL_0F)[ 0] = 0x0F0F0F0F0F0F0F0FULL;\
((u64*)ALL_0F)[ 1] = 0x0F0F0F0F0F0F0F0FULL;\
((u64*)VPERM_IPT)[ 0] = 0x4C01307D317C4D00ULL;\
((u64*)VPERM_IPT)[ 1] = 0xCD80B1FCB0FDCC81ULL;\
((u64*)VPERM_IPT)[ 2] = 0xC2B2E8985A2A7000ULL;\
((u64*)VPERM_IPT)[ 3] = 0xCABAE09052227808ULL;\
((u64*)VPERM_OPT)[ 0] = 0x01EDBD5150BCEC00ULL;\
((u64*)VPERM_OPT)[ 1] = 0xE10D5DB1B05C0CE0ULL;\
((u64*)VPERM_OPT)[ 2] = 0xFF9F4929D6B66000ULL;\
((u64*)VPERM_OPT)[ 3] = 0xF7974121DEBE6808ULL;\
((u64*)VPERM_INV)[ 0] = 0x01040A060F0B0780ULL;\
((u64*)VPERM_INV)[ 1] = 0x030D0E0C02050809ULL;\
((u64*)VPERM_INV)[ 2] = 0x0E05060F0D080180ULL;\
((u64*)VPERM_INV)[ 3] = 0x040703090A0B0C02ULL;\
((u64*)VPERM_SB1)[ 0] = 0x3618D415FAE22300ULL;\
((u64*)VPERM_SB1)[ 1] = 0x3BF7CCC10D2ED9EFULL;\
((u64*)VPERM_SB1)[ 2] = 0xB19BE18FCB503E00ULL;\
((u64*)VPERM_SB1)[ 3] = 0xA5DF7A6E142AF544ULL;\
((u64*)VPERM_SB2)[ 0] = 0x69EB88400AE12900ULL;\
((u64*)VPERM_SB2)[ 1] = 0xC2A163C8AB82234AULL;\
((u64*)VPERM_SB2)[ 2] = 0xE27A93C60B712400ULL;\
((u64*)VPERM_SB2)[ 3] = 0x5EB7E955BC982FCDULL;\
((u64*)VPERM_SB4)[ 0] = 0x3D50AED7C393EA00ULL;\
((u64*)VPERM_SB4)[ 1] = 0xBA44FE79876D2914ULL;\
((u64*)VPERM_SB4)[ 2] = 0xE1E937A03FD64100ULL;\
((u64*)VPERM_SB4)[ 3] = 0xA876DE9749087E9FULL;\
/*((u64*)VPERM_SBO)[ 0] = 0xCFE474A55FBB6A00ULL;\
((u64*)VPERM_SBO)[ 1] = 0x8E1E90D1412B35FAULL;\
((u64*)VPERM_SBO)[ 2] = 0xD0D26D176FBDC700ULL;\
((u64*)VPERM_SBO)[ 3] = 0x15AABF7AC502A878ULL;*/\
((u64*)ALL_15)[ 0] = 0x1515151515151515ULL;\
((u64*)ALL_15)[ 1] = 0x1515151515151515ULL;\
}/**/
/* VPERM
* Transform w/o settings c*
* transforms 2 rows to/from "vperm mode"
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0, a1 = 2 rows
* table = transformation table to use
* t*, c* = clobbers
* outputs:
* a0, a1 = 2 rows transformed with table
* */
#define VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2){\
asm ("movdqa xmm"tostr(t0)", xmm"tostr(c0)"");\
asm ("movdqa xmm"tostr(t1)", xmm"tostr(c0)"");\
asm ("pandn xmm"tostr(t0)", xmm"tostr(a0)"");\
asm ("pandn xmm"tostr(t1)", xmm"tostr(a1)"");\
asm ("psrld xmm"tostr(t0)", 4");\
asm ("psrld xmm"tostr(t1)", 4");\
asm ("pand xmm"tostr(a0)", xmm"tostr(c0)"");\
asm ("pand xmm"tostr(a1)", xmm"tostr(c0)"");\
asm ("movdqa xmm"tostr(t2)", xmm"tostr(c2)"");\
asm ("movdqa xmm"tostr(t3)", xmm"tostr(c2)"");\
asm ("pshufb xmm"tostr(t2)", xmm"tostr(a0)"");\
asm ("pshufb xmm"tostr(t3)", xmm"tostr(a1)"");\
asm ("movdqa xmm"tostr(a0)", xmm"tostr(c1)"");\
asm ("movdqa xmm"tostr(a1)", xmm"tostr(c1)"");\
asm ("pshufb xmm"tostr(a0)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(a1)", xmm"tostr(t1)"");\
asm ("pxor xmm"tostr(a0)", xmm"tostr(t2)"");\
asm ("pxor xmm"tostr(a1)", xmm"tostr(t3)"");\
}/**/
#define VPERM_Transform_Set_Const(table, c0, c1, c2){\
asm ("movaps xmm"tostr(c0)", [ALL_0F]");\
asm ("movaps xmm"tostr(c1)", ["tostr(table)"+0*16]");\
asm ("movaps xmm"tostr(c2)", ["tostr(table)"+1*16]");\
}/**/
/* VPERM
* Transform
* transforms 2 rows to/from "vperm mode"
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0, a1 = 2 rows
* table = transformation table to use
* t*, c* = clobbers
* outputs:
* a0, a1 = 2 rows transformed with table
* */
#define VPERM_Transform(a0, a1, table, t0, t1, t2, t3, c0, c1, c2){\
VPERM_Transform_Set_Const(table, c0, c1, c2);\
VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2);\
}/**/
/* VPERM
* Transform State
* inputs:
* a0-a3 = state
* table = transformation table to use
* t* = clobbers
* outputs:
* a0-a3 = transformed state
* */
#define VPERM_Transform_State(a0, a1, a2, a3, table, t0, t1, t2, t3, c0, c1, c2){\
VPERM_Transform_Set_Const(table, c0, c1, c2);\
VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2);\
VPERM_Transform_No_Const(a2, a3, t0, t1, t2, t3, c0, c1, c2);\
}/**/
/* VPERM
* Add Constant to State
* inputs:
* a0-a7 = state
* constant = constant to add
* t0 = clobber
* outputs:
* a0-a7 = state + constant
* */
#define VPERM_Add_Constant(a0, a1, a2, a3, a4, a5, a6, a7, constant, t0){\
asm ("movaps xmm"tostr(t0)", ["tostr(constant)"]");\
asm ("pxor xmm"tostr(a0)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a1)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a2)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a3)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a4)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a5)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a6)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(a7)", xmm"tostr(t0)"");\
}/**/
/* VPERM
* Set Substitute Core Constants
* */
#define VPERM_Substitute_Core_Set_Const(c0, c1, c2){\
VPERM_Transform_Set_Const(VPERM_INV, c0, c1, c2);\
}/**/
/* VPERM
* Substitute Core
* first part of sbox inverse computation
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0 = 1 row
* t*, c* = clobbers
* outputs:
* b0a, b0b = inputs for lookup step
* */
#define VPERM_Substitute_Core(a0, b0a, b0b, t0, t1, c0, c1, c2){\
asm ("movdqa xmm"tostr(t0)", xmm"tostr(c0)"");\
asm ("pandn xmm"tostr(t0)", xmm"tostr(a0)"");\
asm ("psrld xmm"tostr(t0)", 4");\
asm ("pand xmm"tostr(a0)", xmm"tostr(c0)"");\
asm ("movdqa xmm"tostr(b0a)", "tostr(c1)"");\
asm ("pshufb xmm"tostr(b0a)", xmm"tostr(a0)"");\
asm ("pxor xmm"tostr(a0)", xmm"tostr(t0)"");\
asm ("movdqa xmm"tostr(b0b)", xmm"tostr(c2)"");\
asm ("pshufb xmm"tostr(b0b)", xmm"tostr(t0)"");\
asm ("pxor xmm"tostr(b0b)", xmm"tostr(b0a)"");\
asm ("movdqa xmm"tostr(t1)", xmm"tostr(c2)"");\
asm ("pshufb xmm"tostr(t1)", xmm"tostr(a0)"");\
asm ("pxor xmm"tostr(t1)", xmm"tostr(b0a)"");\
asm ("movdqa xmm"tostr(b0a)", xmm"tostr(c2)"");\
asm ("pshufb xmm"tostr(b0a)", xmm"tostr(b0b)"");\
asm ("pxor xmm"tostr(b0a)", xmm"tostr(a0)"");\
asm ("movdqa xmm"tostr(b0b)", xmm"tostr(c2)"");\
asm ("pshufb xmm"tostr(b0b)", xmm"tostr(t1)"");\
asm ("pxor xmm"tostr(b0b)", xmm"tostr(t0)"");\
}/**/
/* VPERM
* Lookup
* second part of sbox inverse computation
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0a, a0b = output of Substitution Core
* table = lookup table to use (*1 / *2 / *4)
* t0 = clobber
* outputs:
* b0 = output of sbox + multiplication
* */
#define VPERM_Lookup(a0a, a0b, table, b0, t0){\
asm ("movaps xmm"tostr(b0)", ["tostr(table)"+0*16]");\
asm ("movaps xmm"tostr(t0)", ["tostr(table)"+1*16]");\
asm ("pshufb xmm"tostr(b0)", xmm"tostr(a0b)"");\
asm ("pshufb xmm"tostr(t0)", xmm"tostr(a0a)"");\
asm ("pxor xmm"tostr(b0)", xmm"tostr(t0)"");\
}/**/
/* VPERM
* SubBytes and *2 / *4
* this function is derived from:
* Constant-time SSSE3 AES core implementation
* by Mike Hamburg
* and
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0-a7 = state
* t*, c* = clobbers
* outputs:
* a0-a7 = state * 4
* c2 = row0 * 2 -> b0
* c1 = row7 * 2 -> b3
* c0 = row7 * 1 -> b4
* t2 = row4 * 1 -> b7
* TEMP_MUL1 = row(i) * 1
* TEMP_MUL2 = row(i) * 2
*
* call:VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, b1, b2, b5, b6, b0, b3, b4, b7) */
#define VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t3, t4, c2, c1, c0, t2){\
/* set Constants */\
VPERM_Substitute_Core_Set_Const(c0, c1, c2);\
/* row 1 */\
VPERM_Substitute_Core(a1, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+1*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+1*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a1, t4);\
/* --- */\
/* row 2 */\
