This commit is contained in:
Jay D Dee
2017-04-17 14:35:18 -04:00
parent 53259692eb
commit 0155cd1bfe
14 changed files with 33 additions and 2293 deletions

View File

@@ -8,19 +8,20 @@
#include "sph_sha2.h"
#if defined (SHA_NI)
#include <openssl/sha.h>
static SHA256_CTX sha256t_ctx __attribute__ ((aligned (64)));
static __thread SHA256_CTX sha256t_mid __attribute__ ((aligned (64)));
#if defined __SHA__
#include <openssl/sha.h>
static SHA256_CTX sha256t_ctx __attribute__ ((aligned (64)));
static __thread SHA256_CTX sha256t_mid __attribute__ ((aligned (64)));
#else
static sph_sha256_context sha256t_ctx __attribute__ ((aligned (64)));
static __thread sph_sha256_context sha256t_mid __attribute__ ((aligned (64)));
static sph_sha256_context sha256t_ctx __attribute__ ((aligned (64)));
static __thread sph_sha256_context sha256t_mid __attribute__ ((aligned (64)));
#endif
void sha256t_midstate( const void* input )
{
memcpy( &sha256t_mid, &sha256t_ctx, sizeof sha256t_mid );
#if defined (SHA_NI)
#if defined __SHA__
SHA256_Update( &sha256t_mid, input, 64 );
#else
sph_sha256( &sha256t_mid, input, 64 );
@@ -33,7 +34,7 @@ void sha256t_hash(void* output, const void* input, uint32_t len)
const int midlen = 64; // bytes
const int tail = 80 - midlen; // 16
#if defined (SHA_NI)
#if defined __SHA__
SHA256_CTX ctx_sha256 __attribute__ ((aligned (64)));
memcpy( &ctx_sha256, &sha256t_mid, sizeof sha256t_mid );
@@ -147,10 +148,9 @@ void sha256t_set_target( struct work* work, double job_diff )
work_set_target( work, job_diff / (256.0 * opt_diff_factor) );
}
bool register_sha256t_algo( algo_gate_t* gate )
{
#if defined (SHA_NI)
#if defined __SHA__
SHA256_Init( &sha256t_ctx );
#else
sph_sha256_init( &sha256t_ctx );

View File

@@ -1,693 +0,0 @@
/* $Id: sha2.c 227 2010-06-16 17:28:38Z tp $ */
/*
* SHA-224 / SHA-256 implementation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#include <stddef.h>
#include <string.h>
#include "sph-sha2.h"
#if SPH_SMALL_FOOTPRINT && !defined SPH_SMALL_FOOTPRINT_SHA2
#define SPH_SMALL_FOOTPRINT_SHA2 1
#endif
#define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z))
#define MAJ(X, Y, Z) (((Y) & (Z)) | (((Y) | (Z)) & (X)))
#define ROTR SPH_ROTR32
#define BSG2_0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define BSG2_1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SSG2_0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SPH_T32((x) >> 3))
#define SSG2_1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SPH_T32((x) >> 10))
static const sph_u32 H224[8] = {
SPH_C32(0xC1059ED8), SPH_C32(0x367CD507), SPH_C32(0x3070DD17),
SPH_C32(0xF70E5939), SPH_C32(0xFFC00B31), SPH_C32(0x68581511),
SPH_C32(0x64F98FA7), SPH_C32(0xBEFA4FA4)
};
static const sph_u32 H256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372),
SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
/*
* The SHA2_ROUND_BODY defines the body for a SHA-224 / SHA-256
* compression function implementation. The "in" parameter should
* evaluate, when applied to a numerical input parameter from 0 to 15,
* to an expression which yields the corresponding input block. The "r"
* parameter should evaluate to an array or pointer expression
* designating the array of 8 words which contains the input and output
* of the compression function.
*/
#if SPH_SMALL_FOOTPRINT_SHA2
static const sph_u32 K[64] = {
SPH_C32(0x428A2F98), SPH_C32(0x71374491),
SPH_C32(0xB5C0FBCF), SPH_C32(0xE9B5DBA5),
SPH_C32(0x3956C25B), SPH_C32(0x59F111F1),
SPH_C32(0x923F82A4), SPH_C32(0xAB1C5ED5),
SPH_C32(0xD807AA98), SPH_C32(0x12835B01),
SPH_C32(0x243185BE), SPH_C32(0x550C7DC3),
SPH_C32(0x72BE5D74), SPH_C32(0x80DEB1FE),
SPH_C32(0x9BDC06A7), SPH_C32(0xC19BF174),
SPH_C32(0xE49B69C1), SPH_C32(0xEFBE4786),
SPH_C32(0x0FC19DC6), SPH_C32(0x240CA1CC),
SPH_C32(0x2DE92C6F), SPH_C32(0x4A7484AA),
SPH_C32(0x5CB0A9DC), SPH_C32(0x76F988DA),
SPH_C32(0x983E5152), SPH_C32(0xA831C66D),
SPH_C32(0xB00327C8), SPH_C32(0xBF597FC7),
SPH_C32(0xC6E00BF3), SPH_C32(0xD5A79147),
SPH_C32(0x06CA6351), SPH_C32(0x14292967),
SPH_C32(0x27B70A85), SPH_C32(0x2E1B2138),
SPH_C32(0x4D2C6DFC), SPH_C32(0x53380D13),
SPH_C32(0x650A7354), SPH_C32(0x766A0ABB),
SPH_C32(0x81C2C92E), SPH_C32(0x92722C85),
SPH_C32(0xA2BFE8A1), SPH_C32(0xA81A664B),
SPH_C32(0xC24B8B70), SPH_C32(0xC76C51A3),
SPH_C32(0xD192E819), SPH_C32(0xD6990624),
SPH_C32(0xF40E3585), SPH_C32(0x106AA070),
SPH_C32(0x19A4C116), SPH_C32(0x1E376C08),
SPH_C32(0x2748774C), SPH_C32(0x34B0BCB5),
SPH_C32(0x391C0CB3), SPH_C32(0x4ED8AA4A),
SPH_C32(0x5B9CCA4F), SPH_C32(0x682E6FF3),
SPH_C32(0x748F82EE), SPH_C32(0x78A5636F),
SPH_C32(0x84C87814), SPH_C32(0x8CC70208),
SPH_C32(0x90BEFFFA), SPH_C32(0xA4506CEB),
SPH_C32(0xBEF9A3F7), SPH_C32(0xC67178F2)
};
#define SHA2_MEXP1(in, pc) do { \
W[pc] = in(pc); \
} while (0)
#define SHA2_MEXP2(in, pc) do { \
W[(pc) & 0x0F] = SPH_T32(SSG2_1(W[((pc) - 2) & 0x0F]) \
+ W[((pc) - 7) & 0x0F] \
+ SSG2_0(W[((pc) - 15) & 0x0F]) + W[(pc) & 0x0F]); \
} while (0)
#define SHA2_STEPn(n, a, b, c, d, e, f, g, h, in, pc) do { \
sph_u32 t1, t2; \
SHA2_MEXP ## n(in, pc); \
t1 = SPH_T32(h + BSG2_1(e) + CH(e, f, g) \
+ K[pcount + (pc)] + W[(pc) & 0x0F]); \
t2 = SPH_T32(BSG2_0(a) + MAJ(a, b, c)); \
d = SPH_T32(d + t1); \
h = SPH_T32(t1 + t2); \
} while (0)
#define SHA2_STEP1(a, b, c, d, e, f, g, h, in, pc) \
SHA2_STEPn(1, a, b, c, d, e, f, g, h, in, pc)
#define SHA2_STEP2(a, b, c, d, e, f, g, h, in, pc) \
SHA2_STEPn(2, a, b, c, d, e, f, g, h, in, pc)
#define SHA2_ROUND_BODY(in, r) do { \
sph_u32 A, B, C, D, E, F, G, H; \
sph_u32 W[16]; \
unsigned pcount; \
\
A = (r)[0]; \
B = (r)[1]; \
C = (r)[2]; \
D = (r)[3]; \
E = (r)[4]; \
F = (r)[5]; \
G = (r)[6]; \
H = (r)[7]; \
pcount = 0; \
SHA2_STEP1(A, B, C, D, E, F, G, H, in, 0); \
SHA2_STEP1(H, A, B, C, D, E, F, G, in, 1); \
SHA2_STEP1(G, H, A, B, C, D, E, F, in, 2); \
SHA2_STEP1(F, G, H, A, B, C, D, E, in, 3); \
SHA2_STEP1(E, F, G, H, A, B, C, D, in, 4); \
SHA2_STEP1(D, E, F, G, H, A, B, C, in, 5); \
SHA2_STEP1(C, D, E, F, G, H, A, B, in, 6); \
SHA2_STEP1(B, C, D, E, F, G, H, A, in, 7); \
SHA2_STEP1(A, B, C, D, E, F, G, H, in, 8); \
SHA2_STEP1(H, A, B, C, D, E, F, G, in, 9); \
SHA2_STEP1(G, H, A, B, C, D, E, F, in, 10); \
SHA2_STEP1(F, G, H, A, B, C, D, E, in, 11); \
SHA2_STEP1(E, F, G, H, A, B, C, D, in, 12); \
SHA2_STEP1(D, E, F, G, H, A, B, C, in, 13); \
SHA2_STEP1(C, D, E, F, G, H, A, B, in, 14); \
SHA2_STEP1(B, C, D, E, F, G, H, A, in, 15); \
for (pcount = 16; pcount < 64; pcount += 16) { \
SHA2_STEP2(A, B, C, D, E, F, G, H, in, 0); \
SHA2_STEP2(H, A, B, C, D, E, F, G, in, 1); \
SHA2_STEP2(G, H, A, B, C, D, E, F, in, 2); \
SHA2_STEP2(F, G, H, A, B, C, D, E, in, 3); \
SHA2_STEP2(E, F, G, H, A, B, C, D, in, 4); \
SHA2_STEP2(D, E, F, G, H, A, B, C, in, 5); \
SHA2_STEP2(C, D, E, F, G, H, A, B, in, 6); \
SHA2_STEP2(B, C, D, E, F, G, H, A, in, 7); \
SHA2_STEP2(A, B, C, D, E, F, G, H, in, 8); \