VPERM_Substitute_Core(a2, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+2*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+2*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a2, t4);\
/* --- */\
/* row 3 */\
VPERM_Substitute_Core(a3, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+3*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+3*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a3, t4);\
/* --- */\
/* row 5 */\
VPERM_Substitute_Core(a5, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+5*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+5*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a5, t4);\
/* --- */\
/* row 6 */\
VPERM_Substitute_Core(a6, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+6*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+6*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a6, t4);\
/* --- */\
/* row 7 */\
VPERM_Substitute_Core(a7, t0, t1, t3, t4, c0, xmm##c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
asm ("movaps [TEMP_MUL1+7*16], xmm"tostr(t2)"");\
VPERM_Lookup(t0, t1, VPERM_SB2, c1, t4); /*c1 -> b3*/\
VPERM_Lookup(t0, t1, VPERM_SB4, a7, t4);\
/* --- */\
/* row 4 */\
VPERM_Substitute_Core(a4, t0, t1, t3, t4, c0, [VPERM_INV+0*16], c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4); /*t2 -> b7*/\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
asm ("movaps [TEMP_MUL2+4*16], xmm"tostr(t3)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a4, t4);\
/* --- */\
/* row 0 */\
VPERM_Substitute_Core(a0, t0, t1, t3, t4, c0, [VPERM_INV+0*16], c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, c0, t4); /*c0 -> b4*/\
VPERM_Lookup(t0, t1, VPERM_SB2, c2, t4); /*c2 -> b0*/\
asm ("movaps [TEMP_MUL2+0*16], xmm"tostr(c2)"");\
VPERM_Lookup(t0, t1, VPERM_SB4, a0, t4);\
/* --- */\
}/**/
/* Optimized MixBytes
* inputs:
* a0-a7 = (row0-row7) * 4
* b0 = row0 * 2
* b3 = row7 * 2
* b4 = row7 * 1
* b7 = row4 * 1
* all *1 and *2 values must also be in TEMP_MUL1, TEMP_MUL2
* output: b0-b7
* */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* save one value */\
asm ("movaps [TEMP_MUL4], xmm"tostr(a3)"");\
/* 1 */\
asm ("movdqa xmm"tostr(b1)", xmm"tostr(a0)"");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(a5)"");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(b4)""); /* -> helper! */\
asm ("pxor xmm"tostr(b1)", [TEMP_MUL2+3*16]");\
asm ("movdqa xmm"tostr(b2)", xmm"tostr(b1)"");\
\
/* 2 */\
asm ("movdqa xmm"tostr(b5)", xmm"tostr(a1)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(a4)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(b7)""); /* -> helper! */\
asm ("pxor xmm"tostr(b5)", xmm"tostr(b3)""); /* -> helper! */\
asm ("movdqa xmm"tostr(b6)", xmm"tostr(b5)"");\
\
/* 4 */\
asm ("pxor xmm"tostr(b7)", xmm"tostr(a6)"");\
/*asm ("pxor xmm"tostr(b7)", [TEMP_MUL1+4*16]"); -> helper! */\
asm ("pxor xmm"tostr(b7)", [TEMP_MUL1+6*16]");\
asm ("pxor xmm"tostr(b7)", [TEMP_MUL2+1*16]");\
asm ("pxor xmm"tostr(b7)", xmm"tostr(b3)""); /* -> helper! */\
asm ("pxor xmm"tostr(b2)", xmm"tostr(b7)"");\
\
/* 3 */\
asm ("pxor xmm"tostr(b0)", xmm"tostr(a7)"");\
asm ("pxor xmm"tostr(b0)", [TEMP_MUL1+5*16]");\
asm ("pxor xmm"tostr(b0)", [TEMP_MUL1+7*16]");\
/*asm ("pxor xmm"tostr(b0)", [TEMP_MUL2+0*16]"); -> helper! */\
asm ("pxor xmm"tostr(b0)", [TEMP_MUL2+2*16]");\
asm ("movdqa xmm"tostr(b3)", xmm"tostr(b0)"");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(b0)"");\
asm ("pxor xmm"tostr(b0)", xmm"tostr(b7)""); /* moved from 4 */\
\
/* 5 */\
asm ("pxor xmm"tostr(b4)", xmm"tostr(a2)"");\
/*asm ("pxor xmm"tostr(b4)", [TEMP_MUL1+0*16]"); -> helper! */\
asm ("pxor xmm"tostr(b4)", [TEMP_MUL1+2*16]");\
asm ("pxor xmm"tostr(b4)", [TEMP_MUL2+3*16]");\
asm ("pxor xmm"tostr(b4)", [TEMP_MUL2+5*16]");\
asm ("pxor xmm"tostr(b3)", xmm"tostr(b4)"");\
asm ("pxor xmm"tostr(b6)", xmm"tostr(b4)"");\
\
/* 6 */\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL1+1*16]");\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL1+3*16]");\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL2+4*16]");\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL2+6*16]");\
asm ("pxor xmm"tostr(b4)", xmm"tostr(a3)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(a3)"");\
asm ("pxor xmm"tostr(b7)", xmm"tostr(a3)"");\
\
/* 7 */\
asm ("pxor xmm"tostr(a1)", [TEMP_MUL1+1*16]");\
asm ("pxor xmm"tostr(a1)", [TEMP_MUL2+4*16]");\
asm ("pxor xmm"tostr(b2)", xmm"tostr(a1)"");\
asm ("pxor xmm"tostr(b3)", xmm"tostr(a1)"");\
\
/* 8 */\
asm ("pxor xmm"tostr(a5)", [TEMP_MUL1+5*16]");\
asm ("pxor xmm"tostr(a5)", [TEMP_MUL2+0*16]");\
asm ("pxor xmm"tostr(b6)", xmm"tostr(a5)"");\
asm ("pxor xmm"tostr(b7)", xmm"tostr(a5)"");\
\
/* 9 */\
asm ("movaps xmm"tostr(a3)", [TEMP_MUL1+2*16]");\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL2+5*16]");\
asm ("pxor xmm"tostr(b0)", xmm"tostr(a3)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(a3)"");\
\
/* 10 */\
asm ("movaps xmm"tostr(a1)", [TEMP_MUL1+6*16]");\
asm ("pxor xmm"tostr(a1)", [TEMP_MUL2+1*16]");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(a1)"");\
asm ("pxor xmm"tostr(b4)", xmm"tostr(a1)"");\
\
/* 11 */\
asm ("movaps xmm"tostr(a5)", [TEMP_MUL1+3*16]");\
asm ("pxor xmm"tostr(a5)", [TEMP_MUL2+6*16]");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(a5)"");\
asm ("pxor xmm"tostr(b6)", xmm"tostr(a5)"");\
\
/* 12 */\
asm ("movaps xmm"tostr(a3)", [TEMP_MUL1+7*16]");\
asm ("pxor xmm"tostr(a3)", [TEMP_MUL2+2*16]");\
asm ("pxor xmm"tostr(b2)", xmm"tostr(a3)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(a3)"");\
\
/* 13 */\
asm ("pxor xmm"tostr(b0)", [TEMP_MUL4]");\
asm ("pxor xmm"tostr(b0)", xmm"tostr(a4)"");\
asm ("pxor xmm"tostr(b1)", xmm"tostr(a4)"");\
asm ("pxor xmm"tostr(b3)", xmm"tostr(a6)"");\
asm ("pxor xmm"tostr(b4)", xmm"tostr(a0)"");\
asm ("pxor xmm"tostr(b4)", xmm"tostr(a7)"");\
asm ("pxor xmm"tostr(b5)", xmm"tostr(a0)"");\
asm ("pxor xmm"tostr(b7)", xmm"tostr(a2)"");\
}/**/
//#if (LENGTH <= 256)
#define SET_CONSTANTS(){\
SET_SHARED_CONSTANTS();\
((u64*)SUBSH_MASK)[ 0] = 0x0706050403020100ULL;\
((u64*)SUBSH_MASK)[ 1] = 0x080f0e0d0c0b0a09ULL;\
((u64*)SUBSH_MASK)[ 2] = 0x0007060504030201ULL;\
((u64*)SUBSH_MASK)[ 3] = 0x0a09080f0e0d0c0bULL;\
((u64*)SUBSH_MASK)[ 4] = 0x0100070605040302ULL;\
((u64*)SUBSH_MASK)[ 5] = 0x0c0b0a09080f0e0dULL;\
((u64*)SUBSH_MASK)[ 6] = 0x0201000706050403ULL;\
((u64*)SUBSH_MASK)[ 7] = 0x0e0d0c0b0a09080fULL;\
((u64*)SUBSH_MASK)[ 8] = 0x0302010007060504ULL;\
((u64*)SUBSH_MASK)[ 9] = 0x0f0e0d0c0b0a0908ULL;\
((u64*)SUBSH_MASK)[10] = 0x0403020100070605ULL;\
((u64*)SUBSH_MASK)[11] = 0x09080f0e0d0c0b0aULL;\
((u64*)SUBSH_MASK)[12] = 0x0504030201000706ULL;\
((u64*)SUBSH_MASK)[13] = 0x0b0a09080f0e0d0cULL;\
((u64*)SUBSH_MASK)[14] = 0x0605040302010007ULL;\
((u64*)SUBSH_MASK)[15] = 0x0d0c0b0a09080f0eULL;\
for(i = 0; i < ROUNDS512; i++)\
{\
((u64*)ROUND_CONST_L0)[i*2+1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_L0)[i*2+0] = (i * 0x0101010101010101ULL) ^ 0x7060504030201000ULL;\
((u64*)ROUND_CONST_L7)[i*2+1] = (i * 0x0101010101010101ULL) ^ 0x8f9fafbfcfdfefffULL;\
((u64*)ROUND_CONST_L7)[i*2+0] = 0x0000000000000000ULL;\
}\
((u64*)ROUND_CONST_Lx)[1] = 0xffffffffffffffffULL;\
((u64*)ROUND_CONST_Lx)[0] = 0x0000000000000000ULL;\
}/**/
#define Push_All_Regs(){\
/* not using any...
asm("push rax");\
asm("push rbx");\
asm("push rcx");*/\
}/**/
#define Pop_All_Regs(){\
/* not using any...