SHA2_STEP2(H, A, B, C, D, E, F, G, in, 9); \
SHA2_STEP2(G, H, A, B, C, D, E, F, in, 10); \
SHA2_STEP2(F, G, H, A, B, C, D, E, in, 11); \
SHA2_STEP2(E, F, G, H, A, B, C, D, in, 12); \
SHA2_STEP2(D, E, F, G, H, A, B, C, in, 13); \
SHA2_STEP2(C, D, E, F, G, H, A, B, in, 14); \
SHA2_STEP2(B, C, D, E, F, G, H, A, in, 15); \
} \
(r)[0] = SPH_T32((r)[0] + A); \
(r)[1] = SPH_T32((r)[1] + B); \
(r)[2] = SPH_T32((r)[2] + C); \
(r)[3] = SPH_T32((r)[3] + D); \
(r)[4] = SPH_T32((r)[4] + E); \
(r)[5] = SPH_T32((r)[5] + F); \
(r)[6] = SPH_T32((r)[6] + G); \
(r)[7] = SPH_T32((r)[7] + H); \
} while (0)
#else
#define SHA2_ROUND_BODY(in, r) do { \
sph_u32 A, B, C, D, E, F, G, H, T1, T2; \
sph_u32 W00, W01, W02, W03, W04, W05, W06, W07; \
sph_u32 W08, W09, W10, W11, W12, W13, W14, W15; \
int i; \
\
/* for (i=0;i<8;i++) {printf("in[%d]=%08x in[%d]=%08x \n",2*i,in(2*i),2*i+1,in(2*i+1));} */ \
A = (r)[0]; \
B = (r)[1]; \
C = (r)[2]; \
D = (r)[3]; \
E = (r)[4]; \
F = (r)[5]; \
G = (r)[6]; \
H = (r)[7]; \
W00 = in(0); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0x428A2F98) + W00); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W01 = in(1); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0x71374491) + W01); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W02 = in(2); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0xB5C0FBCF) + W02); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W03 = in(3); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0xE9B5DBA5) + W03); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W04 = in(4); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x3956C25B) + W04); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W05 = in(5); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0x59F111F1) + W05); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W06 = in(6); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x923F82A4) + W06); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W07 = in(7); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0xAB1C5ED5) + W07); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W08 = in(8); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0xD807AA98) + W08); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W09 = in(9); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0x12835B01) + W09); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W10 = in(10); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0x243185BE) + W10); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W11 = in(11); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0x550C7DC3) + W11); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W12 = in(12); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x72BE5D74) + W12); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W13 = in(13); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0x80DEB1FE) + W13); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W14 = in(14); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x9BDC06A7) + W14); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W15 = in(15); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0xC19BF174) + W15); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0xE49B69C1) + W00); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0xEFBE4786) + W01); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0x0FC19DC6) + W02); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0x240CA1CC) + W03); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x2DE92C6F) + W04); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0x4A7484AA) + W05); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x5CB0A9DC) + W06); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0x76F988DA) + W07); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0x983E5152) + W08); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0xA831C66D) + W09); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0xB00327C8) + W10); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0xBF597FC7) + W11); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0xC6E00BF3) + W12); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0xD5A79147) + W13); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x06CA6351) + W14); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0x14292967) + W15); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0x27B70A85) + W00); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0x2E1B2138) + W01); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0x4D2C6DFC) + W02); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0x53380D13) + W03); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x650A7354) + W04); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0x766A0ABB) + W05); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x81C2C92E) + W06); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0x92722C85) + W07); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0xA2BFE8A1) + W08); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0xA81A664B) + W09); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0xC24B8B70) + W10); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0xC76C51A3) + W11); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0xD192E819) + W12); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0xD6990624) + W13); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0xF40E3585) + W14); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0x106AA070) + W15); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W00 = SPH_T32(SSG2_1(W14) + W09 + SSG2_0(W01) + W00); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0x19A4C116) + W00); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W01 = SPH_T32(SSG2_1(W15) + W10 + SSG2_0(W02) + W01); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0x1E376C08) + W01); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W02 = SPH_T32(SSG2_1(W00) + W11 + SSG2_0(W03) + W02); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0x2748774C) + W02); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W03 = SPH_T32(SSG2_1(W01) + W12 + SSG2_0(W04) + W03); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0x34B0BCB5) + W03); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W04 = SPH_T32(SSG2_1(W02) + W13 + SSG2_0(W05) + W04); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x391C0CB3) + W04); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W05 = SPH_T32(SSG2_1(W03) + W14 + SSG2_0(W06) + W05); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0x4ED8AA4A) + W05); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W06 = SPH_T32(SSG2_1(W04) + W15 + SSG2_0(W07) + W06); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0x5B9CCA4F) + W06); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W07 = SPH_T32(SSG2_1(W05) + W00 + SSG2_0(W08) + W07); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0x682E6FF3) + W07); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
W08 = SPH_T32(SSG2_1(W06) + W01 + SSG2_0(W09) + W08); \
T1 = SPH_T32(H + BSG2_1(E) + CH(E, F, G) \
+ SPH_C32(0x748F82EE) + W08); \
T2 = SPH_T32(BSG2_0(A) + MAJ(A, B, C)); \