asm("pop rcx");\
asm("pop rbx");\
asm("pop rax");*/\
}/**/
/* vperm:
* transformation before rounds with ipt
* first round add transformed constant
* middle rounds: add constant XOR 0x15...15
* last round: additionally add 0x15...15 after MB
* transformation after rounds with opt
*/
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant + ShiftBytes (interleaved) */\
asm ("movaps xmm"tostr(b1)", [ROUND_CONST_Lx]");\
asm ("pxor xmm"tostr(a0)", [ROUND_CONST_L0+"tostr(i)"*16]");\
asm ("pxor xmm"tostr(a1)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a2)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a3)", xmm"tostr(b1)"");\
asm ("pshufb xmm"tostr(a0)", [SUBSH_MASK+0*16]");\
asm ("pshufb xmm"tostr(a1)", [SUBSH_MASK+1*16]");\
asm ("pxor xmm"tostr(a4)", xmm"tostr(b1)"");\
asm ("pshufb xmm"tostr(a2)", [SUBSH_MASK+2*16]");\
asm ("pshufb xmm"tostr(a3)", [SUBSH_MASK+3*16]");\
asm ("pxor xmm"tostr(a5)", xmm"tostr(b1)"");\
asm ("pxor xmm"tostr(a6)", xmm"tostr(b1)"");\
asm ("pshufb xmm"tostr(a4)", [SUBSH_MASK+4*16]");\
asm ("pshufb xmm"tostr(a5)", [SUBSH_MASK+5*16]");\
asm ("pxor xmm"tostr(a7)", [ROUND_CONST_L7+"tostr(i)"*16]");\
asm ("pshufb xmm"tostr(a6)", [SUBSH_MASK+6*16]");\
asm ("pshufb xmm"tostr(a7)", [SUBSH_MASK+7*16]");\
/* SubBytes + Multiplication by 2 and 4 */\
VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, b1, b2, b5, b6, b0, b3, b4, b7);\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}/**/
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
VPERM_Add_Constant(8, 9, 10, 11, 12, 13, 14, 15, ALL_15, 0);\
ROUND(0, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(2, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(4, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(6, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
ROUND(8, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7);\
ROUND(9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);\
VPERM_Add_Constant(8, 9, 10, 11, 12, 13, 14, 15, ALL_15, 0);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
asm ("movaps xmm"tostr(t0)", [TRANSP_MASK]");\
\
asm ("pshufb xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i1)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("pshufb xmm"tostr(i3)", xmm"tostr(t0)"");\
\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(t0)", xmm"tostr(i2)"");\
\
asm ("punpcklwd xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpckhwd xmm"tostr(o1)", xmm"tostr(i1)"");\
asm ("punpcklwd xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpckhwd xmm"tostr(t0)", xmm"tostr(i3)"");\
\
asm ("pshufd xmm"tostr(i0)", xmm"tostr(i0)", 216");\
asm ("pshufd xmm"tostr(o1)", xmm"tostr(o1)", 216");\
asm ("pshufd xmm"tostr(i2)", xmm"tostr(i2)", 216");\
asm ("pshufd xmm"tostr(t0)", xmm"tostr(t0)", 216");\
\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(o1)"");\
\
asm ("punpckldq xmm"tostr(i0)", xmm"tostr(i2)"");\
asm ("punpckldq xmm"tostr(o1)", xmm"tostr(t0)"");\
asm ("punpckhdq xmm"tostr(o2)", xmm"tostr(i2)"");\
asm ("punpckhdq xmm"tostr(o3)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i1)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i4)"");\
asm ("punpckhqdq xmm"tostr(o1)", xmm"tostr(i4)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(i1)"");\
asm ("movdqa xmm"tostr(o4)", xmm"tostr(i2)"");\
asm ("punpcklqdq xmm"tostr(o2)", xmm"tostr(i5)"");\
asm ("punpckhqdq xmm"tostr(o3)", xmm"tostr(i5)"");\
asm ("movdqa xmm"tostr(o5)", xmm"tostr(i2)"");\
asm ("movdqa xmm"tostr(o6)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(o4)", xmm"tostr(i6)"");\
asm ("punpckhqdq xmm"tostr(o5)", xmm"tostr(i6)"");\
asm ("movdqa xmm"tostr(o7)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(o6)", xmm"tostr(i7)"");\
asm ("punpckhqdq xmm"tostr(o7)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
asm ("movdqa xmm"tostr(o0)", xmm"tostr(i0)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpckhqdq xmm"tostr(o0)", xmm"tostr(i1)"");\
asm ("movdqa xmm"tostr(o1)", xmm"tostr(i2)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpckhqdq xmm"tostr(o1)", xmm"tostr(i3)"");\
asm ("movdqa xmm"tostr(o2)", xmm"tostr(i4)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("punpckhqdq xmm"tostr(o2)", xmm"tostr(i5)"");\
asm ("movdqa xmm"tostr(o3)", xmm"tostr(i6)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(i7)"");\
asm ("punpckhqdq xmm"tostr(o3)", xmm"tostr(i7)"");\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
asm ("pxor xmm"tostr(t0)", xmm"tostr(t0)"");\
asm ("movdqa xmm"tostr(i1)", xmm"tostr(i0)"");\
asm ("movdqa xmm"tostr(i3)", xmm"tostr(i2)"");\
asm ("movdqa xmm"tostr(i5)", xmm"tostr(i4)"");\
asm ("movdqa xmm"tostr(i7)", xmm"tostr(i6)"");\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i1)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i3)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i5)", xmm"tostr(t0)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(t0)"");\
asm ("punpckhqdq xmm"tostr(i7)", xmm"tostr(t0)"");\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
asm ("punpcklqdq xmm"tostr(i0)", xmm"tostr(i1)"");\
asm ("punpcklqdq xmm"tostr(i2)", xmm"tostr(i3)"");\
asm ("punpcklqdq xmm"tostr(i4)", xmm"tostr(i5)"");\
asm ("punpcklqdq xmm"tostr(i6)", xmm"tostr(i7)"");\
}/**/
/* transform round constants into VPERM mode */
#define VPERM_Transform_RoundConst_CNT2(i, j){\
asm ("movaps xmm0, [ROUND_CONST_L0+"tostr(i)"*16]");\
asm ("movaps xmm1, [ROUND_CONST_L7+"tostr(i)"*16]");\
asm ("movaps xmm2, [ROUND_CONST_L0+"tostr(j)"*16]");\
asm ("movaps xmm3, [ROUND_CONST_L7+"tostr(j)"*16]");\
VPERM_Transform_State(0, 1, 2, 3, VPERM_IPT, 4, 5, 6, 7, 8, 9, 10);\
asm ("pxor xmm0, [ALL_15]");\
asm ("pxor xmm1, [ALL_15]");\
asm ("pxor xmm2, [ALL_15]");\
asm ("pxor xmm3, [ALL_15]");\
asm ("movaps [ROUND_CONST_L0+"tostr(i)"*16], xmm0");\
asm ("movaps [ROUND_CONST_L7+"tostr(i)"*16], xmm1");\
asm ("movaps [ROUND_CONST_L0+"tostr(j)"*16], xmm2");\
asm ("movaps [ROUND_CONST_L7+"tostr(j)"*16], xmm3");\
}/**/
/* transform round constants into VPERM mode */
#define VPERM_Transform_RoundConst(){\
asm ("movaps xmm0, [ROUND_CONST_Lx]");\
VPERM_Transform(0, 1, VPERM_IPT, 4, 5, 6, 7, 8, 9, 10);\
asm ("pxor xmm0, [ALL_15]");\
asm ("movaps [ROUND_CONST_Lx], xmm0");\
VPERM_Transform_RoundConst_CNT2(0, 1);\
VPERM_Transform_RoundConst_CNT2(2, 3);\
VPERM_Transform_RoundConst_CNT2(4, 5);\
VPERM_Transform_RoundConst_CNT2(6, 7);\
VPERM_Transform_RoundConst_CNT2(8, 9);\
}/**/
void INIT256(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
asm volatile ("emms");
/* transform round constants into VPERM mode */
VPERM_Transform_RoundConst();
/* load IV into registers xmm12 - xmm15 */
asm ("movaps xmm12, [rdi+0*16]");
asm ("movaps xmm13, [rdi+1*16]");
asm ("movaps xmm14, [rdi+2*16]");
asm ("movaps xmm15, [rdi+3*16]");
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
VPERM_Transform_State(12, 13, 14, 15, VPERM_IPT, 1, 2, 3, 4, 5, 6, 7);
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* store transposed IV */
asm ("movaps [rdi+0*16], xmm12");
asm ("movaps [rdi+1*16], xmm2");
asm ("movaps [rdi+2*16], xmm6");
asm ("movaps [rdi+3*16], xmm7");
asm volatile ("emms");
asm (".att_syntax noprefix");
}
void TF512(u64* h, u64* m)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
/* message M in rsi */
#ifdef IACA_TRACE
IACA_START;
#endif
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load message into registers xmm12 - xmm15 (Q = message) */
asm ("movaps xmm12, [rsi+0*16]");
asm ("movaps xmm13, [rsi+1*16]");
asm ("movaps xmm14, [rsi+2*16]");
asm ("movaps xmm15, [rsi+3*16]");
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
VPERM_Transform_State(12, 13, 14, 15, VPERM_IPT, 1, 2, 3, 4, 5, 6, 7);
Matrix_Transpose_A(12, 13, 14, 15, 2, 6, 7, 0);
/* load previous chaining value */
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
asm ("movaps xmm8, [rdi+0*16]");
asm ("movaps xmm0, [rdi+1*16]");
asm ("movaps xmm4, [rdi+2*16]");
asm ("movaps xmm5, [rdi+3*16]");
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
asm ("pxor xmm8, xmm12");
asm ("pxor xmm0, xmm2");
asm ("pxor xmm4, xmm6");
asm ("pxor xmm5, xmm7");
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(8, 0, 4, 5, 12, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
asm ("pxor xmm0, xmm8");
asm ("pxor xmm1, xmm10");
asm ("pxor xmm2, xmm12");
asm ("pxor xmm3, xmm14");
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
asm ("pxor xmm0, [rdi+0*16]");
asm ("pxor xmm1, [rdi+1*16]");
asm ("pxor xmm2, [rdi+2*16]");
asm ("pxor xmm3, [rdi+3*16]");
/* store CV */
asm ("movaps [rdi+0*16], xmm0");
asm ("movaps [rdi+1*16], xmm1");
asm ("movaps [rdi+2*16], xmm2");
asm ("movaps [rdi+3*16], xmm3");
Pop_All_Regs();
asm (".att_syntax noprefix");
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512(u64* h)
{
/* __cdecl calling convention: */
/* chaining value CV in rdi */
asm (".intel_syntax noprefix");
Push_All_Regs();
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
asm ("movaps xmm8, [rdi+0*16]");
asm ("movaps xmm10, [rdi+1*16]");
asm ("movaps xmm12, [rdi+2*16]");
asm ("movaps xmm14, [rdi+3*16]");
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(8, 9, 10, 11, 12, 13, 14, 15, 0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(8, 9, 10, 11, 12, 13, 14, 15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
asm ("pxor xmm8, [rdi+0*16]");
asm ("pxor xmm10, [rdi+1*16]");
asm ("pxor xmm12, [rdi+2*16]");