D = SPH_T32(D + T1); \
H = SPH_T32(T1 + T2); \
W09 = SPH_T32(SSG2_1(W07) + W02 + SSG2_0(W10) + W09); \
T1 = SPH_T32(G + BSG2_1(D) + CH(D, E, F) \
+ SPH_C32(0x78A5636F) + W09); \
T2 = SPH_T32(BSG2_0(H) + MAJ(H, A, B)); \
C = SPH_T32(C + T1); \
G = SPH_T32(T1 + T2); \
W10 = SPH_T32(SSG2_1(W08) + W03 + SSG2_0(W11) + W10); \
T1 = SPH_T32(F + BSG2_1(C) + CH(C, D, E) \
+ SPH_C32(0x84C87814) + W10); \
T2 = SPH_T32(BSG2_0(G) + MAJ(G, H, A)); \
B = SPH_T32(B + T1); \
F = SPH_T32(T1 + T2); \
W11 = SPH_T32(SSG2_1(W09) + W04 + SSG2_0(W12) + W11); \
T1 = SPH_T32(E + BSG2_1(B) + CH(B, C, D) \
+ SPH_C32(0x8CC70208) + W11); \
T2 = SPH_T32(BSG2_0(F) + MAJ(F, G, H)); \
A = SPH_T32(A + T1); \
E = SPH_T32(T1 + T2); \
W12 = SPH_T32(SSG2_1(W10) + W05 + SSG2_0(W13) + W12); \
T1 = SPH_T32(D + BSG2_1(A) + CH(A, B, C) \
+ SPH_C32(0x90BEFFFA) + W12); \
T2 = SPH_T32(BSG2_0(E) + MAJ(E, F, G)); \
H = SPH_T32(H + T1); \
D = SPH_T32(T1 + T2); \
W13 = SPH_T32(SSG2_1(W11) + W06 + SSG2_0(W14) + W13); \
T1 = SPH_T32(C + BSG2_1(H) + CH(H, A, B) \
+ SPH_C32(0xA4506CEB) + W13); \
T2 = SPH_T32(BSG2_0(D) + MAJ(D, E, F)); \
G = SPH_T32(G + T1); \
C = SPH_T32(T1 + T2); \
W14 = SPH_T32(SSG2_1(W12) + W07 + SSG2_0(W15) + W14); \
T1 = SPH_T32(B + BSG2_1(G) + CH(G, H, A) \
+ SPH_C32(0xBEF9A3F7) + W14); \
T2 = SPH_T32(BSG2_0(C) + MAJ(C, D, E)); \
F = SPH_T32(F + T1); \
B = SPH_T32(T1 + T2); \
W15 = SPH_T32(SSG2_1(W13) + W08 + SSG2_0(W00) + W15); \
T1 = SPH_T32(A + BSG2_1(F) + CH(F, G, H) \
+ SPH_C32(0xC67178F2) + W15); \
T2 = SPH_T32(BSG2_0(B) + MAJ(B, C, D)); \
E = SPH_T32(E + T1); \
A = SPH_T32(T1 + T2); \
(r)[0] = SPH_T32((r)[0] + A); \
(r)[1] = SPH_T32((r)[1] + B); \
(r)[2] = SPH_T32((r)[2] + C); \
(r)[3] = SPH_T32((r)[3] + D); \
(r)[4] = SPH_T32((r)[4] + E); \
(r)[5] = SPH_T32((r)[5] + F); \
(r)[6] = SPH_T32((r)[6] + G); \
(r)[7] = SPH_T32((r)[7] + H); \
/* for (i=0;i<4;i++) {printf("r[%d]=%08x r[%d]=%08x\n",2*i,(r)[2*i],2*i+1,(r)[2*i+1]);} */ \
} while (0)
#endif
/*
* One round of SHA-224 / SHA-256. The data must be aligned for 32-bit access.
*/
static void
sha2_round(const unsigned char *data, sph_u32 r[8])
{
#define SHA2_IN(x) sph_dec32be_aligned(data + (4 * (x)))
SHA2_ROUND_BODY(SHA2_IN, r);
#undef SHA2_IN
}
/* see sph_sha2.h */
void
sph_sha224_init(void *cc)
{
sph_sha224_context *sc;
sc = cc;
memcpy(sc->val, H224, sizeof H224);
#if SPH_64
sc->count = 0;
#else
sc->count_high = sc->count_low = 0;
#endif
}
/* see sph_sha2.h */
void
sph_sha256_init(void *cc)
{
sph_sha256_context *sc;
sc = cc;
memcpy(sc->val, H256, sizeof H256);
#if SPH_64
sc->count = 0;
#else
sc->count_high = sc->count_low = 0;
#endif
}
#define RFUN sha2_round
#define HASH sha224
#define BE32 1
#include "md_helper.c"
/* see sph_sha2.h */
void
sph_sha224_close(void *cc, void *dst)
{
sha224_close(cc, dst, 7);
// sph_sha224_init(cc);
}
/* see sph_sha2.h */
void
sph_sha224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha224_addbits_and_close(cc, ub, n, dst, 7);
// sph_sha224_init(cc);
}
/* see sph_sha2.h */
void
sph_sha256_close(void *cc, void *dst)
{
sha224_close(cc, dst, 8);
// sph_sha256_init(cc);
}
/* see sph_sha2.h */
void
sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst)
{
sha224_addbits_and_close(cc, ub, n, dst, 8);
// sph_sha256_init(cc);
}
/* see sph_sha2.h */
void
sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8])
{
#define SHA2_IN(x) msg[x]
SHA2_ROUND_BODY(SHA2_IN, val);
#undef SHA2_IN
}

View File

@@ -1,378 +0,0 @@
/* $Id: sph_sha2.h 216 2010-06-08 09:46:57Z tp $ */
/**
* SHA-224, SHA-256, SHA-384 and SHA-512 interface.