asm ("pxor xmm14, [rdi+3*16]");
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(8, 10, 12, 14, 4, 9, 11, 0);
VPERM_Transform(9, 11, VPERM_OPT, 0, 1, 2, 3, 5, 6, 7);
/* we only need to return the truncated half of the state */
asm ("movaps [rdi+2*16], xmm9");
asm ("movaps [rdi+3*16], xmm11");
Pop_All_Regs();
asm (".att_syntax noprefix");
return;
}

View File

@@ -11,18 +11,6 @@
#include <wmmintrin.h>
#include "hash-groestl256.h"
/* global constants */
__m128i ROUND_CONST_Lx;
__m128i ROUND_CONST_L0[ROUNDS512];
__m128i ROUND_CONST_L7[ROUNDS512];
//__m128i ROUND_CONST_P[ROUNDS1024];
//__m128i ROUND_CONST_Q[ROUNDS1024];
__m128i TRANSP_MASK;
__m128i SUBSH_MASK[8];
__m128i ALL_1B;
__m128i ALL_FF;
#define tos(a) #a
#define tostr(a) tos(a)
@@ -113,7 +101,7 @@ __m128i ALL_FF;
\
/* compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
/* compute w_i : add y_{i+4} */\
b1 = ALL_1B;\
b1 = m128_const1_64( 0x1b1b1b1b1b1b1b1b );\
MUL2(a0, b0, b1);\
a0 = _mm_xor_si128(a0, TEMP0);\
MUL2(a1, b0, b1);\
@@ -153,24 +141,35 @@ __m128i ALL_FF;
b1 = _mm_xor_si128(b1, a4);\
}/*MixBytes*/
#define SET_CONSTANTS(){\
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
SUBSH_MASK[0] = _mm_set_epi32(0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00);\
SUBSH_MASK[1] = _mm_set_epi32(0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801);\
SUBSH_MASK[2] = _mm_set_epi32(0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02);\
SUBSH_MASK[3] = _mm_set_epi32(0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03);\
SUBSH_MASK[4] = _mm_set_epi32(0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04);\
SUBSH_MASK[5] = _mm_set_epi32(0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05);\
SUBSH_MASK[6] = _mm_set_epi32(0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906);\
SUBSH_MASK[7] = _mm_set_epi32(0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07);\
for(i = 0; i < ROUNDS512; i++)\
{\
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
}\
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
}while(0); \
static const uint64_t round_const_l0[] __attribute__ ((aligned (64))) =
{
0x7060504030201000, 0xffffffffffffffff,
0x7161514131211101, 0xffffffffffffffff,
0x7262524232221202, 0xffffffffffffffff,
0x7363534333231303, 0xffffffffffffffff,
0x7464544434241404, 0xffffffffffffffff,
0x7565554535251505, 0xffffffffffffffff,
0x7666564636261606, 0xffffffffffffffff,
0x7767574737271707, 0xffffffffffffffff,
0x7868584838281808, 0xffffffffffffffff,
0x7969594939291909, 0xffffffffffffffff
};
static const uint64_t round_const_l7[] __attribute__ ((aligned (64))) =
{
0x0000000000000000, 0x8f9fafbfcfdfefff,
0x0000000000000000, 0x8e9eaebecedeeefe,
0x0000000000000000, 0x8d9dadbdcdddedfd,
0x0000000000000000, 0x8c9cacbcccdcecfc,
0x0000000000000000, 0x8b9babbbcbdbebfb,
0x0000000000000000, 0x8a9aaabacadaeafa,
0x0000000000000000, 0x8999a9b9c9d9e9f9,
0x0000000000000000, 0x8898a8b8c8d8e8f8,
0x0000000000000000, 0x8797a7b7c7d7e7f7,
0x0000000000000000, 0x8696a6b6c6d6e6f6
};
/* one round
* i = round number
@@ -179,34 +178,42 @@ __m128i ALL_FF;
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant */\
b1 = ROUND_CONST_Lx;\
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
a1 = _mm_xor_si128(a1, b1);\
a2 = _mm_xor_si128(a2, b1);\
a3 = _mm_xor_si128(a3, b1);\
a4 = _mm_xor_si128(a4, b1);\
a5 = _mm_xor_si128(a5, b1);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
b1 = m128_const_64( 0xffffffffffffffff, 0 ); \
a0 = _mm_xor_si128( a0, casti_m128i( round_const_l0, i ) ); \
a1 = _mm_xor_si128( a1, b1 ); \
a2 = _mm_xor_si128( a2, b1 ); \
a3 = _mm_xor_si128( a3, b1 ); \
a4 = _mm_xor_si128( a4, b1 ); \
a5 = _mm_xor_si128( a5, b1 ); \
a6 = _mm_xor_si128( a6, b1 ); \
a7 = _mm_xor_si128( a7, casti_m128i( round_const_l7, i ) ); \
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm_xor_si128(b0, b0);\
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
a0 = _mm_aesenclast_si128(a0, b0);\
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
a1 = _mm_aesenclast_si128(a1, b0);\
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
a2 = _mm_aesenclast_si128(a2, b0);\
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
a3 = _mm_aesenclast_si128(a3, b0);\
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
a4 = _mm_aesenclast_si128(a4, b0);\
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
a5 = _mm_aesenclast_si128(a5, b0);\
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
a6 = _mm_aesenclast_si128(a6, b0);\
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
a7 = _mm_aesenclast_si128(a7, b0);\
a0 = _mm_shuffle_epi8( a0, m128_const_64( 0x03060a0d08020509, \
0x0c0f0104070b0e00 ) ); \
a0 = _mm_aesenclast_si128( a0, b0 );\
a1 = _mm_shuffle_epi8( a1, m128_const_64( 0x04070c0f0a03060b, \
0x0e090205000d0801 ) ); \
a1 = _mm_aesenclast_si128( a1, b0 );\
a2 = _mm_shuffle_epi8( a2, m128_const_64( 0x05000e090c04070d, \
0x080b0306010f0a02 ) ); \
a2 = _mm_aesenclast_si128( a2, b0 );\
a3 = _mm_shuffle_epi8( a3, m128_const_64( 0x0601080b0e05000f, \
0x0a0d040702090c03 ) ); \
a3 = _mm_aesenclast_si128( a3, b0 );\
a4 = _mm_shuffle_epi8( a4, m128_const_64( 0x0702090c0f060108, \
0x0b0e0500030a0d04 ) ); \
a4 = _mm_aesenclast_si128( a4, b0 );\
a5 = _mm_shuffle_epi8( a5, m128_const_64( 0x00030b0e0907020a, \
0x0d080601040c0f05 ) ); \
a5 = _mm_aesenclast_si128( a5, b0 );\
a6 = _mm_shuffle_epi8( a6, m128_const_64( 0x01040d080b00030c, \
0x0f0a0702050e0906 ) ); \
a6 = _mm_aesenclast_si128( a6, b0 );\
a7 = _mm_shuffle_epi8( a7, m128_const_64( 0x02050f0a0d01040e, \
0x090c000306080b07 ) ); \
a7 = _mm_aesenclast_si128( a7, b0 );\
\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
@@ -235,7 +242,7 @@ __m128i ALL_FF;
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK;\
t0 = m128_const_64( 0x0f070b030e060a02, 0x0d0509010c040800 ); \
\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\

View File

@@ -1,482 +0,0 @@
/* groestl-intr-avx.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3, sse4.1, aes and avx
* instructions.
* Author: Günther A. Roland, Martin Schläffer, Krystian Matusiewicz
*
* This code is placed in the public domain
*/
#include <smmintrin.h>
#include <wmmintrin.h>
#include <immintrin.h>
#include "hash-groestl256.h"
/* global constants */
__m128i ROUND_CONST_Lx;
__m128i ROUND_CONST_L0[ROUNDS512];
__m128i ROUND_CONST_L7[ROUNDS512];
__m128i ROUND_CONST_P[ROUNDS1024];
__m128i ROUND_CONST_Q[ROUNDS1024];
__m128i TRANSP_MASK;
__m128i SUBSH_MASK[8];
__m128i ALL_FF;
//#if LENGTH <= 256
__m128i ALL_1B;
//#else
//__m256d ALL_1B;
//#endif
#define tos(a) #a
#define tostr(a) tos(a)
#define insert_m128i_in_m256d(ymm, xmm, pos) (_mm256_castsi256_pd(_mm256_insertf128_si256(_mm256_castpd_si256(ymm), xmm, pos)))
#define extract_m128i_from_m256d(ymm, pos) (_mm256_extractf128_si256(_mm256_castpd_si256(ymm), pos))
#define SET_CONSTANTS(){\
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
ALL_FF = _mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);\
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
SUBSH_MASK[0] = _mm_set_epi32(0x03060a0d, 0x08020509, 0x0c0f0104, 0x070b0e00);\
SUBSH_MASK[1] = _mm_set_epi32(0x04070c0f, 0x0a03060b, 0x0e090205, 0x000d0801);\
SUBSH_MASK[2] = _mm_set_epi32(0x05000e09, 0x0c04070d, 0x080b0306, 0x010f0a02);\
SUBSH_MASK[3] = _mm_set_epi32(0x0601080b, 0x0e05000f, 0x0a0d0407, 0x02090c03);\
SUBSH_MASK[4] = _mm_set_epi32(0x0702090c, 0x0f060108, 0x0b0e0500, 0x030a0d04);\
SUBSH_MASK[5] = _mm_set_epi32(0x00030b0e, 0x0907020a, 0x0d080601, 0x040c0f05);\
SUBSH_MASK[6] = _mm_set_epi32(0x01040d08, 0x0b00030c, 0x0f0a0702, 0x050e0906);\
SUBSH_MASK[7] = _mm_set_epi32(0x02050f0a, 0x0d01040e, 0x090c0003, 0x06080b07);\
for(i = 0; i < ROUNDS512; i++)\
{\
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
}\
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
}while(0);
/* xmm[i] will be multiplied by 2
* xmm[j] will be lost
* xmm[k] has to be all 0x1b
* xmm[z] has to be zero */
#define VMUL2(i, j, k, z){\
j = _mm_cmpgt_epi8(z, i);\
i = _mm_add_epi8(i, i);\
j = _mm_and_si128(j, k);\
i = _mm_xor_si128(i, j);\
}/**/
/* Yet another implementation of MixBytes.
This time we use the formulae (3) from the paper "Byte Slicing Groestl".
Input: a0, ..., a7
Output: b0, ..., b7 = MixBytes(a0,...,a7).
but we use the relations:
t_i = a_i + a_{i+3}
x_i = t_i + t_{i+3}
y_i = t_i + t+{i+2} + a_{i+6}
z_i = 2*x_i
w_i = z_i + y_{i+4}
v_i = 2*w_i
b_i = v_{i+3} + y_{i+4}
We keep building b_i in registers xmm8..xmm15 by first building y_{i+4} there
and then adding v_i computed in the meantime in registers xmm0..xmm7.
We almost fit into 16 registers, need only 3 spills to memory.
This implementation costs 7.7 c/b giving total speed on SNB: 10.7c/b.
K. Matusiewicz, 2011/05/29 */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* xmm"tostr(8..xmm"tostr(15 = a2 a3... a0 a1 */\
b0 = a2;\
b1 = a3;\
b2 = a4;\
b3 = a5;\
b4 = a6;\
b5 = a7;\
b6 = a0;\
b7 = a1;\
\
/* t_i = a_i + a_{i+1} */\
a0 = _mm_xor_si128(a0, a1);\
a1 = _mm_xor_si128(a1, a2);\
a2 = _mm_xor_si128(a2, a3);\
a3 = _mm_xor_si128(a3, a4);\
a4 = _mm_xor_si128(a4, a5);\
a5 = _mm_xor_si128(a5, a6);\
a6 = _mm_xor_si128(a6, a7);\
a7 = _mm_xor_si128(a7, b6);\
\
/* build y4 y5 y6 ... in regs xmm8, xmm9, xmm10 by adding t_i*/\
b0 = _mm_xor_si128(b0, a4);\
b1 = _mm_xor_si128(b1, a5);\
b2 = _mm_xor_si128(b2, a6);\
b3 = _mm_xor_si128(b3, a7);\
b4 = _mm_xor_si128(b4, a0);\
b5 = _mm_xor_si128(b5, a1);\
b6 = _mm_xor_si128(b6, a2);\
b7 = _mm_xor_si128(b7, a3);\
\
b0 = _mm_xor_si128(b0, a6);\
b1 = _mm_xor_si128(b1, a7);\
b2 = _mm_xor_si128(b2, a0);\
b3 = _mm_xor_si128(b3, a1);\
b4 = _mm_xor_si128(b4, a2);\
b5 = _mm_xor_si128(b5, a3);\
b6 = _mm_xor_si128(b6, a4);\
b7 = _mm_xor_si128(b7, a5);\
\
/* spill values y_4, y_5 to memory */\
TEMP0 = b0;\
TEMP1 = b1;\
TEMP2 = b2;\
\
/* save values t0, t1, t2 to xmm8, xmm9 and memory */\
b0 = a0;\
b1 = a1;\
TEMP3 = a2;\
\
/* compute x_i = t_i + t_{i+3} */\
a0 = _mm_xor_si128(a0, a3);\
a1 = _mm_xor_si128(a1, a4);\
a2 = _mm_xor_si128(a2, a5);\
a3 = _mm_xor_si128(a3, a6);\
a4 = _mm_xor_si128(a4, a7);\
a5 = _mm_xor_si128(a5, b0);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, TEMP3);\
\
/*compute z_i : double x_i using temp xmm8 and 1B xmm9 */\
b1 = ALL_1B;\
b2 = _mm_xor_si128(b2, b2);\
VMUL2(a7, b0, b1, b2);\
VMUL2(a6, b0, b1, b2);\
VMUL2(a5, b0, b1, b2);\
VMUL2(a4, b0, b1, b2);\
VMUL2(a3, b0, b1, b2);\
VMUL2(a2, b0, b1, b2);\
VMUL2(a1, b0, b1, b2);\
VMUL2(a0, b0, b1, b2);\
\
/* compute w_i : add y_{i+4} */\
a0 = _mm_xor_si128(a0, TEMP0);\
a1 = _mm_xor_si128(a1, TEMP1);\
a2 = _mm_xor_si128(a2, TEMP2);\
a3 = _mm_xor_si128(a3, b3);\
a4 = _mm_xor_si128(a4, b4);\
a5 = _mm_xor_si128(a5, b5);\
a6 = _mm_xor_si128(a6, b6);\
a7 = _mm_xor_si128(a7, b7);\
\
/*compute v_i: double w_i */\
VMUL2(a0, b0, b1, b2);\
VMUL2(a1, b0, b1, b2);\
VMUL2(a2, b0, b1, b2);\
VMUL2(a3, b0, b1, b2);\
VMUL2(a4, b0, b1, b2);\
VMUL2(a5, b0, b1, b2);\
VMUL2(a6, b0, b1, b2);\
VMUL2(a7, b0, b1, b2);\
\
/* add to y_4 y_5 .. v3, v4, ... */\
b0 = _mm_xor_si128(a3, TEMP0);\
b1 = _mm_xor_si128(a4, TEMP1);\
b2 = _mm_xor_si128(a5, TEMP2);\
b3 = _mm_xor_si128(b3, a6);\
b4 = _mm_xor_si128(b4, a7);\
b5 = _mm_xor_si128(b5, a0);\
b6 = _mm_xor_si128(b6, a1);\
b7 = _mm_xor_si128(b7, a2);\
}/*MixBytes*/
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* Add Round Constant */\
b1 = ROUND_CONST_Lx;\
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
a1 = _mm_xor_si128(a1, b1);\
a2 = _mm_xor_si128(a2, b1);\
a3 = _mm_xor_si128(a3, b1);\
a4 = _mm_xor_si128(a4, b1);\
a5 = _mm_xor_si128(a5, b1);\
a6 = _mm_xor_si128(a6, b1);\
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
\
/* ShiftBytes + SubBytes (interleaved) */\
b0 = _mm_xor_si128(b0, b0);\
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
a0 = _mm_aesenclast_si128(a0, b0);\
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
a1 = _mm_aesenclast_si128(a1, b0);\
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
a2 = _mm_aesenclast_si128(a2, b0);\
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
a3 = _mm_aesenclast_si128(a3, b0);\
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
a4 = _mm_aesenclast_si128(a4, b0);\
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
a5 = _mm_aesenclast_si128(a5, b0);\
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
a6 = _mm_aesenclast_si128(a6, b0);\
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
a7 = _mm_aesenclast_si128(a7, b0);\
\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK;\
\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\
i2 = _mm_shuffle_epi8(i2, t0);\
i3 = _mm_shuffle_epi8(i3, t0);\
\
o1 = _mm_unpackhi_epi16(i0, i1);\
i0 = _mm_unpacklo_epi16(i0, i1);\
t0 = _mm_unpackhi_epi16(i2, i3);\
i2 = _mm_unpacklo_epi16(i2, i3);\
\
i0 = _mm_shuffle_epi32(i0, 216);\
o1 = _mm_shuffle_epi32(o1, 216);\
i2 = _mm_shuffle_epi32(i2, 216);\
t0 = _mm_shuffle_epi32(t0, 216);\
\
o2 = _mm_unpackhi_epi32(i0, i2);\
o3 = _mm_unpackhi_epi32(o1, t0);\
i0 = _mm_unpacklo_epi32(i0, i2);\
o1 = _mm_unpacklo_epi32(o1, t0);\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
o1 = _mm_unpackhi_epi64(i0, i4);\
i0 = _mm_unpacklo_epi64(i0, i4);\
o2 = _mm_unpacklo_epi64(i1, i5);\
o3 = _mm_unpackhi_epi64(i1, i5);\
o4 = _mm_unpacklo_epi64(i2, i6);\
o5 = _mm_unpackhi_epi64(i2, i6);\
o6 = _mm_unpacklo_epi64(i3, i7);\
o7 = _mm_unpackhi_epi64(i3, i7);\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
o0 = _mm_unpackhi_epi64(i0, i1);\
i0 = _mm_unpacklo_epi64(i0, i1);\
o1 = _mm_unpackhi_epi64(i2, i3);\
i2 = _mm_unpacklo_epi64(i2, i3);\
o2 = _mm_unpackhi_epi64(i4, i5);\
i4 = _mm_unpacklo_epi64(i4, i5);\
o3 = _mm_unpackhi_epi64(i6, i7);\
i6 = _mm_unpacklo_epi64(i6, i7);\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
t0 = _mm_xor_si128(t0, t0);\
i1 = _mm_unpackhi_epi64(i0, t0);\
i0 = _mm_unpacklo_epi64(i0, t0);\
i3 = _mm_unpackhi_epi64(i2, t0);\
i2 = _mm_unpacklo_epi64(i2, t0);\
i5 = _mm_unpackhi_epi64(i4, t0);\
i4 = _mm_unpacklo_epi64(i4, t0);\
i7 = _mm_unpackhi_epi64(i6, t0);\
i6 = _mm_unpacklo_epi64(i6, t0);\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
i0 = _mm_unpacklo_epi64(i0, i1);\
i2 = _mm_unpacklo_epi64(i2, i3);\
i4 = _mm_unpacklo_epi64(i4, i5);\
i6 = _mm_unpacklo_epi64(i6, i7);\
}/**/
void INIT256(u64* h)
{
__m128i* const chaining = (__m128i*) h;
static __m128i xmm0, /*xmm1,*/ xmm2, /*xmm3, xmm4, xmm5,*/ xmm6, xmm7;
static __m128i /*xmm8, xmm9, xmm10, xmm11,*/ xmm12, xmm13, xmm14, xmm15;
/* load IV into registers xmm12 - xmm15 */
xmm12 = chaining[0];
xmm13 = chaining[1];
xmm14 = chaining[2];
xmm15 = chaining[3];
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* store transposed IV */
chaining[0] = xmm12;
chaining[1] = xmm2;
chaining[2] = xmm6;
chaining[3] = xmm7;
}
void TF512(u64* h, u64* m)
{
__m128i* const chaining = (__m128i*) h;
__m128i* const message = (__m128i*) m;
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
static __m128i TEMP3;
#ifdef IACA_TRACE
IACA_START;
#endif
/* load message into registers xmm12 - xmm15 */
xmm12 = message[0];
xmm13 = message[1];
xmm14 = message[2];
xmm15 = message[3];
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* load previous chaining value and xor message to CV to get input of P */
/* we first put two rows (2x64 bit) of the CV into one 128-bit xmm register */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
xmm8 = _mm_xor_si128(xmm12, chaining[0]);
xmm0 = _mm_xor_si128(xmm2, chaining[1]);
xmm4 = _mm_xor_si128(xmm6, chaining[2]);
xmm5 = _mm_xor_si128(xmm7, chaining[3]);
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, xmm8);
xmm1 = _mm_xor_si128(xmm1, xmm10);
xmm2 = _mm_xor_si128(xmm2, xmm12);
xmm3 = _mm_xor_si128(xmm3, xmm14);
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, chaining[0]);
xmm1 = _mm_xor_si128(xmm1, chaining[1]);
xmm2 = _mm_xor_si128(xmm2, chaining[2]);
xmm3 = _mm_xor_si128(xmm3, chaining[3]);
/* store CV */
chaining[0] = xmm0;
chaining[1] = xmm1;
chaining[2] = xmm2;
chaining[3] = xmm3;
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512(u64* h)
{
__m128i* const chaining = (__m128i*) h;
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP0;
static __m128i TEMP1;
static __m128i TEMP2;
static __m128i TEMP3;
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
xmm8 = chaining[0];
xmm10 = chaining[1];
xmm12 = chaining[2];
xmm14 = chaining[3];
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm10 = _mm_xor_si128(xmm10, (chaining[1]));
xmm12 = _mm_xor_si128(xmm12, (chaining[2]));
xmm14 = _mm_xor_si128(xmm14, (chaining[3]));
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
/* we only need to return the truncated half of the state */
chaining[2] = xmm9;
chaining[3] = xmm11;
}

View File

@@ -1,793 +0,0 @@
/* groestl-intr-vperm.h Aug 2011
*
* Groestl implementation with intrinsics using ssse3 instructions.
* Author: Günther A. Roland, Martin Schläffer
*
* Based on the vperm and aes_ni implementations of the hash function Groestl
* by Cagdas Calik <ccalik@metu.edu.tr> http://www.metu.edu.tr/~ccalik/
* Institute of Applied Mathematics, Middle East Technical University, Turkey
*
* This code is placed in the public domain
*/
#include <tmmintrin.h>
#include "hash-groestl256.h"
/* global constants */
__m128i ROUND_CONST_Lx;
__m128i ROUND_CONST_L0[ROUNDS512];
__m128i ROUND_CONST_L7[ROUNDS512];
__m128i ROUND_CONST_P[ROUNDS1024];
__m128i ROUND_CONST_Q[ROUNDS1024];
__m128i TRANSP_MASK;
__m128i SUBSH_MASK[8];
__m128i ALL_0F;
__m128i ALL_15;
__m128i ALL_1B;
__m128i ALL_63;
__m128i ALL_FF;
__m128i VPERM_IPT[2];
__m128i VPERM_OPT[2];
__m128i VPERM_INV[2];
__m128i VPERM_SB1[2];
__m128i VPERM_SB2[2];
__m128i VPERM_SB4[2];
__m128i VPERM_SBO[2];
#define tos(a) #a
#define tostr(a) tos(a)
#define SET_SHARED_CONSTANTS(){\
TRANSP_MASK = _mm_set_epi32(0x0f070b03, 0x0e060a02, 0x0d050901, 0x0c040800);\
ALL_1B = _mm_set_epi32(0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b, 0x1b1b1b1b);\
ALL_63 = _mm_set_epi32(0x63636363, 0x63636363, 0x63636363, 0x63636363);\
ALL_0F = _mm_set_epi32(0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f, 0x0f0f0f0f);\
ALL_15 = _mm_set_epi32(0x15151515, 0x15151515, 0x15151515, 0x15151515);\
VPERM_IPT[0] = _mm_set_epi32(0xCD80B1FC, 0xB0FDCC81, 0x4C01307D, 0x317C4D00);\
VPERM_IPT[1] = _mm_set_epi32(0xCABAE090, 0x52227808, 0xC2B2E898, 0x5A2A7000);\
VPERM_OPT[0] = _mm_set_epi32(0xE10D5DB1, 0xB05C0CE0, 0x01EDBD51, 0x50BCEC00);\
VPERM_OPT[1] = _mm_set_epi32(0xF7974121, 0xDEBE6808, 0xFF9F4929, 0xD6B66000);\
VPERM_INV[0] = _mm_set_epi32(0x030D0E0C, 0x02050809, 0x01040A06, 0x0F0B0780);\
VPERM_INV[1] = _mm_set_epi32(0x04070309, 0x0A0B0C02, 0x0E05060F, 0x0D080180);\
VPERM_SB1[0] = _mm_set_epi32(0x3BF7CCC1, 0x0D2ED9EF, 0x3618D415, 0xFAE22300);\
VPERM_SB1[1] = _mm_set_epi32(0xA5DF7A6E, 0x142AF544, 0xB19BE18F, 0xCB503E00);\
VPERM_SB2[0] = _mm_set_epi32(0xC2A163C8, 0xAB82234A, 0x69EB8840, 0x0AE12900);\