*
* SHA-256 has been published in FIPS 180-2, now amended with a change
* notice to include SHA-224 as well (which is a simple variation on
* SHA-256). SHA-384 and SHA-512 are also defined in FIPS 180-2. FIPS
* standards can be found at:
* http://csrc.nist.gov/publications/fips/
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2007-2010 Projet RNRT SAPHIR
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @file sph_sha2.h
* @author Thomas Pornin <thomas.pornin@cryptolog.com>
*/
#ifndef SPH_SHA2_H__
#define SPH_SHA2_H__
#include <stddef.h>
#include "sph_types.h"
#ifdef __cplusplus
extern "C"{
#endif
/**
* Output size (in bits) for SHA-224.
*/
#define SPH_SIZE_sha224 224
/**
* Output size (in bits) for SHA-256.
*/
#define SPH_SIZE_sha256 256
/**
* This structure is a context for SHA-224 computations: it contains the
* intermediate values and some data from the last entered block. Once
* a SHA-224 computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running SHA-224 computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[64]; /* first field, for alignment */
sph_u32 val[8];
#if SPH_64
sph_u64 count;
#else
sph_u32 count_high, count_low;
#endif
#endif
} sph_sha224_context;
/**
* This structure is a context for SHA-256 computations. It is identical
* to the SHA-224 context. However, a context is initialized for SHA-224
* <strong>or</strong> SHA-256, but not both (the internal IV is not the
* same).
*/
typedef sph_sha224_context sph_sha256_context;
/**
* Initialize a SHA-224 context. This process performs no memory allocation.
*
* @param cc the SHA-224 context (pointer to
* a <code>sph_sha224_context</code>)
*/
void sph_sha224_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the SHA-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha224(void *cc, const void *data, size_t len);
/**
* Terminate the current SHA-224 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (28 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-224 context
* @param dst the destination buffer
*/
void sph_sha224_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (28 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-224 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha224_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
/**
* Apply the SHA-224 compression function on the provided data. The
* <code>msg</code> parameter contains the 16 32-bit input blocks,
* as numerical values (hence after the big-endian decoding). The
* <code>val</code> parameter contains the 8 32-bit input blocks for
* the compression function; the output is written in place in this
* array.
*
* @param msg the message block (16 values)
* @param val the function 256-bit input and output
*/
void sph_sha224_comp(const sph_u32 msg[16], sph_u32 val[8]);
/**
* Initialize a SHA-256 context. This process performs no memory allocation.
*
* @param cc the SHA-256 context (pointer to
* a <code>sph_sha256_context</code>)
*/
void sph_sha256_init(void *cc);
#ifdef DOXYGEN_IGNORE
/**
* Process some data bytes, for SHA-256. This function is identical to
* <code>sha_224()</code>
*
* @param cc the SHA-224 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha256(void *cc, const void *data, size_t len);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha256 sph_sha224
#endif
/**
* Terminate the current SHA-256 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (32 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-256 context
* @param dst the destination buffer
*/
void sph_sha256_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (32 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-256 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha256_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
#ifdef DOXYGEN_IGNORE
/**
* Apply the SHA-256 compression function on the provided data. This
* function is identical to <code>sha224_comp()</code>.
*
* @param msg the message block (16 values)
* @param val the function 256-bit input and output
*/
void sph_sha256_comp(const sph_u32 msg[16], sph_u32 val[8]);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha256_comp sph_sha224_comp
#endif
#if SPH_64
/**
* Output size (in bits) for SHA-384.