VPERM_SB2[1] = _mm_set_epi32(0x5EB7E955, 0xBC982FCD, 0xE27A93C6, 0x0B712400);\
VPERM_SB4[0] = _mm_set_epi32(0xBA44FE79, 0x876D2914, 0x3D50AED7, 0xC393EA00);\
VPERM_SB4[1] = _mm_set_epi32(0xA876DE97, 0x49087E9F, 0xE1E937A0, 0x3FD64100);\
}/**/
/* VPERM
* Transform w/o settings c*
* transforms 2 rows to/from "vperm mode"
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0, a1 = 2 rows
* table = transformation table to use
* t*, c* = clobbers
* outputs:
* a0, a1 = 2 rows transformed with table
* */
#define VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2){\
t0 = c0;\
t1 = c0;\
t0 = _mm_andnot_si128(t0, a0);\
t1 = _mm_andnot_si128(t1, a1);\
t0 = _mm_srli_epi32(t0, 4);\
t1 = _mm_srli_epi32(t1, 4);\
a0 = _mm_and_si128(a0, c0);\
a1 = _mm_and_si128(a1, c0);\
t2 = c2;\
t3 = c2;\
t2 = _mm_shuffle_epi8(t2, a0);\
t3 = _mm_shuffle_epi8(t3, a1);\
a0 = c1;\
a1 = c1;\
a0 = _mm_shuffle_epi8(a0, t0);\
a1 = _mm_shuffle_epi8(a1, t1);\
a0 = _mm_xor_si128(a0, t2);\
a1 = _mm_xor_si128(a1, t3);\
}/**/
#define VPERM_Transform_Set_Const(table, c0, c1, c2){\
c0 = ALL_0F;\
c1 = ((__m128i*) table )[0];\
c2 = ((__m128i*) table )[1];\
}/**/
/* VPERM
* Transform
* transforms 2 rows to/from "vperm mode"
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0, a1 = 2 rows
* table = transformation table to use
* t*, c* = clobbers
* outputs:
* a0, a1 = 2 rows transformed with table
* */
#define VPERM_Transform(a0, a1, table, t0, t1, t2, t3, c0, c1, c2){\
VPERM_Transform_Set_Const(table, c0, c1, c2);\
VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2);\
}/**/
/* VPERM
* Transform State
* inputs:
* a0-a3 = state
* table = transformation table to use
* t* = clobbers
* outputs:
* a0-a3 = transformed state
* */
#define VPERM_Transform_State(a0, a1, a2, a3, table, t0, t1, t2, t3, c0, c1, c2){\
VPERM_Transform_Set_Const(table, c0, c1, c2);\
VPERM_Transform_No_Const(a0, a1, t0, t1, t2, t3, c0, c1, c2);\
VPERM_Transform_No_Const(a2, a3, t0, t1, t2, t3, c0, c1, c2);\
}/**/
/* VPERM
* Add Constant to State
* inputs:
* a0-a7 = state
* constant = constant to add
* t0 = clobber
* outputs:
* a0-a7 = state + constant
* */
#define VPERM_Add_Constant(a0, a1, a2, a3, a4, a5, a6, a7, constant, t0){\
t0 = constant;\
a0 = _mm_xor_si128(a0, t0);\
a1 = _mm_xor_si128(a1, t0);\
a2 = _mm_xor_si128(a2, t0);\
a3 = _mm_xor_si128(a3, t0);\
a4 = _mm_xor_si128(a4, t0);\
a5 = _mm_xor_si128(a5, t0);\
a6 = _mm_xor_si128(a6, t0);\
a7 = _mm_xor_si128(a7, t0);\
}/**/
/* VPERM
* Set Substitute Core Constants
* */
#define VPERM_Substitute_Core_Set_Const(c0, c1, c2){\
VPERM_Transform_Set_Const(VPERM_INV, c0, c1, c2);\
}/**/
/* VPERM
* Substitute Core
* first part of sbox inverse computation
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0 = 1 row
* t*, c* = clobbers
* outputs:
* b0a, b0b = inputs for lookup step
* */
#define VPERM_Substitute_Core(a0, b0a, b0b, t0, t1, c0, c1, c2){\
t0 = c0;\
t0 = _mm_andnot_si128(t0, a0);\
t0 = _mm_srli_epi32(t0, 4);\
a0 = _mm_and_si128(a0, c0);\
b0a = c1;\
b0a = _mm_shuffle_epi8(b0a, a0);\
a0 = _mm_xor_si128(a0, t0);\
b0b = c2;\
b0b = _mm_shuffle_epi8(b0b, t0);\
b0b = _mm_xor_si128(b0b, b0a);\
t1 = c2;\
t1 = _mm_shuffle_epi8(t1, a0);\
t1 = _mm_xor_si128(t1, b0a);\
b0a = c2;\
b0a = _mm_shuffle_epi8(b0a, b0b);\
b0a = _mm_xor_si128(b0a, a0);\
b0b = c2;\
b0b = _mm_shuffle_epi8(b0b, t1);\
b0b = _mm_xor_si128(b0b, t0);\
}/**/
/* VPERM
* Lookup
* second part of sbox inverse computation
* this function is derived from:
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0a, a0b = output of Substitution Core
* table = lookup table to use (*1 / *2 / *4)
* t0 = clobber
* outputs:
* b0 = output of sbox + multiplication
* */
#define VPERM_Lookup(a0a, a0b, table, b0, t0){\
b0 = ((__m128i*) table )[0];\
t0 = ((__m128i*) table )[1];\
b0 = _mm_shuffle_epi8(b0, a0b);\
t0 = _mm_shuffle_epi8(t0, a0a);\
b0 = _mm_xor_si128(b0, t0);\
}/**/
/* VPERM
* SubBytes and *2 / *4
* this function is derived from:
* Constant-time SSSE3 AES core implementation
* by Mike Hamburg
* and
* vperm and aes_ni implementations of hash function Grostl
* by Cagdas CALIK
* inputs:
* a0-a7 = state
* t*, c* = clobbers
* outputs:
* a0-a7 = state * 4
* c2 = row0 * 2 -> b0
* c1 = row7 * 2 -> b3
* c0 = row7 * 1 -> b4
* t2 = row4 * 1 -> b7
* TEMP_MUL1 = row(i) * 1
* TEMP_MUL2 = row(i) * 2
*
* call:VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, b1, b2, b5, b6, b0, b3, b4, b7) */
#define VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t3, t4, c2, c1, c0, t2){\
/* set Constants */\
VPERM_Substitute_Core_Set_Const(c0, c1, c2);\
/* row 1 */\
VPERM_Substitute_Core(a1, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[1] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[1] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a1, t4);\
/* --- */\
/* row 2 */\
VPERM_Substitute_Core(a2, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[2] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[2] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a2, t4);\
/* --- */\
/* row 3 */\
VPERM_Substitute_Core(a3, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[3] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[3] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a3, t4);\
/* --- */\
/* row 5 */\
VPERM_Substitute_Core(a5, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[5] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[5] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a5, t4);\
/* --- */\
/* row 6 */\
VPERM_Substitute_Core(a6, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[6] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[6] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a6, t4);\
/* --- */\
/* row 7 */\
VPERM_Substitute_Core(a7, t0, t1, t3, t4, c0, c1, c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4);\
TEMP_MUL1[7] = t2;\
VPERM_Lookup(t0, t1, VPERM_SB2, c1, t4); /*c1 -> b3*/\
VPERM_Lookup(t0, t1, VPERM_SB4, a7, t4);\
/* --- */\
/* row 4 */\
VPERM_Substitute_Core(a4, t0, t1, t3, t4, c0, (VPERM_INV[0]), c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, t2, t4); /*t2 -> b7*/\
VPERM_Lookup(t0, t1, VPERM_SB2, t3, t4);\
TEMP_MUL2[4] = t3;\
VPERM_Lookup(t0, t1, VPERM_SB4, a4, t4);\
/* --- */\
/* row 0 */\
VPERM_Substitute_Core(a0, t0, t1, t3, t4, c0, (VPERM_INV[0]), c2);\
VPERM_Lookup(t0, t1, VPERM_SB1, c0, t4); /*c0 -> b4*/\
VPERM_Lookup(t0, t1, VPERM_SB2, c2, t4); /*c2 -> b0*/\
TEMP_MUL2[0] = c2;\
VPERM_Lookup(t0, t1, VPERM_SB4, a0, t4);\
/* --- */\
}/**/
/* Optimized MixBytes
* inputs:
* a0-a7 = (row0-row7) * 4
* b0 = row0 * 2
* b3 = row7 * 2
* b4 = row7 * 1
* b7 = row4 * 1
* all *1 and *2 values must also be in TEMP_MUL1, TEMP_MUL2
* output: b0-b7
* */
#define MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* save one value */\
TEMP_MUL4 = a3;\
/* 1 */\
b1 = a0;\
b1 = _mm_xor_si128(b1, a5);\
b1 = _mm_xor_si128(b1, b4); /* -> helper! */\
b1 = _mm_xor_si128(b1, (TEMP_MUL2[3]));\
b2 = b1;\
\
/* 2 */\
b5 = a1;\
b5 = _mm_xor_si128(b5, a4);\
b5 = _mm_xor_si128(b5, b7); /* -> helper! */\
b5 = _mm_xor_si128(b5, b3); /* -> helper! */\
b6 = b5;\
\
/* 4 */\
b7 = _mm_xor_si128(b7, a6);\
/*b7 = _mm_xor_si128(b7, (TEMP_MUL1[4])); -> helper! */\
b7 = _mm_xor_si128(b7, (TEMP_MUL1[6]));\
b7 = _mm_xor_si128(b7, (TEMP_MUL2[1]));\
b7 = _mm_xor_si128(b7, b3); /* -> helper! */\
b2 = _mm_xor_si128(b2, b7);\
\
/* 3 */\
b0 = _mm_xor_si128(b0, a7);\
b0 = _mm_xor_si128(b0, (TEMP_MUL1[5]));\
b0 = _mm_xor_si128(b0, (TEMP_MUL1[7]));\
/*b0 = _mm_xor_si128(b0, (TEMP_MUL2[0])); -> helper! */\
b0 = _mm_xor_si128(b0, (TEMP_MUL2[2]));\
b3 = b0;\
b1 = _mm_xor_si128(b1, b0);\
b0 = _mm_xor_si128(b0, b7); /* moved from 4 */\
\
/* 5 */\
b4 = _mm_xor_si128(b4, a2);\
/*b4 = _mm_xor_si128(b4, (TEMP_MUL1[0])); -> helper! */\
b4 = _mm_xor_si128(b4, (TEMP_MUL1[2]));\
b4 = _mm_xor_si128(b4, (TEMP_MUL2[3]));\
b4 = _mm_xor_si128(b4, (TEMP_MUL2[5]));\
b3 = _mm_xor_si128(b3, b4);\
b6 = _mm_xor_si128(b6, b4);\
\
/* 6 */\
a3 = _mm_xor_si128(a3, (TEMP_MUL1[1]));\
a3 = _mm_xor_si128(a3, (TEMP_MUL1[3]));\
a3 = _mm_xor_si128(a3, (TEMP_MUL2[4]));\
a3 = _mm_xor_si128(a3, (TEMP_MUL2[6]));\
b4 = _mm_xor_si128(b4, a3);\
b5 = _mm_xor_si128(b5, a3);\
b7 = _mm_xor_si128(b7, a3);\
\
/* 7 */\
a1 = _mm_xor_si128(a1, (TEMP_MUL1[1]));\
a1 = _mm_xor_si128(a1, (TEMP_MUL2[4]));\
b2 = _mm_xor_si128(b2, a1);\
b3 = _mm_xor_si128(b3, a1);\
\
/* 8 */\
a5 = _mm_xor_si128(a5, (TEMP_MUL1[5]));\
a5 = _mm_xor_si128(a5, (TEMP_MUL2[0]));\
b6 = _mm_xor_si128(b6, a5);\
b7 = _mm_xor_si128(b7, a5);\
\
/* 9 */\
a3 = TEMP_MUL1[2];\
a3 = _mm_xor_si128(a3, (TEMP_MUL2[5]));\
b0 = _mm_xor_si128(b0, a3);\
b5 = _mm_xor_si128(b5, a3);\
\
/* 10 */\
a1 = TEMP_MUL1[6];\
a1 = _mm_xor_si128(a1, (TEMP_MUL2[1]));\
b1 = _mm_xor_si128(b1, a1);\
b4 = _mm_xor_si128(b4, a1);\
\
/* 11 */\
a5 = TEMP_MUL1[3];\
a5 = _mm_xor_si128(a5, (TEMP_MUL2[6]));\
b1 = _mm_xor_si128(b1, a5);\
b6 = _mm_xor_si128(b6, a5);\
\
/* 12 */\
a3 = TEMP_MUL1[7];\
a3 = _mm_xor_si128(a3, (TEMP_MUL2[2]));\
b2 = _mm_xor_si128(b2, a3);\
b5 = _mm_xor_si128(b5, a3);\
\
/* 13 */\
b0 = _mm_xor_si128(b0, (TEMP_MUL4));\
b0 = _mm_xor_si128(b0, a4);\
b1 = _mm_xor_si128(b1, a4);\
b3 = _mm_xor_si128(b3, a6);\
b4 = _mm_xor_si128(b4, a0);\
b4 = _mm_xor_si128(b4, a7);\
b5 = _mm_xor_si128(b5, a0);\
b7 = _mm_xor_si128(b7, a2);\
}/**/
#define SET_CONSTANTS(){\
SET_SHARED_CONSTANTS();\