*/
#define SPH_SIZE_sha384 384
/**
* Output size (in bits) for SHA-512.
*/
#define SPH_SIZE_sha512 512
/**
* This structure is a context for SHA-384 computations: it contains the
* intermediate values and some data from the last entered block. Once
* a SHA-384 computation has been performed, the context can be reused for
* another computation.
*
* The contents of this structure are private. A running SHA-384 computation
* can be cloned by copying the context (e.g. with a simple
* <code>memcpy()</code>).
*/
typedef struct {
#ifndef DOXYGEN_IGNORE
unsigned char buf[128]; /* first field, for alignment */
sph_u64 val[8];
sph_u64 count;
#endif
} sph_sha384_context;
/**
* Initialize a SHA-384 context. This process performs no memory allocation.
*
* @param cc the SHA-384 context (pointer to
* a <code>sph_sha384_context</code>)
*/
void sph_sha384_init(void *cc);
/**
* Process some data bytes. It is acceptable that <code>len</code> is zero
* (in which case this function does nothing).
*
* @param cc the SHA-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha384(void *cc, const void *data, size_t len);
/**
* Terminate the current SHA-384 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (48 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-384 context
* @param dst the destination buffer
*/
void sph_sha384_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (48 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-384 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
/**
* Apply the SHA-384 compression function on the provided data. The
* <code>msg</code> parameter contains the 16 64-bit input blocks,
* as numerical values (hence after the big-endian decoding). The
* <code>val</code> parameter contains the 8 64-bit input blocks for
* the compression function; the output is written in place in this
* array.
*
* @param msg the message block (16 values)
* @param val the function 512-bit input and output
*/
void sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8]);
/**
* This structure is a context for SHA-512 computations. It is identical
* to the SHA-384 context. However, a context is initialized for SHA-384
* <strong>or</strong> SHA-512, but not both (the internal IV is not the
* same).
*/
typedef sph_sha384_context sph_sha512_context;
/**
* Initialize a SHA-512 context. This process performs no memory allocation.
*
* @param cc the SHA-512 context (pointer to
* a <code>sph_sha512_context</code>)
*/
void sph_sha512_init(void *cc);
#ifdef DOXYGEN_IGNORE
/**
* Process some data bytes, for SHA-512. This function is identical to
* <code>sph_sha384()</code>.
*
* @param cc the SHA-384 context
* @param data the input data
* @param len the input data length (in bytes)
*/
void sph_sha512(void *cc, const void *data, size_t len);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha512 sph_sha384
#endif
/**
* Terminate the current SHA-512 computation and output the result into the
* provided buffer. The destination buffer must be wide enough to
* accomodate the result (64 bytes). The context is automatically
* reinitialized.
*
* @param cc the SHA-512 context
* @param dst the destination buffer
*/
void sph_sha512_close(void *cc, void *dst);
/**
* Add a few additional bits (0 to 7) to the current computation, then
* terminate it and output the result in the provided buffer, which must
* be wide enough to accomodate the result (64 bytes). If bit number i
* in <code>ub</code> has value 2^i, then the extra bits are those
* numbered 7 downto 8-n (this is the big-endian convention at the byte
* level). The context is automatically reinitialized.
*
* @param cc the SHA-512 context
* @param ub the extra bits
* @param n the number of extra bits (0 to 7)
* @param dst the destination buffer
*/
void sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst);
#ifdef DOXYGEN_IGNORE
/**
* Apply the SHA-512 compression function. This function is identical to
* <code>sph_sha384_comp()</code>.
*
* @param msg the message block (16 values)
* @param val the function 512-bit input and output
*/
void sph_sha512_comp(const sph_u64 msg[16], sph_u64 val[8]);
#endif
#ifndef DOXYGEN_IGNORE
#define sph_sha512_comp sph_sha384_comp
#endif
#endif
#endif
#ifdef __cplusplus
}
#endif

View File

@@ -669,7 +669,7 @@ void
sph_sha256_close(void *cc, void *dst)
{
sha224_close(cc, dst, 8);
sph_sha256_init(cc);
// sph_sha256_init(cc);
}
/* see sph_sha2.h */