SUBSH_MASK[0] = _mm_set_epi32(0x080f0e0d, 0x0c0b0a09, 0x07060504, 0x03020100);\
SUBSH_MASK[1] = _mm_set_epi32(0x0a09080f, 0x0e0d0c0b, 0x00070605, 0x04030201);\
SUBSH_MASK[2] = _mm_set_epi32(0x0c0b0a09, 0x080f0e0d, 0x01000706, 0x05040302);\
SUBSH_MASK[3] = _mm_set_epi32(0x0e0d0c0b, 0x0a09080f, 0x02010007, 0x06050403);\
SUBSH_MASK[4] = _mm_set_epi32(0x0f0e0d0c, 0x0b0a0908, 0x03020100, 0x07060504);\
SUBSH_MASK[5] = _mm_set_epi32(0x09080f0e, 0x0d0c0b0a, 0x04030201, 0x00070605);\
SUBSH_MASK[6] = _mm_set_epi32(0x0b0a0908, 0x0f0e0d0c, 0x05040302, 0x01000706);\
SUBSH_MASK[7] = _mm_set_epi32(0x0d0c0b0a, 0x09080f0e, 0x06050403, 0x02010007);\
for(i = 0; i < ROUNDS512; i++)\
{\
ROUND_CONST_L0[i] = _mm_set_epi32(0xffffffff, 0xffffffff, 0x70605040 ^ (i * 0x01010101), 0x30201000 ^ (i * 0x01010101));\
ROUND_CONST_L7[i] = _mm_set_epi32(0x8f9fafbf ^ (i * 0x01010101), 0xcfdfefff ^ (i * 0x01010101), 0x00000000, 0x00000000);\
}\
ROUND_CONST_Lx = _mm_set_epi32(0xffffffff, 0xffffffff, 0x00000000, 0x00000000);\
}/**/
/* vperm:
* transformation before rounds with ipt
* first round add transformed constant
* middle rounds: add constant XOR 0x15...15
* last round: additionally add 0x15...15 after MB
* transformation after rounds with opt
*/
/* one round
* i = round number
* a0-a7 = input rows
* b0-b7 = output rows
*/
#define ROUND(i, a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7){\
/* AddRoundConstant + ShiftBytes (interleaved) */\
b1 = ROUND_CONST_Lx;\
a0 = _mm_xor_si128(a0, (ROUND_CONST_L0[i]));\
a1 = _mm_xor_si128(a1, b1);\
a2 = _mm_xor_si128(a2, b1);\
a3 = _mm_xor_si128(a3, b1);\
a0 = _mm_shuffle_epi8(a0, (SUBSH_MASK[0]));\
a1 = _mm_shuffle_epi8(a1, (SUBSH_MASK[1]));\
a4 = _mm_xor_si128(a4, b1);\
a2 = _mm_shuffle_epi8(a2, (SUBSH_MASK[2]));\
a3 = _mm_shuffle_epi8(a3, (SUBSH_MASK[3]));\
a5 = _mm_xor_si128(a5, b1);\
a6 = _mm_xor_si128(a6, b1);\
a4 = _mm_shuffle_epi8(a4, (SUBSH_MASK[4]));\
a5 = _mm_shuffle_epi8(a5, (SUBSH_MASK[5]));\
a7 = _mm_xor_si128(a7, (ROUND_CONST_L7[i]));\
a6 = _mm_shuffle_epi8(a6, (SUBSH_MASK[6]));\
a7 = _mm_shuffle_epi8(a7, (SUBSH_MASK[7]));\
/* SubBytes + Multiplication by 2 and 4 */\
VPERM_SUB_MULTIPLY(a0, a1, a2, a3, a4, a5, a6, a7, b1, b2, b5, b6, b0, b3, b4, b7);\
/* MixBytes */\
MixBytes(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7);\
}/**/
/* 10 rounds, P and Q in parallel */
#define ROUNDS_P_Q(){\
VPERM_Add_Constant(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, ALL_15, xmm0);\
ROUND(0, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(1, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(2, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(3, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(4, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(5, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(6, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(7, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
ROUND(8, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);\
ROUND(9, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);\
VPERM_Add_Constant(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, ALL_15, xmm0);\
}
/* Matrix Transpose Step 1
* input is a 512-bit state with two columns in one xmm
* output is a 512-bit state with two rows in one xmm
* inputs: i0-i3
* outputs: i0, o1-o3
* clobbers: t0
*/
#define Matrix_Transpose_A(i0, i1, i2, i3, o1, o2, o3, t0){\
t0 = TRANSP_MASK;\
\
i0 = _mm_shuffle_epi8(i0, t0);\
i1 = _mm_shuffle_epi8(i1, t0);\
i2 = _mm_shuffle_epi8(i2, t0);\
i3 = _mm_shuffle_epi8(i3, t0);\
\
o1 = i0;\
t0 = i2;\
\
i0 = _mm_unpacklo_epi16(i0, i1);\
o1 = _mm_unpackhi_epi16(o1, i1);\
i2 = _mm_unpacklo_epi16(i2, i3);\
t0 = _mm_unpackhi_epi16(t0, i3);\
\
i0 = _mm_shuffle_epi32(i0, 216);\
o1 = _mm_shuffle_epi32(o1, 216);\
i2 = _mm_shuffle_epi32(i2, 216);\
t0 = _mm_shuffle_epi32(t0, 216);\
\
o2 = i0;\
o3 = o1;\
\
i0 = _mm_unpacklo_epi32(i0, i2);\
o1 = _mm_unpacklo_epi32(o1, t0);\
o2 = _mm_unpackhi_epi32(o2, i2);\
o3 = _mm_unpackhi_epi32(o3, t0);\
}/**/
/* Matrix Transpose Step 2
* input are two 512-bit states with two rows in one xmm
* output are two 512-bit states with one row of each state in one xmm
* inputs: i0-i3 = P, i4-i7 = Q
* outputs: (i0, o1-o7) = (P|Q)
* possible reassignments: (output reg = input reg)
* * i1 -> o3-7
* * i2 -> o5-7
* * i3 -> o7
* * i4 -> o3-7
* * i5 -> o6-7
*/
#define Matrix_Transpose_B(i0, i1, i2, i3, i4, i5, i6, i7, o1, o2, o3, o4, o5, o6, o7){\
o1 = i0;\
o2 = i1;\
i0 = _mm_unpacklo_epi64(i0, i4);\
o1 = _mm_unpackhi_epi64(o1, i4);\
o3 = i1;\
o4 = i2;\
o2 = _mm_unpacklo_epi64(o2, i5);\
o3 = _mm_unpackhi_epi64(o3, i5);\
o5 = i2;\
o6 = i3;\
o4 = _mm_unpacklo_epi64(o4, i6);\
o5 = _mm_unpackhi_epi64(o5, i6);\
o7 = i3;\
o6 = _mm_unpacklo_epi64(o6, i7);\
o7 = _mm_unpackhi_epi64(o7, i7);\
}/**/
/* Matrix Transpose Inverse Step 2
* input are two 512-bit states with one row of each state in one xmm
* output are two 512-bit states with two rows in one xmm
* inputs: i0-i7 = (P|Q)
* outputs: (i0, i2, i4, i6) = P, (o0-o3) = Q
*/
#define Matrix_Transpose_B_INV(i0, i1, i2, i3, i4, i5, i6, i7, o0, o1, o2, o3){\
o0 = i0;\
i0 = _mm_unpacklo_epi64(i0, i1);\
o0 = _mm_unpackhi_epi64(o0, i1);\
o1 = i2;\
i2 = _mm_unpacklo_epi64(i2, i3);\
o1 = _mm_unpackhi_epi64(o1, i3);\
o2 = i4;\
i4 = _mm_unpacklo_epi64(i4, i5);\
o2 = _mm_unpackhi_epi64(o2, i5);\
o3 = i6;\
i6 = _mm_unpacklo_epi64(i6, i7);\
o3 = _mm_unpackhi_epi64(o3, i7);\
}/**/
/* Matrix Transpose Output Step 2
* input is one 512-bit state with two rows in one xmm
* output is one 512-bit state with one row in the low 64-bits of one xmm
* inputs: i0,i2,i4,i6 = S
* outputs: (i0-7) = (0|S)
*/
#define Matrix_Transpose_O_B(i0, i1, i2, i3, i4, i5, i6, i7, t0){\
t0 = _mm_xor_si128(t0, t0);\
i1 = i0;\
i3 = i2;\
i5 = i4;\
i7 = i6;\
i0 = _mm_unpacklo_epi64(i0, t0);\
i1 = _mm_unpackhi_epi64(i1, t0);\
i2 = _mm_unpacklo_epi64(i2, t0);\
i3 = _mm_unpackhi_epi64(i3, t0);\
i4 = _mm_unpacklo_epi64(i4, t0);\
i5 = _mm_unpackhi_epi64(i5, t0);\
i6 = _mm_unpacklo_epi64(i6, t0);\
i7 = _mm_unpackhi_epi64(i7, t0);\
}/**/
/* Matrix Transpose Output Inverse Step 2
* input is one 512-bit state with one row in the low 64-bits of one xmm
* output is one 512-bit state with two rows in one xmm
* inputs: i0-i7 = (0|S)
* outputs: (i0, i2, i4, i6) = S
*/
#define Matrix_Transpose_O_B_INV(i0, i1, i2, i3, i4, i5, i6, i7){\
i0 = _mm_unpacklo_epi64(i0, i1);\
i2 = _mm_unpacklo_epi64(i2, i3);\
i4 = _mm_unpacklo_epi64(i4, i5);\
i6 = _mm_unpacklo_epi64(i6, i7);\
}/**/
/* transform round constants into VPERM mode */
#define VPERM_Transform_RoundConst_CNT2(i, j){\
xmm0 = ROUND_CONST_L0[i];\
xmm1 = ROUND_CONST_L7[i];\
xmm2 = ROUND_CONST_L0[j];\
xmm3 = ROUND_CONST_L7[j];\
VPERM_Transform_State(xmm0, xmm1, xmm2, xmm3, VPERM_IPT, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10);\
xmm0 = _mm_xor_si128(xmm0, (ALL_15));\
xmm1 = _mm_xor_si128(xmm1, (ALL_15));\
xmm2 = _mm_xor_si128(xmm2, (ALL_15));\
xmm3 = _mm_xor_si128(xmm3, (ALL_15));\
ROUND_CONST_L0[i] = xmm0;\
ROUND_CONST_L7[i] = xmm1;\
ROUND_CONST_L0[j] = xmm2;\
ROUND_CONST_L7[j] = xmm3;\
}/**/
/* transform round constants into VPERM mode */
#define VPERM_Transform_RoundConst(){\
xmm0 = ROUND_CONST_Lx;\
VPERM_Transform(xmm0, xmm1, VPERM_IPT, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10);\
xmm0 = _mm_xor_si128(xmm0, (ALL_15));\
ROUND_CONST_Lx = xmm0;\
VPERM_Transform_RoundConst_CNT2(0, 1);\
VPERM_Transform_RoundConst_CNT2(2, 3);\
VPERM_Transform_RoundConst_CNT2(4, 5);\
VPERM_Transform_RoundConst_CNT2(6, 7);\
VPERM_Transform_RoundConst_CNT2(8, 9);\
}/**/
void INIT256(u64* h)
{
__m128i* const chaining = (__m128i*) h;
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, /*xmm11,*/ xmm12, xmm13, xmm14, xmm15;
/* transform round constants into VPERM mode */
VPERM_Transform_RoundConst();
/* load IV into registers xmm12 - xmm15 */
xmm12 = chaining[0];
xmm13 = chaining[1];
xmm14 = chaining[2];
xmm15 = chaining[3];
/* transform chaining value from column ordering into row ordering */
/* we put two rows (64 bit) of the IV into one 128-bit XMM register */
VPERM_Transform_State(xmm12, xmm13, xmm14, xmm15, VPERM_IPT, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* store transposed IV */
chaining[0] = xmm12;
chaining[1] = xmm2;
chaining[2] = xmm6;
chaining[3] = xmm7;
}
void TF512(u64* h, u64* m)
{
__m128i* const chaining = (__m128i*) h;
__m128i* const message = (__m128i*) m;
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP_MUL1[8];
static __m128i TEMP_MUL2[8];
static __m128i TEMP_MUL4;
#ifdef IACA_TRACE
IACA_START;
#endif
/* load message into registers xmm12 - xmm15 */
xmm12 = message[0];
xmm13 = message[1];
xmm14 = message[2];
xmm15 = message[3];
/* transform message M from column ordering into row ordering */
/* we first put two rows (64 bit) of the message into one 128-bit xmm register */
VPERM_Transform_State(xmm12, xmm13, xmm14, xmm15, VPERM_IPT, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
Matrix_Transpose_A(xmm12, xmm13, xmm14, xmm15, xmm2, xmm6, xmm7, xmm0);
/* load previous chaining value */
/* we first put two rows (64 bit) of the CV into one 128-bit xmm register */
xmm8 = chaining[0];
xmm0 = chaining[1];
xmm4 = chaining[2];
xmm5 = chaining[3];
/* xor message to CV get input of P */
/* result: CV+M in xmm8, xmm0, xmm4, xmm5 */
xmm8 = _mm_xor_si128(xmm8, xmm12);
xmm0 = _mm_xor_si128(xmm0, xmm2);
xmm4 = _mm_xor_si128(xmm4, xmm6);
xmm5 = _mm_xor_si128(xmm5, xmm7);
/* there are now 2 rows of the Groestl state (P and Q) in each xmm register */
/* unpack to get 1 row of P (64 bit) and Q (64 bit) into one xmm register */
/* result: the 8 rows of P and Q in xmm8 - xmm12 */
Matrix_Transpose_B(xmm8, xmm0, xmm4, xmm5, xmm12, xmm2, xmm6, xmm7, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* compute the two permutations P and Q in parallel */
ROUNDS_P_Q();
/* unpack again to get two rows of P or two rows of Q in one xmm register */
Matrix_Transpose_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0, xmm1, xmm2, xmm3);
/* xor output of P and Q */
/* result: P(CV+M)+Q(M) in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, xmm8);
xmm1 = _mm_xor_si128(xmm1, xmm10);
xmm2 = _mm_xor_si128(xmm2, xmm12);
xmm3 = _mm_xor_si128(xmm3, xmm14);
/* xor CV (feed-forward) */
/* result: P(CV+M)+Q(M)+CV in xmm0...xmm3 */
xmm0 = _mm_xor_si128(xmm0, (chaining[0]));
xmm1 = _mm_xor_si128(xmm1, (chaining[1]));
xmm2 = _mm_xor_si128(xmm2, (chaining[2]));
xmm3 = _mm_xor_si128(xmm3, (chaining[3]));
/* store CV */
chaining[0] = xmm0;
chaining[1] = xmm1;
chaining[2] = xmm2;
chaining[3] = xmm3;
#ifdef IACA_TRACE
IACA_END;
#endif
return;
}
void OF512(u64* h)
{
__m128i* const chaining = (__m128i*) h;
static __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
static __m128i xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15;
static __m128i TEMP_MUL1[8];
static __m128i TEMP_MUL2[8];
static __m128i TEMP_MUL4;
/* load CV into registers xmm8, xmm10, xmm12, xmm14 */
xmm8 = chaining[0];
xmm10 = chaining[1];
xmm12 = chaining[2];
xmm14 = chaining[3];
/* there are now 2 rows of the CV in one xmm register */
/* unpack to get 1 row of P (64 bit) into one half of an xmm register */
/* result: the 8 input rows of P in xmm8 - xmm15 */
Matrix_Transpose_O_B(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm0);
/* compute the permutation P */
/* result: the output of P(CV) in xmm8 - xmm15 */
ROUNDS_P_Q();
/* unpack again to get two rows of P in one xmm register */
/* result: P(CV) in xmm8, xmm10, xmm12, xmm14 */
Matrix_Transpose_O_B_INV(xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15);
/* xor CV to P output (feed-forward) */
/* result: P(CV)+CV in xmm8, xmm10, xmm12, xmm14 */
xmm8 = _mm_xor_si128(xmm8, (chaining[0]));
xmm10 = _mm_xor_si128(xmm10, (chaining[1]));
xmm12 = _mm_xor_si128(xmm12, (chaining[2]));
xmm14 = _mm_xor_si128(xmm14, (chaining[3]));
/* transform state back from row ordering into column ordering */
/* result: final hash value in xmm9, xmm11 */
Matrix_Transpose_A(xmm8, xmm10, xmm12, xmm14, xmm4, xmm9, xmm11, xmm0);
VPERM_Transform(xmm9, xmm11, VPERM_OPT, xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm7);
/* we only need to return the truncated half of the state */
chaining[2] = xmm9;
chaining[3] = xmm11;
return;
}//OF512()

View File

@@ -16,48 +16,13 @@
#ifdef __AES__
#include "groestl-version.h"
#ifdef TASM
#ifdef VAES
#include "groestl-asm-aes.h"
#else
#ifdef VAVX
#include "groestl-asm-avx.h"
#else
#ifdef VVPERM
#include "groestl-asm-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#ifdef TINTR
#ifdef VAES
#include "groestl-intr-aes.h"
#else
#ifdef VAVX
#include "groestl-intr-avx.h"
#else
#ifdef VVPERM
#include "groestl-intr-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#error NO TYPE SPECIFIED (-DT[ASM/INTR])
#endif
#endif
#include "groestl-intr-aes.h"
HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
{
int i;
ctx->hashlen = hashlen;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return FAIL_GR;
@@ -70,8 +35,6 @@ HashReturn_gr init_groestl( hashState_groestl* ctx, int hashlen )
// The only non-zero in the IV is len. It can be hard coded.
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -92,8 +55,6 @@ HashReturn_gr reinit_groestl( hashState_groestl* ctx )
ctx->buffer[i] = _mm_setzero_si128();
}
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
// ((u64*)ctx->chaining)[COLS-1] = U64BIG((u64)LENGTH);
// INIT(ctx->chaining);
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
@@ -109,7 +70,7 @@ HashReturn_gr reinit_groestl( hashState_groestl* ctx )
// 5. Midstate will work at reduced impact than full hash, if total hash
// (midstate + tail) is less than 1 block.
// This, unfortunately, is the case with all current users.
// 6. the morefull blocks the bigger the gain
// 6. the more full blocks the bigger the gain
// use only for midstate precalc
HashReturn_gr update_groestl( hashState_groestl* ctx, const void* input,
@@ -143,12 +104,11 @@ HashReturn_gr update_groestl( hashState_groestl* ctx, const void* input,
// deprecated do not use
HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
{
const int len = (int)ctx->databitlen / 128; // bits to __m128i
const int blocks = ctx->blk_count + 1; // adjust for final block
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i; // where in buffer
const int len = (int)ctx->databitlen / 128; // bits to __m128i
const uint64_t blocks = ctx->blk_count + 1; // adjust for final block
const int rem_ptr = ctx->rem_ptr; // end of data start of padding
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i; // where in buffer
int i;
// first pad byte = 0x80, last pad byte = block count
@@ -157,21 +117,18 @@ HashReturn_gr final_groestl( hashState_groestl* ctx, void* output )
if ( rem_ptr == len - 1 )
{
// only 128 bits left in buffer, all padding at once
ctx->buffer[rem_ptr] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[rem_ptr] = _mm_set_epi64x( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[rem_ptr] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[rem_ptr] = m128_const_64( 0, 0x80 );
// add zero padding
for ( i = rem_ptr + 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
0, 0 ,0,0, 0,0,0,0 );
ctx->buffer[i] = _mm_set_epi64x( blocks << 56, 0 );
}
// digest final padding block and do output transform
@@ -189,21 +146,20 @@ int groestl512_full( hashState_groestl* ctx, void* output,
const void* input, uint64_t databitlen )
{
int i;
ctx->hashlen = 64;
SET_CONSTANTS();
for ( i = 0; i < SIZE512; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
int i;
ctx->hashlen = 64;
for ( i = 0; i < SIZE512; i++ )
{
ctx->chaining[i] = _mm_setzero_si128();
ctx->buffer[i] = _mm_setzero_si128();
}
ctx->chaining[ 6 ] = m128_const_64( 0x0200000000000000, 0 );
ctx->buf_ptr = 0;
ctx->rem_ptr = 0;
// --- update ---
const int len = (int)databitlen / 128;
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
@@ -211,8 +167,6 @@ int groestl512_full( hashState_groestl* ctx, void* output,
uint64_t blocks = len / SIZE512;
__m128i* in = (__m128i*)input;
// --- update ---
// digest any full blocks, process directly from input
for ( i = 0; i < blocks; i++ )
TF1024( ctx->chaining, &in[ i * SIZE512 ] );
@@ -231,26 +185,22 @@ int groestl512_full( hashState_groestl* ctx, void* output,
if ( i == len -1 )
{
// only 128 bits left in buffer, all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[i] = _mm_set_epi64x( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[i] = m128_const_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
0, 0 ,0,0, 0,0,0,0 );
ctx->buffer[i] = _mm_set_epi64x( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF1024( ctx->chaining, ctx->buffer );
OF1024( ctx->chaining );
// store hash result in output
@@ -268,7 +218,7 @@ HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
const int hashlen_m128i = ctx->hashlen / 16; // bytes to __m128i
const int hash_offset = SIZE512 - hashlen_m128i;
int rem = ctx->rem_ptr;
int blocks = len / SIZE512;
uint64_t blocks = len / SIZE512;
__m128i* in = (__m128i*)input;
int i;
@@ -292,26 +242,22 @@ HashReturn_gr update_and_final_groestl( hashState_groestl* ctx, void* output,
if ( i == len -1 )
{
// only 128 bits left in buffer, all padding at once
ctx->buffer[i] = _mm_set_epi8( blocks,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[i] = _mm_set_epi64x( blocks << 56, 0x80 );
}
else
{
// add first padding
ctx->buffer[i] = _mm_set_epi8( 0,0,0,0, 0,0,0,0,
0,0,0,0, 0,0,0,0x80 );
ctx->buffer[i] = m128_const_64( 0, 0x80 );
// add zero padding
for ( i += 1; i < SIZE512 - 1; i++ )
ctx->buffer[i] = _mm_setzero_si128();
// add length padding, second last byte is zero unless blocks > 255
ctx->buffer[i] = _mm_set_epi8( blocks, blocks>>8, 0,0, 0,0,0,0,
0, 0 ,0,0, 0,0,0,0 );
ctx->buffer[i] = _mm_set_epi64x( blocks << 56, 0 );
}
// digest final padding block and do output transform
TF1024( ctx->chaining, ctx->buffer );
OF1024( ctx->chaining );
// store hash result in output

View File

@@ -13,41 +13,7 @@
#ifdef __AES__
#include "groestl-version.h"
#ifdef TASM
#ifdef VAES
#include "groestl256-asm-aes.h"
#else
#ifdef VAVX
#include "groestl256-asm-avx.h"
#else
#ifdef VVPERM
#include "groestl256-asm-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#ifdef TINTR
#ifdef VAES
#include "groestl256-intr-aes.h"
#else
#ifdef VAVX
#include "groestl256-intr-avx.h"
#else
#ifdef VVPERM
#include "groestl256-intr-vperm.h"
#else
#error NO VERSION SPECIFIED (-DV[AES/AVX/VVPERM])
#endif
#endif
#endif
#else
#error NO TYPE SPECIFIED (-DT[ASM/INTR])
#endif
#endif
#include "groestl256-intr-aes.h"
/* initialise context */
HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
@@ -55,7 +21,6 @@ HashReturn_gr init_groestl256( hashState_groestl256* ctx, int hashlen )
int i;
ctx->hashlen = hashlen;
SET_CONSTANTS();
if (ctx->chaining == NULL || ctx->buffer == NULL)
return FAIL_GR;